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The low temperature lattice electrical resistance of metals with closed Fermi surfaces 
is studied, with phonon nonequilibrium (phonon drag) taken into account. It is shown that, 
in the case when the distances between the electron or hole groups are much smaller 
than their characteristic dimensions, the temperature Tp below which the :..lec~ic~l re
sistance p should fall in accordance with the Peierls exponential law p ~ e ToT IS con
siderably lower than To (To ~ bopS, where bop is the minimum distance between the groups 
and s is the speed of sound). For the case of one spherical Fermi surface, the behavior 
of the electrical resistance is studied in detail in the fairly wide range of intermediate 
temperatures above which a dependence close to the Bloch law, p ~ T 5 holds, and below 
which the Peierls exponential law holds. It is shown, in particular, that allowance for 
phonon drag has a substantial effect on the low-temperature electrical conductivity. The 
results obtained are in agreement with the experimentally observed temperature depen
dence of the electrical resistance of Na and K. 

The fundamentally important role of Umklapp proces
ses in the electrical conductivity of pure metals became 
clear as soon as the work of Peierls appeared 
(1930-1932). At sufficiently low temperatures (roughly 
speaking, for T ~ ®/10, where T is the temperature and 
® is the Debye temperature), when the probability of 
Umklapp processes in collisions between phonons is 
negligibly small, the electrical resistance of a pure 
metal is due to Umklapp processes in electron-phonon 
collisions. (Normal collisions do not themselves lead to 
resistance, since the total quasi-momentum of the elec
trons and phonons is conserved.) It follows from these 
considerations that the behavior of the lattice resistance 
as T - 0 is essentially different for metals with open 
and closed Fermi surfaces. In the case of an open 
Fermi surface, electron-phonon U-processes are possi
ble at arbitrarily low temperatures, and the Bloch law 
for the resistance is valid: p ~ T5. But if the Fermi 
surface is closed, and the number of electrons is not 
equal to the number of holes, then at temperatures 
T « To I':j Sbop (s is the speed of sound and bop is the 
minimum distance between isolated electron groups) the 
probability of an Umklapp process, and with it the elec
trical resistance, is proportional to exp(- To/T). 

We note that the Peierls exponential in the electrical 
resistance will also occur when the closed Fermi sur
faces intersect the Brillouin zone boundaries. Since, in 
the repeated-zone scheme, connected parts of the Fermi 
surface do not contain equivalent points, it is always 
possible to eliminate the intersection by a suitable 
choice of the unit cell in p- space; the unit cell need not 
necessarily be bounded by plane boundaries (see Fig. 1). 

Up to the present time, there have been no reliable 
data on the experimental observation of the Peierls ex
ponential, although for certain metals measurements 
have been performed at temperatures considerably below 
To. It is probable that the most favourable objects for 
observing the exponential are the alkali metals, in which 
the distances between the closed electron groups are ex
tremely large: bop ~ PF/3. (For example, for Na the 
temperature To ~ 200K, and for K To ~ lOOK.) However, 
in the experiments of Woods[l], the following tempera
ture dependence of the resistance of Na was Observed: 
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p ~ T 5 in the interval 15° > T > go and a steeper curve, 
p ~ T6 approximately, in the interval 9° > T > 5°. A 
law close to T6 was also observed for K for 4.2° > T 
> 1.3° in the work of Tsor and Gantmakher[2] , and 
analogous results were obtained recently by Ekin and 
Maxfield[3] . 

Two questions arise in connection with the above ac
count. 1) At what temperatures does the electrical re
sistance of metals with closed Fermi surfaces and un
equal numbers of electrons and holes begin to decrease 
exponentially as the temperature is lowered? 2) What 
temperature dependence precedes the exponential? 

In our preceding paper[4], a diffusion equation for the 
electron distribution function, with phonon drag taken 
into account, was introduced and used to study the low
temperature electrical conductivity of metals with open 
Fermi surfaces. In the present paper, the electrical 
conductivity of metals with closed spherical Fermi sur
faces is treated using the same diffusion approach. The 
limitation to spherical Fermi surfaces implies, of 
course, that the concrete calculations apply directly to 
the alkali metals, but, as will become clear from the fol
lowing, certain general conclusions are valid for arbi
trary closed Fermi surfaces. 

The electrical conductivity of the alkali metals was 
calculated earlier by Ziman and a number of other au
thors on the basis of a variational prinCiple using the 
drift distribution as the trial function (see[3':J for refer
ences to these papers). This method leads to an over
estimate of the contribution of Umklapp processes (see 
the note added in proof in[4] and, for more detail,[5]). 

FIG. I. The dashed line depicts the boundaries of a unit cell that does 
not intersect the Fermi surface. In the given case, it is impossible to elimi
nate the intersections by any choice of right-angled cell. 
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Moreover, phonon drag, which is extremely important at 
low temperatures 1) , was not taken into account in the 
papers mentioned (see the end of Sec. 2). 

1. IDEALIZED MODEL 

First we shall consider a simplified "one-dimen
sional" model of the band spectrum, in which Fermi 
spheres positioned on one straight line approach each 
other closely in the repeated-zone scheme (Fig. 2). The 
distribution function depends on one coordinate T, meas
ured along an arc of a great circle from the point of 
closest approach of the spheres. The electric field E is 
directed, naturally, along the reciprocal-lattice vector 
g. The quantity Llp will be assumed to be extremely 
small; the method used in the present section is valid if 
the following strong inequality is fulfilled: 

( 1) 

The dispersion: law of the phonons and their interaction 
with the electrons will be assumed to be isotropic, and 
the matrix element of the interaction is 

(p and k are the electron momenta and q is the phonon 
momentum). Although the model considered is highly 
idealized, the physical conclusions obtained on the basis 
of it are valid for real alkali metals (see Sec. 2). 

Before proceeding to the calculations, we shall make 
the following preliminary remarks. The diffusion ap
proximation for normal electron-phonon collisions is ap
plicable if the change q of the electron momentum in a 
Single collision is much smaller than the characteristic 
dimensions over which the distribution function varies. 
Far from that region of the Fermi surface from which 
transitions to the neighboring Fermi sphere are possible 
(the region of closest approach of the Fermi spheres-we 
shall call this region the "lune"), the distribution func
tion varies over distances of the order of PF' and at low 
temperatures (T « sPF) the diffusion approximation is 
applicable. But within the lune we may expect changes 
of the distribution function over distances of the order of 
the dimensions ro of the lune. 

The quantity ro is easily estimated by taking into ac
count that, within the lune, the inequality q - Llp ::; qT 
= T/s should be fulfilled (qm = Ip - p' I "" Ll~ + T2/PF is 
the distance from a point with coordinate T to the neigh
boring Fermi sphere and qT is the thermal momentum 
of the phonons), whence ro"" (qTPF)1!'2. Clearly, for 
qT ~ Llp, q"" q and so the inequality q « ro, which 
ensures the appncability of the diffusion apprOximation 
for normal collisions within the limits of the lune, is 
fulfilled. But if qT « Llp, then an electron which has 
undergone an Umklapp collision acquires an energy of 
order LlpS »T, i.e., is found in the non-thermal layer 
of energies. On returning to the Fermi surface in a 
normal collision with emission of a phonon, such an 
electron is displaced over a distance q "" Llp. There
fore, normal collisions within the limits of the lune can 
be described as diffusion when the follOwing inequality 
is fulfilled: 

(2) 

The diffusion equation can be derived from the system 
of kinetic equations for interacting electrons and phonons 
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tip 

FIG. 2. Repeated-zone sheme. I-Brillouin-zone boundaries. 

by the same method that we used previously[4J. The re
sult for the isotropic model has the form 

tJ:x. - diva. + TI. = - e:; cos e, 

J A 30"(5) M 
ap = App'VXp'dSp', D=T'-"--__ , 

F - :rr1l"U 2 sf) 
(3) 

Here Ll and div are the angular parts of the correspond
ing three-dimensional operators, -Xpon/oE is the non
e.quilibrium correction to the electron_dist,x.:ibution func
tIOn (X does not depend on E), n = [e(E /J.)/T + 1]-1 and 
the explicit form of the kernel A I is given in[4J.' The 
first two terms in the left-hand fl'cte of (3) describe 
normal collisions of electrons: the first term describes 
collisions with equilibrium phonons, and the second in
tegral term takes account of phonon drag; JU is the 

collision integral for electron-phonon Umklfpp colli
sions2). (The term II is absent in the equation obtained 

. I [4J . P th f . prevlous y ,sInce In e case 0 open Ferml surfaces 
Umklapp processes are taken into account by imposing 
periodic boundary conditions on the function X.) The 
Umklapp- collision integral has the form 

u ~. + -J. =..::,.j (f ... - f ••• ); 

',' 

Here Nq = [exp(nq/T) - 1]-1, nq is the phonon energy, 

and k = p - q - g for the right lune and k = P - q + g for 
the left lune (see Fig. 2), In (4), we have omitted terms 
associated with the non- equilibrium of the phonons; it 
can be shown that taking these into account would lead to 
a correction proportional to qT/PF to the electrical con
ductivity. 

For the calculation of the quantity IIp' we note that 
the characteristic size rl of the region on the Fermi 
surface to which Umklapp processes from some point p 
are possible is defined, as is not difficult to understand, 
by the condition (q~ + r~)1/2 - qm "" qT' whence rl 
"" (2qmqT + qT)Ii'2 « roo Therefore, a "local" approxi
mation is applicable for U-processes, i.e., in (4) we can 
put Xk = Xp/' where p' is the point on the neighboring 
sphere that is nearest to p (cf. Fig. 2; with the same ac
curacy, the point p' can be assumed to lie on a horizontal 
line with p). Then, after simple calculations, we obtain 

(5) 
~J e" 

f(X)=" (e'-i» y'dy. 
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Here we have taken into account that, by virtue of the 
one-dimensionality of the problem and the fact that X is 
an odd function of p, Xpl = -XP' For the function f(x), we 
can write an interpolation formula which is asymptotic
ally exact for small and large x: 

I(x) "" (6~(3) + x')e-". 

We shall now establish certain relations, useful for 
the following, which are a consequence of the conserva
tion of quasimomentum in normal colliSions: 

f p(Llx - div a)dS = O. (6) , 
Multiplying Eq. (3) by P and integrating over the Fermi 
surface, we obtain, taking (5) and (6) into account, 

(7) 

Here we have used the fact that Ip - p' I «g; the integra
tion is performed within the limits of the right lune. 

We now integrate Eq. (3) over the right half of the 
Fermi sphere (0 < e < 1T/2). After simple identity trans
formations using (7) we obtain 

2ltp. [ Vx ( ; ) - a ( ; ) ] = ;~ ( ltp.'g - ~3ltP") . (8) 

An analogous relation was obtained earlier in [4 J . 

For the following, it is convenient to write Eq. (3) not 
in the laboratory frame of reference (in which the lattice 
is stationary), but in the "co-moving" frame, in which 
the diffusion equation can be solved by iterations with 
respect to the integral term~. As was shown in[4J , the 

difference V'x - a is invariant under the Galilean trans-p p 
formation X - X + u· p, and therefore Eq. (3) and the 
relations (7) and (8) have, in the co-moving reference 
frame and in zeroth order in ap ' the form 

LlX-A(e) (x±U;)=_ e~ cose, 

fA(e) (x + Ug)dS =~~ltP" 
2 gD 3 

vx(~) = eEp. (~p _.L) 
2 gD 3' 2 . 

(9) 

(10) 

(11) 

The plus sign in (9) corresponds to the right lune, and the 
the minus sign to the left lune. 

It follows from the relation (6) that, in the co-moving 
reference frame in any order of iteration in a , the in-

. p 
tegral J cos eboXdS = O. Hence It follows that the elec-
tric-current denSity j <X> J cos eXdS = 0 in the co-moving 
reference frame, and, therefore, (to within quantities of 
higher order in qT/PF) the electrical conductivity 

(J=~(P') '~ 
3 hE' 

To determine the drift velocity u, it is neceSsary to 
solve Eq. (9) conSistently with the conditions (10) and 
(11). Far from the lune, the second term in the left-hand 
side of (9) can be neglected, and in this region of the 
Fermi surface, 

eEp? 
x=2D"cose-bf3(e), f3(e)=in 1+cose 

1- cos e 
(12) 

(b{3(e) is the general anti-symmetric solution of the 
homogeneous equation boX = 0). We find the value of the 
coefficient b from (11): b = eEpF/3gD. 

197 Sov. Phys.·JETP, Vol. 37, No.1, July 1973 

It is not possible to solve Eq. (9) exactly within the 
limits of the lune. However, the character of the solution 
is easily understood from the following considerations. 
The logarithmic increase of the function X as the lune is 
approached is associated with the flow of the diffusion 
current 

1If3 4 ltp.' 
I. "" 2lt1;Db- "" eE ---. 

itt 3 g 

Outside the lune this current is constant, but inside the 
lune the diffusion current is decreased, since part of the 
total current is carried away by electrons going over on 
to the neighboring sphere. From a certain portion of the 
lune, this current is approximately proportional to its 
area, so that 

Ox (T)' 2lt'tD-"" I. -- , 
liT r. 

Thus, inside the lune, X varies more slowly than (3(e), 
reaching a finite value at the center; the difference 
x(ro/PF) - X(O) ~ b; this variation can be neglected 
compared with the quantity b{3(ro/PF)' under the condi
tion In(PF/ro) »1. Assuming this condition to be ful
filled, we write 

(13) 

Substituting this expression into (10), we find 

=_1 fA(e) s=-P'- ~f _e_f _ ,( -~)d (14) 
F 4lt d 60~(5)qT.Plq (e'-1)' Y Y q, y. 

The iteration formula for F, asymptotically exact for qT 
» bop and qT « bop, has the form 

F=_1_.!!.[24W)+ (LlP) '] exp(-~). 
60~(5) qT q,. qT 

We shall discuss the physical meaning of the result 
obtained. The drift velocity u (and with it the electrical 
conductivity a) is proportional to the total relaxation 
time during which an electron describes a closed cycle 
in p-space, i.e., diffUSion through the Fermi surface and 
a jump between lunes as a result of an Umklapp process. 
We emphasize that, under conditions of phonon drag, the 
respective times are summed. 

The first term ud in (14) depends on the temperature 
like T-sln (PFs/T); it is proportional to the time of diffu
sion of an electron from central regions of the Fermi 
surface to a lune. The result u ~ T-Sln(PF/ro) arose in[4J 
for an open Fermi surface containing a short narrow 
neck of radius roo In the case under consideration, the 
radius of the effective neck is ro R: (qTPF)l/2, and this 
leads to a logarithmic dependence on temperature of the 
coefficient of T-s. 

The second term Uu in (14) is proportional to the time 
of the Umklapp process and depends on the temperature 
like T-1exp(To/T), if T «To = Sbop. At suffiCiently low 
temperatures, this term leads to an exponential fall of 
the electrical resistance. It follows from (14) that the 
temperature Tp below which the Peierls exponential 
appears (uU »ud) is considerably less than To 
for bop «PF' This result is connected with two circum
stances. 1) Although the probability of a U-process has 
become exponentially small at T < To, the transfer of an 
electron to the neighboring sphere occurs as the result 
of one colliSion, whereas the diffusion path through the 
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whole Fermi surface requires a large number of steps. 
2) Each of the three quantities: the square of the matrix 
element of the interaction, the area of the portion of the 
Fermi surface in which a transition is possible 
(ri Rl ~pqT)' and the energy layer from which a transition 
is possible, is ~P/qT times greater for phonons with mo
menta of order ~p than for thermal phonons. Therefore, 
the probability of a U-process contains an additional 
factor (~p/qT)3, which is large for T« To. 

As an illustration, Fig. 3 shows the dependence on the 
parameter in the problem, PF/~P, of the temperatures 
T Pl at which uU/ud = 0.25 and Tp2 at which ud/uU = 0.25. 
It can be seen that the transitional region of tempera
tures, from t}le law p ~ T5/ln (PFs/T) to the law 
p ~ Te-s~p/t, is fairly broad, and the ratio To/Tp in
creases with increasing PF/~P. 

We recall that the expression (14) was obtained in the 
zeroth apprOximation in the integral term ~ in Eq. (3). 

However, as was shown in[4] , the corrections to u as
sociated with allowance for the term a in the co-moving 
reference frame (these terms take intg account the 
deviation of the phonon distribution from the drift dis
tribution in the laboratory reference frame) are bounded 
as ro - 0 and are negligibly small for In (PF/ro) » 1. 
We recall also that Eq. (3), in which the diffusion ap
proximation is used for normal collisions, is valid inside 
the lune, if the condition (2) is fulfilled. It is not difficult 
to see, however, that when ro :s; ~p and the condition (1) 
is fulfilled the diffusion time can be neglected compared 
with the Umklapp time, and so the violation of the diffu
sion approximation is unimportant. 

Although in this section we have considered a highly 
idealized model, it is not difficult to understand, from 
physical arguments, which properties of the Fermi sur
face are actually essential for the results obtained and 
which conclusions remain valid for arbitrary surfaces. 
First of all, it is clear that the temperature dependence 
obtained for the quantity Uu follows entirely from the 
assumption that the radius of curvature of the Fermi 
surface in the area of the lune is large compared with 
~p. It is also understandable that the conclusion that the 
temperature Tp is considerably lower than To (roughly 
in accordance with Fig. 3) is also valid for an arbitrary 
surface, provided that the characteristic dimensions of 
the electron or hole groups are substantially greater 
than the distances between them. As regards the tem
perature dependence of the quantity ud' it is extremely 
sensitive to the geometry of the Fermi surface. If, e.g., 
the approach of the surfaces arises as a result of the 
close approach of long narrow protrusions (so that we 
are concerned with a long broken neck), the quantity ud 
can turn out to be proportional to T-5 or T-t (cf.[4]). 
Moreover, the logarithmic dependence obtained above, 
ud ~ T-5 In (PFs/T), is closely connected with the in-
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equality (1), and may not appear in real cases (cf. the 
following Section). 

2. THE ALKALI METALS 

Some of the simplifying assumptions used in the pre
ceding Section are certainly invalid for real alkali me
tals. First of all, even the condition ~p « PF is poorly 
fulfilled (for Na and K we have ~p Rj 0.3PF)' to say noth
ing of the fulfillment of the condition (1). Strictly speak
ing, this implies that, in the region of temperature of 
interest, in which ~p :G (qTPF)l/2 = ro, we cannot neglect 
the variation of the distribution function Xp within the 
lune. Moreover, the characteristic scale of variation of 
the function Xp is now, clearly, not greater than ~p, and 
so the diffusion equation (3) itself gives only a qualita
tive description of the behavior of Xp within the lune. 

Nevertheless, the approach developed in the preced
ing Section can be used for a quantitative study of the 
electrical conductivity of the alkali metals. As a de
tailed analysis shows, the principal error arises in the 
determination of the effective lune radius appearing in 
the logarithm (cf. (13». The point is that condition (10) 
is not associated with the diffusion approximation, and 
the drift velocity u obtained from it is relatively insensi
tive to the behavior of the function X in the region of the 
lune. But it is clear from physical considerations that 
in this region the function X varies more slowly than 
logarithmically (cf. Sec. 1). 

The purpose of this section is to make the result (14) 
more exact, for application to real alkali metals. In 
particular, we shall take into account that, in the re
peated-zone scheme, a given Fermi sphere is closely ap
proached by 12 other spheres. The not very large aniso
tropy of the phonon spectrum is less important, and 
therefore we shall confine ourselves to the Debye model 
in this section too. 

For the case of a Fermi sphere with several lunes, 
the diffusion equation analogous to (9) has the following 
form: 

6xp-'/,A(e.)(x.-x.'+ug.)=- ~ coeR (15) 

Here the angle Ok is reckoned from the direction of the 
reciprocal-lattice vector gk corresponding to the lune 
closest to the point p, and the angle ° is reckoned from 
the direction of the electric field E, which may conven
iently be assumed to be applied along one of the vectors 
of the reciprocal lattice, go (since the electrical conduc
tivity is isotropic in the model under consideration). 

We shall seek the solution of Eq. (15) in the form of a 
linear combination of solutions of the "one-dimensional" 
problem corresponding to one pair of lunes (in an analog
ous way to that followed in[4] for a Fermi sphere open 
in several directions): 

(16) 

Here, O'k is the angle between the vectors gk and go, and 
the function x"(e) satisfies the one-dimensional equation: 

KX-A(6) <x± ug/2) =0, 

where the upper sign refers to the right lune and the 
lower sign to the left lune. 

(17) 

It is not difficult to verify that a function of the form 
(16) satisfies Eq. (15) if 
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_ 2 '(1 - eEp,' 
U = U+- '-- x(a.)cos a. +--

g ',0.0 gD 

and if the quantity X(eki k) is assumed constant within 
the k- th lune. It is not difficult to convince oneself that 
the condition analogous to (10) has the form 

S - eE B 
A(8) (x + ug/2)dS = --np,' 

gD n ' 
(lS) 

where n is the total number of lunes and the integration 
is taken over the right lune. 

Eq. (17) is equivalent to the variational principle: 

Q,Z 

41~4~~~~~~~'-~4~*--~4~8~ryTg' 

6 F[I'lX+ A (8)(X+ uP)]dS=O. (19) the results of the latter paper, it is not difficult to find 
F 

We seek the solution of Eq. (17) in the following form 
(cf. (12) and (13»: 

1
11+cosll 

_ n1-cose' 
p (e) = 1 + cos 8 

In 0 
1-cos~o' 

Here, the coefficient of fj(e) is determined from a condi
tion analogous to (11), and eo is a variational parameter, 
which must be determined jointly with u from (lS) and 
(19); e < rr/2. Varying (19) with respect to eo, we ob
tain 

eo 

2 'S ( - Ug ) eE 4 np, eA(8) x+- d8=--npF'. 
• 2 gD n 

(20) 

The system of equations (lS) and (20) can be rewritten in 
the following form: 

4eEp,' [ 1 ] u = ng'D ~(O)q>(8.)+y, (21) 

~(O)[q>(e.)-11= ~[_1 __ 1]' 
F 2",(0.) , 

",(e.)= ~(~'F f e~(8)A (8)d8, 

, eo 

\jl(8,)=~JeA(8)d8, (22) 
F 0 

where F is defined by the expression (14). 

The relation (22) is a complicated transcendental 
equation for eo. The interpolational solution of this equa
tion that is asymptotically exact for large and small F 
has the form 

80 = ( ~: In[2(FC + 1) 1 ) 'f, , 

Corresponding to this, 

4eEpF' [ Cln2 1 ] 
u= ng'D B(O)-ln2+F +y 

and the electrical conductivity of the metal is equal to 

2e S cr =~h' (x. + up,cos 8)cos 8dS 
E, 

""-PF 1-2-(1+cose,)+~ '(1 p(a,)cosa, Ne' {P' Bp; [ 
2D g ng' ~ 

(23) 

+1 Cln2]} , 
Y-ln2+F +cr. 

Here, N = (S/3)rr(p /h)3 is the electron density and a' is 
the correction to tle electrical conductivity associated 
with allowance for the integral term 8.p in the co-moving 
reference frame. (We recall that Eq. "t15) corresponds 
to the zeroth approximation in 2p.) 

The analogous correction was calculated previously[4] 
for a spherical Fermi surface with "opennesses". USing 
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(24) 

where for odd i 

2 [ ill ]' 
A,= i(i+ 1) (i-i)!! . 

Ai = 0 for even i, and the Pi(Cl) are Legendre polynom
ials. 

Figure 4 shows the dependence, calculated from 
formula (23), of the quantity pT-s (in arbitrary units) on 
the relative temperature T/To. For comparison, the re
sult obtained in the diffusion approximation used in the 
present work but without allowance for phonon drag is 
represented in the same Figure by a dashed line (the dis
tribution function is determined from Eq. (15), in which 
we must put u = 0; the quasi-momentum balance condi
tion (lS) is absent.) It can be seen that phonon drag 
plays an important role: in the temperature interval 
0.15To - 0.6To the results differ by almost a factor of 
two, and at lower temperatures the curves behave 
completely differently. 

For potaSSium, To ~ l1°K (cf.[3]) and the slope of the 
curve in the region of intermediate temperatures agrees 
fairly well with the experimental results of[2,3J , in which 

. 6 7 
dependences close to PT ~ T and PT ~ T (PT = P - Po, 
where Po is the residual resistance) were observed at 
such temperatures. For sodium, To ~ 20 0 K (cf. [8J), and, 
as can be seen from Fig. 4, the transition from the law 
PT ~ TS to the more rapid dependence occurs at ap
proximately So K; this agrees well with the experimental 
data of WOOdS[lJ. No great significance can be attached 
to this agreement, however. The point is that formula 
(23) refers to an ideal impurity-free sample, whereas, 
in a considerable part of the temperature range consid
ered, 80 » PT' (For the potassium samples investiga
ted in 2,3J , Po ~ PT at temperature T ~ 5°K.) 

In the case when po » PT' the kinetic equation for the 
electrons can be solved by the method of successive ap
proximations, assuming that the electron-impurity colli
sion integral is large compared with the electron- phonon 
collision integral. As a result, as can easily be shown, 
the quantity PT is found to depend only on the relative 
concentration of the different types of impurity. It is 
possible that the weak dependence, observed by Ekin 
and Maxfield [3J , of the quantity PT on the residual resis
tance Po is connected with this fact. 

The authors are grateful to V. F. Gantmkaher for 
useful discussion of the results of this paper. 

l)We note that phonon drag also plays a significant role in metals with 
open Fermi surfaces containing narrow necks. It follows from the re
sults of our paper [4], e.g., that for the noble metals allowance for 
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phonon drag leads to a several-fold reduction of the coefficient in the 
Bloch law p - TS. 

2) Allowance for the effect of Umklapp processes on the phonon distribu
tion function would lead to the appearance of additional terms in the 
expression for ap' which, however, are small in the parameter qT/PF' 
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