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The problem of the low-temperature phase transition in cubic ferroelectrics is solved 
within the framework of the logarithmic theory. It is shown that a second-order transi­
tion changes into a first-order transition if the interaction anisotropy and the anisotropy 
of the critical oscillation spectrum are taken into account. In the extreme isotropic case 
and at T = 0, the dielectric susceptibility X is proportional to (p = _Pc)ln25/ 51 1 p - Pc I, 
and the correction to the compressibility is proportional to ln l / 51 1 p - Pc I. A phase 
transition line on the p - T plane is plotted and the behavior of the crystals at finite tem­
peratures is considered. It is shown that in the case of an impurity crystal, the impurity 
corrections obey a power law; in the vicinity of the transition point there are more 
logarithmic contributions from the anharmonic interaction. 

1. INTRODUCTION 

Phase transitions of the displacement type, Le., 
transitions associated with instability to optical vibra­
tions, occur as a rule at high temperatures T ~ WD. In 
the works of the authors (1] and Rechester, (2] the case of 
a low-temperature transition (Tc « WD) was discussed 
within the framework of self-consistent field theory. 
The self-consistent field approximation for transitions 
of the displacement type has a wide range of applicabil­
ity, thanks to the smallness of the anharmonic constants, 
and is inapplicable only in the immediate vicinity of the 
transition point, where allowance for large classical 
fluctuations of the order parameter becomes important. 
At very low temperatures, moreover, there is an inter­
mediate region in which it is necessary to take into ac­
count the quantum character of the fluctuations ;(2] in the 
extreme case of a transition at zero temperature (Tc 
= 0), there is no region of classical fluctuations at all, 
only quantum fluctuations. In this quantum region, the 
contribution of the fluctuations to the thermodynamic 
quantities increases as one approaches the transition 
point, not according to a power law but in logarithmic 
fashion. Thanks to this circumstance, the singularities 
of the thermodynamic quantities when T c = 0 can be 
found accurately. (2] 

The analysis in the work of Rechester (2] was carried 
out within the framework of a simplified model. In the 
present work, we discuss the singularities that a transi­
tion at very low temperatures in real materials would 
possess. Account is taken of the effect of the aniso­
tropy of four-phonon interaction and of the anisotropy 
of the spectra of transverse optical vibrations on the 
thermodynamics of the transition. The dependence of 
Tc on the pressure at very low temperatures is ob­
tained. 

We know of only one example of a transition of the 
displacement type for which Tc = 0, namely the alloy 
SnTe-GeTe. For substances of this type, consideration 
of the fluctuations of the impurity locations on the 
thermodynamics of the phase transition becomes im­
portant. Such fluctuations are always claSSical, and the 
corrections associated with them are power-law func­
tions. Therefore, even in the case of small impurity 
concentrations, it is necessary to take these corrections 
into account, along with the logarithmic terms that are 
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due to the anharmonic interaction. In the present work 
we calculate the first nonvanishing corrections associ­
ated with the scattering of phonons by the impurities. 

2. ACCOUNT OF BRANCH DEGENERACY AND 
ANISOTROPY 

We write down the Hamiltonian of the crystal in the 
form 

1 ~ .. 
H ="2 "-.l [ 6J,Sj-t + w/ (k) 6J'6J-k]' 

- i,k 

+ 1: VJ,~~:, (k" k" k" k,) 6;'k,6;",6" .. ,6J," + Himp• 

"1+···+&:.=0 'h o •• ,}. 

The Hamiltonian (1), in contrast with the model Hamil­
tonian of Rechester, (2] takes into account the anisotropy 
of the anharmonic interaction and the presence of opti­
cal vibrations with different polarizations, and also the 
scattering of critical phonons by impurities. In the 
Hamiltonian (1), terms are missing that describe the 
striction interaction of the critical phonons with the 
acoustic phonons. It is difficult to take into account the 
striction not only from purely computational considera­
tions, but also in principle (the equations of the theory 
contain, besides logarithmic integrals, also integra­
tion with respect to the rapidly changing variable 
k2/(k2 + w 2 ). Therefore we shall consider striction 
everywhere in what follows only in the first nonvanish­
ing approximation. 

The case that is most interesting for experiment 
will be investigated-the case of a cubic crystal in the 
symmetric phase. In such a crystal, the optical branch 
is triply degenerate in the polarization at k = O. For a 
ferroelectric crystal, because of the long-range dipole­
dipole interaction, the doubly degenerate branch of the 
transverse optical vibrations is critical. For k ~ 0, the 
degeneracy is lifted because of the anisotropy. In the 
simplest case, v « S - a (see Appendix), the spectra 
take the form 

w/, = wo' + stk' + s.k'!lJ •. , (n), n = k/ I k I. 

It frequently turns out that So « St. ll In this case 
one can regard the vibrations as degenerate and the 
Green's function of the transverse optical phonons can 
be written down in the form 

Copyright © 1973 American Institute of Physics 164 



Moreover, the four-phonon anharmonic interaction 
ba {3yO has a complicated tensor structure, which leads 
to an intermingling of the phonon polarizations in the 
scattering. We consider the behavior of the crystal 
near the transition point with account of this circum­
stance, assuming sa « St. 

In the calculation of the graphs of perturbation 
theory for T = 0, a class of graphs can be separated 
for which the expansion parameter is not the small 
dimensionless constant of the four-phonon interaction 
Y = 3z'b12/2T2slI2vg, but the quantity 

WD' 

'Y In {k' '} max St ,{Oo 

Near the transition point (wg - 0) this parameter can 
turn out not to be small, and then it is necessary to sum 
the obtained infinite succession of terms of the pertur­
bation-theory series. An examination of the graphs for 
the Green's function G(k) of the critical phonons 
shows [2,3] that the relevant corrections to the quantity 
G-1(0) are of the order of [Yln(wO/wg)t. Corrections 
to G-1(k, w), which depend on k and w, are propor­
tional to Y l Y In (wi> / wg )]n and will not be taken into 
consideration. Therefore we can write down the Green's 
function in the form 

G.~(k, w) = (6.~ - n.n~) / (d' + s,k' + w'), (2) 

where t:.2=wg+~(k=0,w=0). 

We consider the scattering amplitude of long-wave 
critical phonons by one another at T = O. Summation of 
the principal graphs for the scattering amplitude leads 
to the well-known "parquet" equation, [4] which in our 
case is of the form 

d'q 
f.~"(k)=y.,,.- S (2n)' G ... (q)G,.(q)[f.,.,(q)f,.,,(q) 

(3 ) 
+ f •• ,,(q) f" .. (q) + f .,.,(q) f",,~ (q) ]. 

The tensor structure of the scattering amplitude is de­
termined by the equation 

f.~" = '/,[,(6.,6" + 6.,b" + b •• 6,,} + f,g.~", (4) 

where ga{3yo = 1 if a = (3 = Y = 0, and &t{3yO = 0 in 
all the remaining cases. The amplitude r 2 determines 
the degree of anisotropy of the anharmonic interaction 
of the phonons. 

Substituting Eqs. (2) and (4) in Eq. (3), carrying out 
integration of the vector q over the angles and trans­
forming to the logarithmic variables 

x = In __ W,..,D-,,-'----,.,­
max{k', d'} , 

WD' 
y=ln-,-, 

q 

we obtain the following set of equations: . 
f, (x) = y, - 'I" S dy[34f.' (y) + 24f. (y) f,(y) + 3f,' (y) ], (5) 

• . 
f, (x) = y, - 'I" S dy[3f,' (y) + 4f. (y) f,(y) ]; 

• 
3z'b lZ 

'VI ::;:::= 2n2s?2vo2 ' 

z· (bn - 3b lZ ) 

'Y. = 2n'sl'vo' 

Here b 11 and b 12 are the coefficients of the Landau 
expansionP] 

F(P) = ~(T' - To')P' + 3b" 1: p.'p,' + bit 1: Po'. 
.... ~ 

In order that the transition under discussion be a second­
order tranSition, it is necessary that the term of the 
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Landau expansion proportional to p4 be positive. This 
is satisfied if 

f.+f,>O, f,+'/,f,>O. (6) 

Differentiating Eq. (5) with respect to x, we obtain 
the set of differential equations 

f.'(x) = -'/,,[34f,'(x) + 24f, (x) f,(x) + 3f,'(x)], (7) 
f,'(x) =-'I .. [3f,'(x) +4f.(x)f,(x)] 

with initial conditions 

f.(O) =y" f,(O) =y,. (8) 

The right sides of Eqs. (7) are homogeneous polynomi­
als of second order relative to r 1 and r 2 • It is there­
fore natural to seek a solution in the form 

f.(x) = 'I'(x)f,(x). 

Differentiating (9) and using (7), we get 

'1" = -'/,f, (2'1" + 'I' + 1). 

On the other hand, 
d'l' 34'1" + 24'1' + 3 

'I' + f,F, = 28'1' + 21 

The solution of Eq. (11) is of the form 

(9 ) 

(10) 

(11) 

[ (4'1'+1)'+7]'1. [41'7( 4'1'+1 4/",+1)] f2 = y, exp -- arctg--_- - arctg-_-- , 
(4/",+ 1)'+7 3 1/7 1'7 

(12) 

where A = Y2/Y1. Substituting (12) in Eq. (10), we ob­
tain a closed equation for 011: 

'1":=/('1')=- y, [(4'1'+1)'+7)"1, ex [41'7(arct 4\1'_+1 
40[(4/1.+1)'+7]'1' p 3 g 1'7 

(13 ) 
4/", + 1 )] - arctg ---:n- . 

The function oII(x) = rdx)/r~x) is large when the 
anisotropic part of the amplitude is small in compari­
son with the isotropic part and vanishes in the extreme 
anisotropic case. 

The character of the solution of Eq. (13) can be made 
clear qualitatively. For this purpose, we turn our at­
tention to the fact that the function f( 011) is negative at 
Y 2> 0 and 0II( x) decreases monotonically, going to - "" 
at 

-- d'l' 
Xo = S /('1') . 

'I' 
This integral converges for finite Y 2, and is of the 
form Xo ~ y;17/ 3 - "" as Y2 - O. As x - xo, 

'I'(x) - (x-xo)-·I", f,(x) - (x-xo)-"I", f,(x) - (x-:r.,)-'. (14) 

The formulas (14) should be interpreted as proof 
that as x - Xo the amplitudes r 1 and r 2 cease to be 
small and it is impossible to use equations of the type 
of (5). Thus, thanks to the presence of the anisotropy, 
the interaction does not tend to zero upon approach to 
the transition point, but, on the contrary, increases, 
going over into the strong coupling regime. Upon de­
crease of the anisotropy, the region of strong coupling 
narrows and vanishes at the limit Y 2 = o. . 

It must be noted that at 
• -'I. d'l' 

x·<x<xo, x = S--
'/' 1('1') , 

the stability consitions II< > -% and r 1 + r 2 > 0 are 
violated. This converts the second-order transition into 
a first-order transition. The case Y2 < 0 is considered 
similarly. For 
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- d'¥ 
X-+Xo= J--

II' f('¥) 

,¥(x) ~ (xo-X)-'I", r,(x) ~ -(x-xo)-"I". rl(x) ~ (X-XO)-I. 

In this case, too, at 
• -I d'¥ 

x = f f('¥) • 
II' 

the stability conditions 

'¥ < -1. r, + r, > O. 

are violated. 

3. ACCOUNT OF BRANCH DEGENERACY IN 
THE ISOTROPIC CASE 

We consider the extreme isotropic case 1'2 = O. 
Then 

rl(x) ... r(x)= 1+'~/ .. YX' r,(x)"o. (15) 

For the calculation of the susceptibility and compres­
sibility, we find the effective three-prong diagram 9", 
which obeys the equation[5) 

d'q 
.'T.~(k)=6.,+IY.,-J (2n)' .'T.,(q)r ... ,(q)G ... (q)G •• (q). (16) 

Here Ya {3 is a summetric tensor with zero trace, 11 I 
=1. 

Resolving the tensor 9"a (3 into the irreducible com­
ponents 

carrying out the integration in (16) over the angles, and 
transforming to logarithmic variables, we obtain the 
equations for 9"1 and 3"2: . . 

iT, (x) = 1- tOl, J dy.'T, (y) r(y). iT,(x);"1- "I .. J dyiT,(y)r(y), 

the solutions of which have the form 

.'T, (x) = (1 + "/ .. yx) -"I,.. .'T,(x) = (1 + "/ .. yx) -'I,,' (17) 

The polarization operators are calculated in similar 
fashion :[5) . 

ill (x) ~ J dy.'T,'(y) - y-I[ (1 + "/ .. yx) 'I" -1]. 
, 

. 
il,(x) - J dy.'T,'(y) - y-I[ (1 + "/ .. yx) "I" -fl. 

o 

(18) 

In the zero-temperature case under consideration, 
the transition can occur, for example, upon change of 
pressure, since the limiting frequency Wo depends on 
the pressure according to the formula [1) 

6)o'(p) = 6),'(0) + op. 

·2z' 
0=-3[( (3ql2+2q,,+q.). 

II, . 

The transition takes place at p = Pc, when I:J. 2( wg) 
vanishes. Using the Ward identity 

oG-' / 06),' =.'TI 

and Eq. (17), we obtain 

(19) 

fl' = G-'(O)= o(p - p,) [ 1+ ~ yIn O(p6)~'P') ] -"I" (20) 

The dielectric susceptibility at zero temperature is de­
termined as a function of the pressure by the relation 

A A [34 6)D] til" 'X.~ (p - p,) = 6.~ -4- = 6., 4 ( ) f + - Y In --:---..,.. 
nd" no p-p, 15 o(p-p,) 

(21) 
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The fluctuation corrections to the modulus of hydro­
static compression 11K and to the shear modulus 11 jJ. 
are proportional [2,5] to the respective polarization op­
erators III and II 2 : 

~ __ 1<n.!..[(1+34Yln CUD' )'1"-1]' 
K K, y 15 o(p-p,) • 

.!.. __ 1 <n..!..[(f+34 yIn 6)D' )"1" -1]. 
/.I /.10 Y 15 o(p-p,) 

The dependence of the spontaneous moment P on 
p - Pc in the unsymmetric phase is given by the ex­
pression [2,3] 

(22) 

p. ___ "_ll.2 =_"_o!p-Pcl [1+ 34 In cub 1"'''. 
- 3211's;" r 32n's;" Y 15 Y 0 I P - pc I 

. (23) 

Thus, even in the isotropic case, allowance for the 
multi-component character of the order parameter 
strongly affects the form of the singularities of the 
thermodynamic functions. Thus, in the first of the 
formulas of (22) we get In 1/51 1 P - Pc I as against 
In 1/3 1 P - Pc I, which was obtained by Rechester P] It is 
also interesting that the multi component character, 
which is connected with the double degeneracy of the 
transverse optical branch, reduces neither to the four­
dimensional model of Heisenberg nor to the four­
dimensional model of plane rotatorsY) 

4. THERMODYNAMICS NEAR THE PHASE 
TRANSITION LINE 

The previous preceding analysis pertained to the 
case of a pressure transition in an isotropic crystal at 
T = O. We now consider the region of lower 
(Yin (wb/T2).2: 1) but finite temperatures. At finite 
temperatures, all the integrals over the frequencies 
should be replaced by Matsubara sums. A typical ex­
pression which we must compute is of the form 

d'k 1 
J=l~J-
~ (2n)' (6).' + do' + s,k') , 

In the region T » I:J. 0 it is necessary to separate in 
this sum a term with n = 0, corresponding to classical 
fluctuations, and the remaining sum must be replaced 
by an integral. As a result we get 

8nsi' do + 2n T' 1
_1 (..!.... ..!..In 6)b) 

J (T. do) = 1 6)' 1 2T ", d 
--.-In D _ __ ex _ 0 
32n's;t' do' + 64 [n3s,adoJ P ( -:if')' T~do 

(24) 

The region of small T and not too small l:J. o will be 
considered (such that the power-law term in Eq. (24) 
can be neglected in comparison with the logarithmic 
term. 

The phase-transition line is determined by the ex­
pression 

fl'(T,) =M+ ~(k = 0; Te) - ~(k =0; T == 0) = O. (25) 

Therefore, to determine the phase-transition line it is 
necessary to calculate the temperature contribution 
<'i~(T) = ~(T) - ~(O) to the phonon self-energy. The 
change in the self energy is connected with the change 
in the exact Green's functions by the relation[6) 

6~(k) _ 1 - k 
6G(q) -zT( .q). (26) 

where r(k, q) is the sum of four-prong graphs, that are 
irreducible over the two-particle section separating the 
momenta k, k and q, q. 
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When using Eq. (26), it is necessary to keep in mind 
that the exact Green's function itself contains a depend­
ence on o~. The equation obtained for o~ [2] is there­
fore equivalent to the well-known equation[7] for the 
total amplitude r in terms of the irreducible amplitude 
r. The final result takes the form 

1i~(k=O,T)= 80 n,s> rex) J~[T.E- JdW]G(q. T=O), 
3 (2n)' On 2n ' 

WD' (27) 
x=]n--,...=..,.........,,.,.... 

• max {~o', T'} 

The expression (27) can also be obtained by variation of 
the self-energy ~ with respect to the Green's function 
at T = o. Therefore the answer contains only the dif­
ference between the sum over the frequencies and the 
integral of this Green's function: 

[ T~-J~]J~G(q. 7=0) 
~ 2n (2n)' ' (28) 

1 On d'q [ (~o' + s,q') 'I, ] =--J. cth -1 
(2n)' 2(~o'+s,q')''' '].1' . 

Finally, we have 

T~~o 6~(T)= gn 1 + "1,,'1 In (wD'IT') , I 20 , 'IT' 

20 ~ '1~"'T'I, ( ~o) 
. (29) 

-1'2n' exp --
3 1 +"I"'1]n(wD'/~o') T' 

Using Eq. (25) and the well-known dependence (20) of 
~ ~ on the pressure, and recalling that T c » ~ 0 when 
Y <: 1, we find the phase transition curve on the p-T 
plane: 

To'=--(p,-p) 1+-;:-'11n-_D- . 9a [34 W'] "I" 
20n''1 b alp - p,1 

(30) 

In obtaining Eq. (30), we have neglected small quantities 
of the order Y In Y. 

The non-analytic character of T c as a function of 
p - Pc leads to the result that the formulas for the 
thermodynamic quantities, as functions of p - Pc at 
T = 0 and as functions of T for p = Pc, contain various 
powers of the logarithms. Thus, for example, 

(T) _ C ( + 34 (iJD' ) 

X - 4n(T'-T,') 1 i5'1 1nr;' T>T" (31 ) 

and the ''half-law'' is satisfied, Le., the susceptibility 
below the transition is one-half the value in the sym­
metric phase for the same values of I T2 - T~ I yl The 
spontaneous moment as T~ - T2 - +0 falls off as 

P' = ~_A._(T '- T') 
18 4ns;" . 

(32) 

The specific heat and the thermal expansion at low 
temperatures (WD» T> Tc »~o) are expressed in 
terms of the spectrum of quasiparticles at T = O. By a 
method similar to that set forth in[6], we get the follow­
ing expression for the entropy per unit volume: 

S(p, T) J d'k [W(k) ,] ---= -- --n (k)-ln(1-e--(')IT) 
V (2n)' T - , 

(33 ) 
n_ = (e-IT - 1) -" w' (k) = ~o' (p) + s,k'. 

Differentiating the entropy with respect to the tempera­
ture, we get for the specific heat C 

2.nZ 3 3 ~. 
C = - (a,- I. + 2a,-I. + 2s,-") T'V. 

15 
(34) 

The first two terms correspond here to the Debye con­
tribution to the specific heat of the acoustical phonons, 
which was not included in (33), and the last term corre­
sponds to the contribution of the critical phonons. If no 
transition occurs down to T = 0, then the contribution 
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of the critical oscillations at T «~o contains the fac­
tor exp (=~o/T). If the transition takes place at finite 
temperatures, then there is an additional contribution to 
the specific heat below the transition point, associated 
with the temperature dependence of the polarization 
P( T). Therefore there is a jump in the specific heat at 
the transition point: 

~c=(10n)'VT.' 'I , 
9 S:I, 1 + "1,,'1 In (wD'ITo') , 

which falls off to zero as Tc - O. Below the transition 
point, when T « I ~ 0 I, the main contribution to the 
specific heat of the nonsymmetric phase is made by the 
Debye term, while the exponentially small contribution 
of the critical phonons can be neglected. 

The thermal expansion coefficient a can be obtained 
from (33) if we use the thermodynamic identity 

(aV / aT) p = - (as / apJr. 

As a result 

1 aV aT [34 WD'] -"'''. a.(T)=--=-- 1+-'11n~--
V aT lUI, 15 a(p - p,) 

(35) 

For T » ~ 0, the numerical term is the principal one, 
and for T « ~ 0, the thermal expansion is determined by 
the Debye term,[8] which is proportional to T3. For 
p = Pc, the coefficient in the term of (35) that is linear 
in T vanishes. Therefore, for ~o = 0 and T - Tc 
= 0[8] 

a(T),-T" C.-C,-T'. 

As is seen from the above formulas, the quantum 
fluctuations do not change the results qualitatively at 
finite temperatures; these results were obtained in the 
self-consistent field approximation, and their account 
leads only to the additional temperature dependence of 
the phenomenological constants of the Landau expansion. 
The latter now takes the form 

F(T P}=F(T}+ 2n (T'-T,') 
, 'c t + "1"'11n(wb'IT/} 

P' + 3b12 pl. 
i + "1 .. '11n(wD'IT,') 

(36) 
Such a situation is connected with the ignoring of the 

classical fluctuations of the thermodynamic quantities, 
which are important in the immediate vicinity of the 
transition. The relative value of the classical terms 
has the order of YTc /~( T), Le., with allowance for 
(25) and (29), is of the order 

~[ 'IT, (1 + 34 In~)]'I' 
2n 1O(T-T,) 15'1 To' . 

Thus the thermodynamic functions may have singulari­
ties, but the coefficient in front of the anomalous part, 
Le., the specific heat, depends itself on Tc and 
vanishes when Tc = O. 

5. ACCOUNT OF SCATTERING BY IMPURITI ES 

The scattering of phonons by impurities takes place 
because the mass of the impurity differs from the mass 
of the atom of the matrix, and the impurity atoms and 
the matrix interact differently than the atoms of the . 
pure substance. The difference in the masses leads to 
a difference in the kinetic energy and therefore the 
associated scattering is proportional to the square of 
the phonon frequency w2 • In the static limit (w = 0) 
the scattering as a whole is due to the difference in the. 
force constants. For the case discussed below, of the 
scattering of longwave critical phonons, the scattering 
amplitude can be assumed to be independent of the 
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momenta. Therefore, the impurity part of the Hamilton­
ian is of the form[6,9] 

H'm> = : ~ E [(00') - oo'(k)- w'(k') ]SkSk' ~ E e;(k+k')R.. (37) 
k,k' a 

Here < w 2 ) ~ Wn is the mean squared frequency over 
the unperturbed spectrum. The dimensionless amplitude 
~ is assumed small for simplicity (~ « 1) and only the 
first nonvanishing ~ terms will be taken into account. 

By calculating the corresponding quantities for fixed 
positions of the impurities and then averaging the result 
over all possible positions, we can arrive at the stand­
ard impurity diagram technique. [6] Typical diagrams 
for the Green's function are shown below. 

I 
I 
i 

.....J.,... 
a 

" I \ 
I \ 

-i-*-
6 

/1\ 
I I \ 

-*-L'l.-
t 

The contribution of graph a to the self-energy 2:: is 
proportional to nl: (n is the impurity concentration) 
and leads to a shift in the transition point. The contribu­
tion of graph c, which is proportional to n,2, can be 
neglected along with the contribution of graph b: 

d'k' 
~·(k.{J)=n~'vo f (2n),[(oo 2)-oo2 (k)-oo'(k')]'G(k'.oo). (38) 

The region of large k' is important in the interval, 
and we can assume Wo = 0 in the calculation of the 
principal term. Such a term is not dependent on Wo, 

just as the contribution of graph a, and leads only to a 
displacement of the transition point. The dependence on 
Wo is expressed by the graph for the three-prong ampli­
tude: 

It is then seen that allowance for impurities leads to 
terms that increase as Wo - 0 according to a power 
law. The viCinity of the phase transition point will be 
conSidered, in which these terms are small and there 
is no necessity of taking into account the more compli­
cated graphs of type d. 

The correlation corrections due to the impurities are 
proportional to n and are small at small concentra­
tions. However, because of their power-law growth, 
these corrections turn out, sufficiently close to the 
transition point, to be comparable with the logarithmic 
contribution of the anharmonic interaction. The scatter­
ing by the impurities is an effect of the harmonic ap­
proximation. Therefore, the smallness of the impurity 
corrections is due only with the smallness of the con­
centration and, perhaps, with the numerical smallness 
of the amplitude 1:. The corrections from the interac­
tion of the phonons with one another, which are propor­
tional to Y ln (wn/wg), contain the small constant yof 
the anharmonic interaction. Therefore, if the impurity 
concentration is not too small, then the contribution of 
the impurity corrections becomes e~ual to the logarith­
mic contribution even at Yln(w,b/wo)« 1. Then the 
region of applicability of the logarithmic formulas con­
sidered above is completely absent. In the case of small 
concentrations, there is a region of applicability of 
these formulas, but in the immediate viCinity of the 
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transition point the impurity terms again turn out to be 
important. We shall show how to compute the first im­
purity corrections without assuming smallness of the 
anharmonic terms. 

For example, we consider the graphs for the three­
prong diagram ~l' Inserting dashed lines in the parquet 
diagram, we can establish the fact that those graphs 
gi ve the highest power of the logarithm in which the 
dashes connect lines with close momenta. Moreover, in 
the case in which the dashes connect external lines, the 
power of the logarithm is one unit higher than in all the 
other cases. Therefore, we have for the impurity cor­
rection to the three-prong diagram 

~- A 
,«oo'»'Vo 

1') = n~ 2n's'l, . (39) 

Similarly, the scattering amplitude is 

r y [1- 61') (1+ 34 In ooD') -"''']. (40) 
1 + "1"yIn(ooD'/tl.,') tl.o 15 V tl.o' 

Graphs for the polarization operator II 1 do not have 
external ends and the principal logarithmic contribution 
will develop when the dashes connect lines with close 
momenta. In the multiple integrals obtained in this 
case, the principal logarithmic region is that in which 
the dashes connect lines with very small momenta. 
Combining graphs with all possible dashed insertions of 
the types shown, we obtain a graphic expression of the 
Sudakov type for 1mi: 

6II= ,~ 

1{( 34 00')""[ V1')( 34 ooD')fi'''] } II,-- 1+-vIn~ 1-- 1+-yIn" -1. 
V 15 tl.o tl., 15 '-'0 

(41 ) 
Calculating the physical quantities, we get, for T = 0, 

34 2 _Z5/&1 

tl.o'=a(p-p,) (1+15vIn a(poo~p,») 

[ 1') (34 ooD') -"""] X 1-. 1+-vln , 
[a (p - p,)]," 15 a (p - p,) 

(42) 

). (34 ooD' )"1" x= 1 +-yIn--:---:-
4na(p-p,) 15 a(p-p,) (43) 

34 ooD') -"I.,,] 
X[1+ 'I ,(1+-V ln • 

[a(p - p,) J ,. 15 a(p - p,) 

p,.:..,).a(p-p,) (1+34 In ooD' )3/"[1+ 51') 
- 32n'ys'{' 15 y a (p- p,) . [a (p - p,)]," 

(44) X (1 + 34 y In (ooD' ) ) -"I,,,] . 
15 a p - p, 

For finite temperatures, the line of phase transitions 
is determined by the relation 

T,'= 9 a(p-p,) (1+ 34 vIn ooD' ) "I" 
20n' V 15 a(p - p,) 

5 34 ooD') -"I,,,] 
X[1+ 'I, (1+-vIn--:----:-

[a(p - p,)]" 15 a(p - p,) 

c (+ 34 I ooD') (45) 
x(T) 4n(T' _ T,') 1 iS V nT 

X [ 1+ 61') ( ).(]',: T,') )'" ( 1+ :: V In ;~: r"I'''] 
P'(T) = ~-"'~(T,' -1'). 

18 4ns;l, 
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6. CONCLUSION 

We know of only a single case of a phase transition 
at T = 0, namely, the alloy SnTe-GeTe. Using the ex­
perimental data of[lO] for the concentration dependence 
of Tc at high temperatures and Eq. (47) from our previ­
ous work, [1J we can estimate the alloy concentration nc 
for which T = 0 (nc R< 4-5%). From these data, we can 
estimate the amplitude /; ({; R< 0.5). Since /; is not very 
small, the formulas of Sec. 5 must be understood as 
tentati ve estimates. Recognizing that the anharmonic 
constant is very small (Y R< 2 x- 10-2 ), we must expect 
that the impurity contribution exceeds the logarithmic 
contribution from the interaction even in the region of 
applicability of the self-consistent field. 

If pure substances with low Tc become known, it 
will be necessary to take into account the anisotropy of 
the four-phonon interaction and striction, leading to a 
first-order transition. If the striction and the aniso­
tropy are small, so that they can be neglected at a suf­
ficient distance from the transition point, then it will be 
necessary in every case to take into account the de­
generacy of the critical branch in the direction of 
polarization. As was shown in Sec. 3, such an account 
leads to a significant change in the power of the 
logarithms in comparison with the results of Rechester. 

Summing up, we can say that real observation of 
such low-temperature transitions is extremely difficult 
because of the exponentially small required tempera­
tures. Even if one succeeds in carrying out the meas­
urements at such a low temperature, many factors 
(anisotropy, impurity, striction) can distort the picture 
of the phenomenon so that it will not be described by the 
logarithmic theory. It would be all the more interesting 
to observe a transition described by such a theory. 

APPENDIX 

In the case of a polar cubic crystal, the harmonic 
Hamiltonian is of the form [11,12] 

Here 

No = 1/2~ [ M."!k."!-k + UkAu_k + XkX_k + ooO'XkX_k 
k 

+ XkSX._k + 2U.VlLk + :~ EkE_k - 2ZXkE_k]. 

A' = Mk'(a,g, + Ihg,+ aoi.). 
S = k'(s,g, + s.g, + soi.). 

V = M"'k'(v;g, + v,g, + v.g,,); 
g,G' = nQ.n", g,o., = 6«. - nezon., go "P = g",..,&nyn6; 

(A.l) 

(A.2) 

the variables u and x denote displacements associated 
with the acoustic and critical OSCillations, respectively, 
z is the effective change of the ions, Vo the cell VOlume, 
and n =k/lkl. 

After the electric field is turned off, a large gap 
;\ = 47fZ2/vo appears in the spectrum of the longitudinal 
optical oscillations. The quantities u and x are normal 
oscillations only for small k «woa-1/2• For large k, 
intermingling of the branches takes place. Thus, for k 
parallel to the principal axes, the frequencies of the 
transverse vibrations are (see[1l,12]) 

oo;'.(k) = 'I, {ooo' + (s, + a,) k' ±[ (000' + (s, - a,) k')' + 4v,k'1"'}, 

and each of the branches is doubly degenerate. For 
arbitrary directions of k, there are five mutually inter­
mingled branches. 

.... 2 .... ,.. 

In the case V « (A - S)2, which is realized for 
example, in Ba Ti03, [13] the intermingled acoustic and 
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optical branches can be neglected. The frequency of 
the critical oscillations in this case is of the form 

,oo'~2(k) = 000' + k'[8, + 8all>",(n) I; 
1l>,,2(n) = <p(n) ± [<p'(n) - 3x.(n) 1"'. (A.3) 

<p(n) = nt2nz'J. + n22n32 + n32nt2, x(n) = n12n/n32. 

The logarithmic character of the correlation correc­
tions is preserved also in a theory that takes into ac­
count the intermingling of the branches and the aniso­
tropy of the spectra. However, the coefficients in the 
corresponding parquet equations are complicated angu­
lar intej:rals. ~ ForA simplicity, we limit ourselves to 
small V 2« (A - S)2. Here the coefficients of the equa­
tions ate functions of the ratio sa / St. 

The case sa « St was considered above. We now 
discuss the case sa» St. First, integration can be 
carried out over the frequency w and the modulus I k I, 
which gives the corresponding logarithm. The coef­
ficient of the logarithm is proportional to s-3/2(n). For 
arbitrary direction of n, s(n) ~ sa and for n lying in 
the planes ni = 0, one of the branches has sdn) ~ sa 
and the other s2(n) ~ St « Sa. Therefore, in carrying 
out integration over the angles, the principal contribu­
tions are made by the range of directions of n close to 
such planes, and the component in the Green's function 
corresponding to sin). The polarization of the corre­
sponding oscillations is perpendicular to the given 
planes. Thus in the range of directions of n close to 
the plane ni = 0, 

(A.4) 

The angular integrals that are developed are of the form 

(A.5) 

With account of what has been shown, the parquet 
equations take the form . . 

ra".(x)=),;,,.- J dy ~ [ra';i(y)f;;,.(y) 
o i_I (A.6) 

+ rai,i(Y) ri,,.(y) + r aOii(y) f",,(y)]. 

Using Eq. (4) for the tensor structure of r and dif­
ferentiating (A.6) with respect to the upper limit, we 
obtain 

r,'(x) = -'/,[7r.'(x) + 2r,(x)r,(x)]. 

r.'(x) = -'I,[9r,'(x) + 12r, (x) r,(x) + 4r,'(x) I 

with the boundary conditions 

(A.7) 

r,(O) =),,' = '/,y,(68,1 8a)'I'. f,(O) =y,' = '/,y, (68,/ 8a )"·. (A.S) 

In the solution of the set (A.7), we shall use the 
method outlined in Sec. 2. As a result, we get 

, y,' (7cp'+5cp+4)'/, 
cp""!(cp)=- 3 (n'+5A+4)'I,C(cp.A). 

( 7cp' + 5cp + 4 ) 'I, 
f,=),,' n'+5A+4 C(cp.A); (A.9) 

{' 88 [14CP+5 141.+5] 
cp=f,/f" C(cp.A)=exp -=- arctg---=--arctg~ . 

7 1759 1759 Y759 

For yr > 0, the function cp - - 00 for 

x~xo=-r (~), 
, . !(cp) 

but the stability condition cp > -1 is violated even 
earlier. As y~ - 0 the parameter Xo ~ y~9/7 and there 
is a broad range of applicability of the zero-charge 
solution 

y,' 
r,(x)=-...!..:--

1 + ~Y2'X 
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Similar results are obtained in the case yi < o. As is 
seen from Eqs. (A.7), r 2(x) ii!l 0 even if )'~ = 0, Le., the 
anisotropy of the spectrum generates the anisotropy of 
the interaction. 

The equation for the three-prong graph 3"1 is of the 
form 

- . , 
ff"t(.x)c5a~=c5a~- S dy 1:,ff"t(y)r;,aJ(y). 

o i_I 

Using the tensor structure of r and differentiating 
the equation with respect to x, we get 

ff"t'(x) = -ff"t('I,rt + r,), ff"t(O) = 1. (A.11) 

In the extreme anisotropic case yi = 0, r d x) = 0, 

ff"t(x) = (1+3y,·X)-'I.. (A.12) 

The polarization vector III(x) is . 
TIt (x) - J dYff"t'(y) - [(1 + 3Y,'X)'/. -1). (A.13) 

o 

I)The case of a large anisotropy of the spectrum sa > St is considered in 
the Appendix. 
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