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We investigate the properties of dilute ferromagnetic alloys in which the exchange inter­
action of the impurity spins consist of a positive part that decreases exponentially with 
distance, and a part of the Kittel-Ruderman type, which oscillates with the distance. The 
oscillating interaction greatly decreases the molecular field at impurities that are located 
farther from the neighbors than the average distance between neighbors. Impurities lo­
cated far away can be acted upon by a molecular field with direction opposite to that of 
the magnetization. This increases the contribution of the local spin flips to the thermo­
dynamic and kinetic quantities, and their decrease with temperature becomes slower in 
comparison with the case of pure ferromagnetic interaction. In the limit of very low im­
purity concentrations, we obtain the number of impurities whose spins are directed op­
posite to the magnetization at T = 0, and establish a criterion for the existence of 
ferromagnetism. 

1. INTRODUCTION 

Paramagnetic metals with strong correlation of the 
electrons in a narrow d-band (pd, pt) exhibit ferromag­
netism at low concentrations n of the magnetic impuri­
ties [1]. The ferromagnetism is due to indirect exchange 
interaction between the impurities, which is effected by 
the d-electrons in these metals and is described by the 
Heisenberg Hamiltonian 

d& = - '/,1:, V(r, - r;lS,S;, (1) 
'1 

where Si is the spin localized at the point ri. The in­
teraction energy V( r) in (1) at not very large distances 
is positive and dec reases exponentially with r, and at 
large distances V( r) is determined by the Kittel­
Ruderman formula [2,3]: 

V(r) = V,e-'/R + V.R'r-' cos 2kF r, r:P R. (2) 

In order of magnitude we have VdVo = (kFRf3« 1. In 
expression (2) we have left out for simplicity the factor 
r-1 in the first term. At r » R this simplification 
changes little the dependence of the ferromagnetic part 
of the interaction on r. 

In an earlier study [4] of the properties of dilute fer­
romagnetic alloys, for which v = ("l3) 1TR3n « 1, we 
have neglected the oscillatory interaction. It was shown 
that the thermodynamic and kinetic properties of such 
alloys are strongly influenced by the spin flip of those 
impurities on which the weak molecular field acts. 
These impurities are separated from the neighbors by 
distances that are larger than the average distance be­
tween the impurities rav;:::j n -1/3 

The oscillating potential at the remote impurities 
may become comparable with the positive potential, or 
may even exceed it. Consequently, at T « TC the 
molecular field at these impurities is weak or negative 
(directed opposite to the magnetization). It is precisely 
these impurities which play an important role at very 
low temperatures. L-ocal spin flips of such impurities 
introduce contributions proportional to W( 0) T into the 
magnetic specific heat and into the kinetic coefficients, 
and a contribution proportional to (aW/aH~=OT2, into 
the temperature-dependent part of the magnetization, 
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where W(H) is the distribution function of the molecular 
field H. 

In the present paper we calculated W( 0) in the limit 
of very low impurity concentrations and obtained the 
number of spins nl directed against the magnetization 
at T = 0, under the condition nl « n. This inequality 
means that the alloy is ferromagnetic. The character 
of the magnetic ordering is determined in this case 
mainly by the positive part of the exchange interaction 
between the impurities. With decreasing impurity con­
centration, W( 0) and nl increase, i.e., the role of the 
oscillating Kittel-Ruderman interaction increases. At 
sufficiently low impurity concentrations the oscillating 
interaction becomes predominant. As is well known, the 
character of the magnetic ordering in such a situation 
has not yet been determined [5]. It is most probable that 
the Kittel-Ruderman interaction leads to an ordering of 
the antiferromagnetic type. We shall therefore speak 
henceforth of vanishing of the ferromagnetism for those 
impurity concentrations, in which the principal role is 
assumed by the oscillating interaction. It turns out that 
the ferromagnetism can exist also at concentrations 
such that the amplitude of the oscillating potential ex­
ceeds the positive potential at distances on the order of 
rav. At not too low temperatures, the most important 
are the impurities at which the molecular field is posi­
ti ve. The oscillating potential decreases the molecular 
field at such impurities. This leads to an increased 
contribution of the local flips to the thermodynamic and 
kinetic quantities in comparison with the pure ferro­
magnetic interaction. 

The influence of the oscillating potential can be 
neglected at sufficiently h~h temperatures satisfying 
the inequality T» 1/,$V1V 2 ln-3/2(SVo/T). In this ca.se 
the results oft 4] are valid. 

2. STRONGL Y DI LUTE ALLOYS A T -+ 0 

The average spin a per impurity and the specific 
heat CM per unit volume can be obtained by averaging 
the expressions for these quantities in the given field 
H over the distribution of the molecular field[-]; 
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00"'" S - IJ=S - jW(H) [( S++) cth (S + ; ) ~H -~cth ~H] dH, 

-- (3) 

c. = n j W(H) (~H)'[ ~Sh-' ~~ - (S+{-) • sh-' ( S+~) ~H JdH, 

-- (4) 

where i3 = T-\ the temperature is measured in energy 
units; to simplify the notation, we shall henceforth 
write H in place of MeH, where Me is the effective 
magneton. 

Owing to the oscillating potential, the alloy contains 
impurities at which the molecular field is close to zero 
at low temperatures, i.e., W( 0) if! O. Therefore as 
T - 0 we obtain from (3) and (4) 

nj ( dW ) -S [ 1 X 6IJ=2S-+T' - dxx' -sh-'-
n dH H~O 4 2 

o 
(5) 

-(s+~)' Sh-'(S+~)X]=2S~+ 2n'8 (~) T' 
2 2 n 3 (28 + 1) dH H_O ' 

Here 

2n'8 
C.=n 3(2S+1) W(O)T. (6) 

(7) 

is the number of spins directed opposite to the magneti­
zation at T = O. 

To find the concentration dependence of CM and nj 
it is necessary to know W(H) at H ~ O. Small and nega­
tive fields, as already noted, are produced at remote 
impurities. If the distance is of the order of a certain 
r, then the probability of suc h fluctuations is obvious ly 
proportional to exp ( -41Tnr 3j3). It is therefore desirable 
to separate indirectly this factor in explicit form in the 
distribution function W(a). It is shown in the Appendix 
that the function W(H) can be represented in the form 

W(H)= S dtw(t)W(H, t). (8) 
o 

Here t = r jR, w is the nearest-neighbor distribution 
function: 

w (t) = 3vt'e-"'; 

W i -S .. (H, t) = -z; dp e-tPHHPV(t)S-YD(P,t), 

where 

-
D (p, t) = 3 S (1- e"V(',)S) tt'dt., . 

(9) 

(10) 

(11) 

W(H, t) has the meaning of the distribution function of 
the molecular fields at impurities located at a distance 
t away from the nearest neighbor. 

We shall henceforth consider in this section the case 
of extremely low concentrations, when llt 2 « 1 at the 
characteristic values of t. We can then expand the ex­
ponential in (11) in powers of p, up to terms propor­
tional to p2 (the validity of this expansion will be 
demonstrated below): 

- VS 
D(p, t) = 3,J {- ip (SVoe-" +-i;-cos 2kFRt.) 

pi ( V S z +""2. VoSe-" + -;;. cos 2kFRt.) t.'} dt" 

so that the function W(H, t) has a Gaussian form. 

The ll( D (p, t) terms linear in p are smaller than 
the pV(t) term in the argument of the exponential of 
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the function W(H, t) by a factor lle. We shall show 
that near the maximum of the Gaussian function we 
have pV(t)« 1. The D(p, t) terms linear in p can 
therefore be discarded. Owing to the fast oscillations 
of cos 2kFRt at large t we can discard the member 
containing cos 2kFRt in that term of the function 
D(p, t) which is proportional to p2, and replace 
cos 2 2kFRt by %. 

Thus, 

_ vp'8' (~+ 3 V 't'e-") } 
(12) 

4 t' 0 • 

Since we are interested in distances t» (kFRf I and 
kFR» 1, we can average over the argument of the 
cosine in (12) at a given value of t [6]. The factor 
[ipS(Voe-t + VlC 3 cos 2kFRt)] under the integral sign in 
(12) is then replaced by exp (ipSVoe -t) J o( x), where 
Jo(x) is a Bessel function and x =pVISje. 

The characteristic values of p in the integral (12) 
are determined by the terms quadratic in p in the 
argument of the exponential. For these values of p, we 
have x'" (ller l/2 « 1, so that Jo(x) = 1 +O(x2). Inte­
grating now with respect to p in (12) and using (8) and 
(9), we obtain ultimately for the function W(H): 

3 ,/-; - t'I, 

W(H)=SV n-S dt (V'+3V't'e-2t)'" 
o • 0 

{ (H - VoSe-I) , , t'} (13 ) 

Xexp - v(V,' + 3Vo't'e ")S' t - v . 

We see that the alternating-Sign potential does not 
change the average value of the molecular field at a 
given t, but only broadens the distribution. 

We consider first W(O). The argument of the expo­
nential of the integrand in (13) has a maximum when to 
satisfies the relations 

toe-'" = '/,v' v.' I Vo', vto' < 1. (14) 

Near the maximum, the inequality Vgt 5e-2t « V~ is 
satisfied, and the Gaussian p~rt of the argument of the 
exponential in (13) is of the order of lltg« 1, thus 
justifying the expansion of D(p, t) in powers of p. 

At t < to, the argument of the exponential in (13) 
decreases exponentially, and at t > to it decreases in 
power-law fashion. Therefore the lower limit in (13) 
can be replaced by to, and we need retain onlY-lle in 
the argument of the exponential. .After integration we 
obtain 

(15) 

Expression (15) together with (14) enables us to deter­
mine the concentration dependence of the thermody­
namic and kinetic quantities at low temperatures, at 
concentrations satisfying the inequalities lltg« 1 and 
llt~ » 1. It follows from (14) that to decreases with in­
creasing ll. Consequently, W(O) and the specific heat 
CM decrease with increasing II more slowly than ex­
ponentially. 

We can analyze in similar fasion W(H) at small H. 
If I H I < llVISt~1/2, then the extremum point is deter­
mined by the same equation (14); the correction to -t9' 
due to H, is much smaller than unity. If H > llVISto 2, 

then to = in (SVojH) and W(H) does not depend on 
V l • l ) 
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Let us calculate the quantity 7J 1 defined in (7). As 
seen from (13), a contribution to the integral (7) is 
made by the values l H l < SV111 1!2t -3!2. In the interval 

"IIV,St-'" < IHI < V'I'V,St-'I, 

the extremal point t(H) is determined from the equa­
tion 

t(H)e-'(H) = '/,v'V.'S / V.IHI, (16) 

and lI[e(H) - t~) «1. We obtain for ni from (7), (13), 
and (16) 

If ni « n at T '" 0, then the alloy is ferromagnetic. 
Thus, a sufficient condition for the existence of ferro­
magnetism in an alloy with a positive and oscillating 
interaction is the inequality IIt~« 1, where to is deter­
mined by (14). At IIt~;;:; 1 the ferromagnetism vanishes. 
It follows from (14) that 

Ve-'· 1/3 vto3 =-'- -to. 
V,t.-' 2 

(17) 

Since t~/2 » 1, the inequality IIt~;;.;;. 1 can be satisfied 
even when Voe- 0 ~ V1t~3,Le.,ferromagnetism is possible 
in the alloys in question also when the amplitude of the 
oscillating potential at the average distance is larger 
than the positive potential. Putting t~;;:; 11- 1 in (17), we 
can estimate the critical concentration 110 for the 
vanishing of ferromagnetism. The quantity 110 depends 
little on VdVo. For VdVo'::; 0.2-0.02 we have 110 

~ 10-3, which according to(4) corresponds to an impurity 
concentration c ~ 10-2%. 

3. CONTRIBUTION OF IMPURITIES SITUATED 
IN A POSITIVE MOLECULAR FIELD 

In this section we consider again relatively high 
temperatures (a criterion will be estimated below), 
when the main contribution to (3) and (4) is made by 
positive molecular fields H ;;. T. Then 

6cr = S e-~HW(H)dH, (18) 

(19 ) 

It is now convenient for us to use for the function W(H) 
an expression analogous to[ 4) 

1 • 
W (H) = -S dpe-'P"-D(P) 

2n_~ , 

D (p) - 3"11 j dt t'li _ e,pv(I)S}, 
dlR 

(20) 

where vet) is determined by formula (2) and d is the 
lattice constant. We have introduced in the integral of 
(20) a cutoff radiUS, to avoid unphysical divergences 
connected with the oscillating potential. The cutoff 
radius does not enter in the final results. Just as in the 
preceding section, we can average in (20) over the 
argument of the cosine. We obtain 

~ VS 
D(p)=3vS dtt'{ 1_J,(~)e'psv,,-,}. (21) 

djR t 

Without loss of generality we can assume W(H) '" 0 
at H ~ -Ho, and Ho is larger than all the characteristic 
energies in the problem. We can then transform (18) 
into 

~ 

6cr = SW,(H)e-~H dH, 
o 
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-J3Ho ) where W1(H) '" W(H + Ho)e , and W1(H = 0 at 
H ~ O. Using the connection between the Fourier trans­
form of W1(H) and its Laplace transform, we obtain in 
analogy with(4): 

We integrate (21) by parts and introduce the variable 
x = e-t . We obtain 

_ 3V. [.( pV.S )] 
Vox In' x In' X-I 

(22) 

(23) 

where In( x) is a Bessel function of imaginary argument. 
At high temperatures we can expand the Bessel func­
tions in (23) in powers of the argument and replace the 
upper limit in (23) by unity. Accurate to the exponen­
tially s mall terms exp ( - (3V 0) we obtain: 

D(iP) = v[/(PSVo) - I/.P'V.'S'F(PSV,)], (24) 

where 

/(z)= In' z + 3Cln' z + (3C' + ~') lnz + C (C' + ~' ) -'1''' (1), (25) 

t dye-' 
F(z)=~ In'(z/y) . 

(26) 

Here C is the Euler constant and 1/J is the logarithmic 
derivative of the r function. The function F(z) at 
In z » 1 can be expanded in powers of In -lZ : 

1 [ 3C n' + 6C' (1) ] F(z)=- 1-~+---+O - . 
In' z lnz In' z In' z 

(27) 

The first term in (24) is connected only with the ferro­
magnetic interaction. It was derived by us in(4). The 
second term is due to the oscillating interaction. 

The main contribution to (26) is made by y;;:; 1. The 
argument of the Bessel functions in (23) is then of the 
order of (3V1S In-3{:lVoS. Consequently, expression (24) 
is valid for temperatures T »T'" where T'" satisfies 
the equation 

V,S / T' = 2 In' (V,S / T·) .. 

At such temperatures, the second term in (24) is 
smaller than the first and since II ln3(SVo/T)>> 1 at 
T « TC, we get D(im» 1. It is seen from (3) that 
a(au)/a{:l < O. Expression (22) for au satisfies this in­
equality if aD(i(3)/a(3;;. 0, Le., according to (24)-(27), 
if T » Ti, where Ti satisfies the equation 

v.S / T,' = l'61n"'(V,S / Tt'), 

Since In (VoS/T) » 1, it follows that T1 ;;. T*. At 
T ;;. Ti, the main contribution to (18) is made by posi­
tive molecular fields. 

The meaning of the inequality T ;;. Ti can be easily 
understood. If V1 = 0, then the main contribution to au 
at the temperature T is made by impurities that are 
located at a distance on'the order of RP,» rav from 
the nearest neighbors, where P", In {:lSVo. The oscillat­
ing interaction, as already noted, does not change the' 
average field acting on such an impurity, it only in­
creases the scatter of the molecular fields from their 
mean value. Consequently, the oscillating interaction 
influences the remote impurity less than the ferromag­
netic interaction, if the mean quadratic field produced 
by it 

r \IV'S' 
4nS'n J v,' (r) r' dr = + 

R.fII 
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is smaller than the corresponding field v{3-2;e produced 
by the ferromagnetic interaction, which is equivalent 
to the inequality T » T!. 

Thus, the deviation of the magnetization from satura­
tion at temperatures T > T! takes the form 2) 

6(1 = expv[ -j(f3SVo) + 1/.f3'V.'S'F(f3SVo)]. (28) 

It is seen from (28) and (27) that the influence of the 
oscillating potential on the magnetization can be 
neglected if 

T:> SV. V'I, In -'f, SVo (29) 
2 T . 

In this case the results obtained by us in(4 j are valid. 
At lower temperatures, the second term in the exponent 
of (28) increases 6a greatly. 

In similar fashion we obtain for the specific heat at 
T> Ti 

where 

CM =nv[j.(1+vj.) -6(C+ln (SVoIT»] 
x exp v[ -f(f3SVo) + 1/.WV.'S'F(f3SVo) ], 

j. = 3 In' (SVo IT) + 6C In (SVo I T) + n' I 2 + 3C'. 

The pre-exponential factor does not depend on VI' The 
exponential function, however, owing to the oscillating 
interaction, decreases with temperature more slowly 
than at VI = O. 

It is shown in(4] that even if we neglect the oscillat­
ing potential, 6a and CM at not too low temperature 
can decrease with temperature slowly, in a near-power­
law fashion, with an exponent on the order of unity. The 
oscillating potential extends the region of slow decrease 
of 6a and CM towards lower temperatures, and in­
creases the contribution made to these quantities by the 
local spin flips in comparison with the contribution of 
the spin waves. A quantitative comparison of the theo­
retical specific heat CM with the experimental one was 
carried out in(4] at T > 1.5°K. At these temperatures, 
the inequality (2.9) is satisfied at V dV 0 « 1 for aU the 
concentrations considered in(4]. 

If T < T!, then aD( i(3)/a (3 < 0, and the replacement 
of the hyperbolic functions in (3) and (4) in exponentials 
is not valid, i.e., the contribution of thepositi ve fields 
H > T to these integrals become insignificant. More 
negative fields, obviously, can likewise not contribute 
to (4) and to the temperature-dependent part of (3) 
since W(H) decreases rapidly with decreasing H. Con­
sequently, in the presently considered temperature 
region, the principal role is played by I H I ~ T, i.e., 
CM and the temperature-dependent part of the 6a are 
determined by formulas (6) and (5). Thus, at T « Ti 
the specific heat due to local spin flips decreases with 
temperature more slowly than the specific heat con­
nected with the spin waves. Therefore at not very large 
impurity concentrations the magnetic specific heat can 
be determined at all temperatures by the local spin 
flips, and not by the spin waves. The external magnetic 
field h can be easily taken into account by adding the 
term (3h to D( i(3). Since the field h increases the 
number of spins oriented along the magnetization, it 
extends the temperature region in which the h~perbolic 
functions in (3) and (4) can be replaced by e-/ili. If 
lJ.eh > T*; then such a replacement is possible also at 
T < T*, since the new critical temperature T*(h) now 
satisfies the equation 
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oD(if3) a, 1 f3V.'S' 
--+ /t.h=-ln (SVof3)-----+ /t,h=O 

of3 f3 2 In'SVoj3 , . 

At temperatures T « T*, the argument of the Bessel 
functions in (23) is large, and we can therefore use 
their asymptotic forms. We then have 

vf3SVo ,_dfR ,,1 { 
D(if3)==- S dxln"-exp - f3SVox 

l'2nf3SV. 0 x 

+~SV.ln-3~}(1-~) . 
x Voxln'x 

Since {3Vo > 1 and (3V 1 > 1, the integral can be calcu­
lated by the saddle-point method. The saddle point Xo 
satisfies the equation 

Xo In' Xo = 3V, I Vo, 

with Xo « 1. Thus, 

D(i~)= - 3v l'3~SVo, ~ln'f'~exp{- f3SVoxo (1 +~lnxo)}. (30) 
2 ' Xo Xo 3 

i.e., D( i(3) < O. Consequently, at T » T* » T* (h) we 
have 

<'\(1 = exp{-vD(i~) -f3/t.h}, (31) 

where D(i{3) is determined by formula (24) at T > T* 
and by formula (30) at T*(h) < T < T*. 

If T < T* and h = 0, then 6a « exp ( -vD( ip» > 1. 
Comparing this inequality with (31), we note that when 
a strong magnetic field is turned on in the temperature 
range T*(h) < T < T!, the quantity 6a decrease much 
more slowly than by the factor exp ((3J.Leh). Since 
-D(ifj) increases with decreasing temperature when 
T < T*, it follows that 6a decreases with temperature 
at a fixed h > T / IJ. e more slowly than exp ( -flhlJ. e). 

A formula similar to (31) can be written also for the 
specific heat. The qualitative conclusions from it are 
the same as for 6a. 

The influence of the oscillating interaction on the 
kinetic phenomena in a ferromagnetic alloy can be 
analyzed in similar fashion. At T «Ti and h = 0, the 
contributions made to the electric resistance, the 
thermal reSistance, and the thermoelectric power by 
the local spin flips are proportional to W( 0) T. At 
T > T! and h = 0, they are described by formulas (30)­
(32) of(4], in which the argument of the exponential 
should be replaced by 

v[f(f3SVo) - 1/.f3'V.'S'F(f3SVo)]. 

Finally, at lJ.eh > T* the kinetic coefficients, apart 
from the pre-exponential factors, vary with the field 
and with the temperature in analogy with 6a (formula 
(31 ». 
APPENDIX 

The distribution function W(H) is given by(7] 

W(H) = 2n~N f dp S dT, dT, ... dTNexp{ -ip (H -s.E V (r,) )}, (A.1) 
-~ , 

where v is the volume of the system and N is the num­
ber of particles in it. Using the identity 

where 

N N 

.Ell 8(r,- r.)= 1, 
i=1 k=1 

{o if x";;O 
9(x)= 1 if x>o' 
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and the symmetry of the ingegrand in (A.1) with respect 
to permutations of q, we obtain 

N ~ 

W(H)= 2nvN J dp J d-c, J d-c, .•• dtN exp { -ip (H - sL, VCr,) )}. 

"-0, (A.2) 

Here 0 1 is the space inside a sphere of radius r1. We 
rewrite (A.2) in the following manner: 

1 ~ N ~ Q N_' 
W (H) = z;: S dp v S dt,e-,,(H-SV(T,» ( v : ') 

_= 0 

Taking the limits as N - "" and v - 00 with N/v = n 
= const, we obtain formulas (8)-(11) of the main text. 

1) At H > v V 1 Stt formula (13) yields the distribution of ~he molecular 
fields produced by one positive interaction, under the condition vt2 

~ I, i.e., in the case when the field at the given impurity is produced 
by the nearest neighbor. It follows then from (13) that 

W(m = :Iv In' SY. exp (-v In' SY.) . 
H H H 
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This expression can be obtained directly from (9) by putting t = In 
(SVo/H). 

2)In [4], the formulas (23)-(25) for S-a contain a superfluous factor 
1/2. 
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