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It is shown that the NMR dynamic frequency shift (DFS or pulling) in ferro- and antiferro
magnetic substances caused by Suhl-Nakamura interaction of nuclear spins at low temper
atures may pronouncedly affect the nonlinear oscillations of nuclear magnetic moments in 
a varying radio-frequency field near the resonance frequency. Equations are derived 
which define coupled uniform motion of electron and nuclear spins at NMR frequencies 
under nonlinear resonance conditions. The equations can be employed for studying the 
peculiarities of free precession and of spin echo Signals in both ferromagnetic and anti
ferromagnetic substances (of the "easy plane" type). It is shown that pulling may lead to 
aperiodic solutions for the motion of nuclear magnetization in a rotating coordinate sys
tem (with the frequency of the varying field). This signifies, in particular, that under con
ditions when the solutions are realized there should be no periodic dependence of the free 
precession Signal amplitude on duration of the radio-frequency pulse. The equations of 
motion are solved for some particular cases. The period of motion and maximal deviation 
of nuclear magnetization from equilibrium are found. It is shown that the effect of pulling, 
which impedes the appearance of large deviations, can be avoided by simple Sinusoidal 
modulation of the radio-frequency pulse frequency. 

1. FORMULATION OF PROBLEM 

In ferro- and antiferromagnets with sufficiently high 
concentration of the nuclei that possess magnetic mo
ments, the hyperfine coupling of the nuclei with the 
electrons can lead to a strong indirect interaction be
tween the nuclear spins (the interaction after Suhl and 
Nakamura [1], see also[2]). There are two known effects 
due to these interactions: the broadening of the NMR 
line, and the dynamic shift of the resonant frequency 
(pulling) [3,2]. The latter is observed only at sufficiently 
low temperature, since it is proportional to the nuclear 
magnetization m = const/Ts , where Ts is the tempera
ture of the nuclear spin system. This temperature can 
change when NMR is saturated, so that pulling causes 
also a number of nonlinear phenomena observed in the 
stationary regime[4,5]. However, NMR in magnets is 
investigated in many cases by a nonstationary (pulsed) 
procedure, such as the spin-echo procedure, the free
precession damping procedure, etc. Spin echo was also 
observed recently in certain antiferromagnets under 
strong pulling conditions [6]. 

It is quite obvious that in those cases when the pull
ing is large, it should influence strongly the indicated 
quasistationary phenomena. Yet theoretical calculations 
of the motion of nuclear magnetization in strong pulsed 
fields of resonant frequency, with allowance for pulling, 
have as yet not been published. In our opinion, this 
hinders also the experimental research in this field to 
a certain degree. 

The present paper is the first attempt to take into 
account the influence of the Suhl-Nakamura interaction 
on the motion of nuclear magnetization in strong reso
nant-frequency fields, when the deviation of the nuclear 
moment from the equilibrium orientation can be arbi
trarily large. The duration of the resonant-field pulse 
will be assumed small in comparison with the times of 
nuclear magnetic relaxatiun, so as to be able to neglect 
relaxation processes. Such a situation corresponds to 
the conditions of free-precession-damping and spin
echo signals. 

Before we proceed to a direct calculation for con
crete case of ferro- and antiferromagnets, let us formu-
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late the general limitations under which the problem is 
solved. First, we assume that the resonant-frequency 
field and the hyperfine interaction have little influence 
on the behavior of the electronic magnetization in the 
sense that the motion of the latter can be described by 
using the formulas of the theory of the linear response, 
both with respect to the external resonant-frequency 
field, and with respect to the hyperfine field due to the 
nuclei. Strictly speaking, only in this case can the in
teraction of the transverse component of the electronic 
and nuclear spins be reduced to an effective (Suhl
Nakamura) interaction between the nuclear spins. This 
will also mean that the pulling should be small in com
parison with the unshifted NMR frequency: 

where I'n is the gyromagnetic ratio of the nuclei and 
Hn is the static hyperfine field acting on them. 

(1) 

It must also be recognized that the dynamic interac
tion of the electronic and nuclear magnetizations can be 
regarded as a small perturbation if the difference be
tween the natural frequency of the oscillations of these 
magnetizations is much larger than the hyperfine inter
action. Since we are interested in the behavior of the 
system near the NMR frequency, the motion of the elec
tronic subsystem at such frequencies can be regarded 
in the quasistatic approximation, by replacing its dy
namic-susceptibility tensor by the corresponding static 
tensor XO. 

We are interested in ferro- and antiferromagnets 
with large hyperfine fields at the nuclei and with large 
gains of the resonant frequency field. The direct inter
action between the nuclear magnetization and the ex
ternal fields can then be neglected and we can assume 
that these fields act only on the electronic magnetiza
tion. 

Finally, we consider only homogeneous and spatial 
oscillations of the magnetization and neglect also the 
quadrupole splitting of the nuclear spins. Under these 
conditions, the problem is easiest to solve on the basis 
of the classical equation of motion for the magnetic mo
ments in the corresponding effective fields. 
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2. EQUATIONS OF MOTION IN THE CASE OF 
A FERROMAGNET 

We consider first an arbitrary ferromagnet mag
netized to saturation in the direction of the z axis. We 
need to know only the components of its magnetic sus
ceptibility tensor relative to the transverse resonance
frequency field in the quasistatic approximation, i.e., 
Xxx and Xyy. The calculation presented below pertains 
to practically all known concrete cases for different 
(ellipsoidal) sample shapes and different crystal-lattice 
symmetries. 

In accordance with the statements made above, we 
describe the motion of the nuclear magnetization m by 
the equation 

dm / dt = Yn[mHeff ), Heff = AM, (2) 

where Heff is the effective hyperfine field acting on the 
nuclei as a result of the electronic magnetization M (A 
is the dimensionless hyperfine coupling constant). The 
electronic magnetization moves under the influence of a 
resonant-frequency field h(t) that is perpendicular to 
the z axis, and an effective hyperfine field Am pro
duced by the nuclei. In other words 

M. = 'X,r..(h. + Am.), 

M.=X .. (h.+Am.), M,::eM., 
(3 ) 

where Mo is the saturation magnetization. The appear
ance of pulling is precisely connected with the reaction 
of the nuclear magnetization on the electronic magneti
zation, a reaction accounted for by the Am terms in (3). 

After substituting (3), Eq. (2) in terms of the com
ponents takes the form of the following system: 

m. = Yn(Hn - A1'],m,jm. - Y,;1'],h ym" 
my = -Yn(H n - A1'\,m,)m. + 'Yn1'\,h.m" 

m, = 'YnA (1'], - 1'].) m.m. + 'Yn1),h,m. - 'Yn1'\,h.m •. 
(4 ) 

Here Hn = AMo is the dc component of the hyperfine 
field and acts on the nuclear spin along the z axis, 
while 1/ 1 = AXxx and 1/ II = AXyy are the gains of the 
resonant-frequency field in the directions x and y, 
respectively. In the approximation linear in the reso
nance-frequency field h(t), we obtain from the system 
(4) mz:;:; m = const, and for the NMR frequency with 
allowance for the pulling we obtain 

Qn = 'Yn[ (Hn - A1'\,m) (Hn - A1'\,m) ]'1. 

or approximately an = wn - wp, where 
1 m 

OO p =-(1'],+1),)-w n 
2 M. 

(5) 

(6) 

is precisely that change of the NMR which is defined as 
pulling. 

We now assume, for concreteness, that 

h. = 2H, cos wt, h, = 0, 

and transform the equations in (4) in a coordinate sys
tem that rotates about the z axis, keeping in mind the 
fact that the effective field w/Yn connected with this 
rotation almost cancels out the longitudinal field Hn. In 
this coordinate system the equations in (4) contain terms 
that do not depend explicitly on the time, and also terms 
proportional to sin 2wt and cos 2wt. When considering 
nonlinear resonance at frequencies W ~ wn ~ an, we 
should discard the terms of the latter type, since they 
result only in small rapidly-oscillating (with frequency 
2w) corrections to the fundamental "slow" motion of 
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interest to us, with angular frequencies of the order of 
W 1 = YnHl1/ 1 or wp, which is registered by the nonsta
tionary NMR methods. As a result, Eqs. (4) take in the 
rotating coordinate system the form 

m,=m. (~w-wp :'), 
(7) 

where aw = wn - w. We did not introduce new symbols 
for the rotating coordinate axes, since the coordinate 
frame referred to will be clear from the text. 

Before we proceed to solve the nonlinear system (7), 
we derive the corresponding equations of motion for an 
antiferromagnet of the "easy plane" type since, as 
will be shown later, they also reduce to a system of the 
form (7). 

3. EQUATIONS OF MOTION IN THE CASE OF 
AN ANTIFERROMAGNET OF THE "EASY 
PLANE" TYPE 

Assume that the z axis of a uniaxial antiferromagnet 
of the "easy plane" type i~ the symmetry axis, the 
equilibrium vector of the antiferromagnet is directed 
along the z axis, and the constant magnetic field Ho is 
directed along the x axis (Fig. 1). In this case, as is 
well known, [ll} the greatest gain will occur in a reso
nance-frequency field parallel to the z axis. We there-
fore assume \. 

h, = 2H, cos wt, h, = h. = O. (8) 

The energy of such an antiferromagnet (per unit volume), 
with allowance for the hyperfine interaction, can be 
written in the form 

I K D 
d'6 = M ,M,M, + M ,(M,.' + M,.') + -, (M"M" - M"M2X ) 

o D Mo 
(9) 

- H.(M" + Mzx)- h,(M" + M,,)-A (m,M. + m,M,). 

Here Ml and Mll are the magnetizations of the sub
lattices while ml and mz are the corresponding nuclear 
magnetizations. The first and second terms in (9) are 
respectively the exchange and anisotropy energies, 
while the third takes into account the weak ferromag
netism (which appears frequently in antiferromagnets 
of the "easy plane" type). The meaning of the remain
ing terms is evident without explanation. 

For the calculations that follow, it is convenient to 
express the energy (9) in terms of other variables, de
fined by the transformation 

M" = M,., cos .p + M". sin.p, 
M .. = -M". sin 1jJ + M". cos 1P, 

M" = -lIf", cos ¢ + M",sin.p, 
M2z = -MZ:t2 sin 1P - MU2 cos""" 

(10) 

where I/J is the angle by which the equilibrium vectors 
Ml and Mll are deflected from the z axis under the in
fluence of the field Ho. This is actually a rotation 
transformation (about the y axis) to the proper coordi
nate system of each of the sublattices, the axis zi (i 
= 1, 2) being the equilibrium directions of the magneti
zations of the corresponding sub lattices . The vectors 
ml and mll will also be expressed in the same system. 

Transforming d'6 in accordance with (10) and mini
mizing the equilibrium energy with respect to the angle 
I/J, we have 

. H.+HD 
sm 1P ::e ---;;;- ; 
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FIG. 1. Coordinate axes of the 
laboratory system (x, y, z) and of 
the systems (x., y .. z.) and (Xl' 
y l, Zl) connected respectively 

", with the sublattice magnetiza
tions M. and Ml . 

We assume here that the exchange field HE » (Ho 
+ HO), therefore sin lj! « 1. With this relation taken 
into account, the energy (9) in terms of the new vari
ables assumes the approximate form 

HE HA , , 
J'€=-M (-M.x,M""+M.,M,,-M,,,M,.,)+--(M., +M2,)+ 

2 0 2Mo 

Ho'-HD2 (12) 
+ M (M.x,M,., + M",M",) - A (m.M. + m,M,) 

HE 0 

Ho+Hn + 2H, cos wt (Mix, + M2.,l, 
HE 

where HA = 2K/Mo. 

We can next write down the equations of motion for 
M1 and Ma in the corresponding effective fields: 

H(i) = -{)J'€ / ()M" i = 1, 2. 

After linearizing these equations, and recognizing that 
M1z1 ~ M2za ~ MO, and M1x!' M3x2' M1y, M2y « MO, 
we obtain a system of four equations. If we introduce 
new variables of the type 

(13 ) 

then this system breaks up into two independent sub
systems corresponding to two branches of the natural 
oscillations of the magnetic moments of the antiferro
magnet. The first system 

1 . M -M+"=(Hs+HA) +'-IInm+', 
V 

1. Ho(Ho + HD) Ho + HD (14) 
-M+' = - M+" - 4---MoH.cos wt + Hnm+x 
V HE HE 

corresponds to the low-frequency branch of the oscilla
tions with frequency 

w+ ""'Y[Ho(Ho + HD) p'. 

The second subsystem 

~M_"= [HA + DD(Ho + HD) \ M_'- Hnm_', 
V HE 

i . 
-M_'= -HEM_x + Hnm_x 
v 

(15 ) 

(16) 

corresponds to the high-frequency branch of the oscilla
tions with frequency 

w+ = V [HEHA + HD(H, + HD) l"'. 

The resonance-frequency field does not enter in the 
subsystem (16), so that the oscillations of the second 
branch are not excited by a field parallel to the z axis. 
And if the initial conditions are such that 

M _ a = m_ a. = 0, a = x, y, z, (17) 

then these variables remain equal to zero both when a 
resonance-frequency pulse is applied, and when the 
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nuclear spins move in the interval between the pulses 1) . 
In accordance with our program, we go over in the sub
system (14) to a quasi static approximation, putting M~ 
= M~ = 0, which is possible in this case if W ~ wn « w+. 
As a result we get 

(18) 

(19) 

from which we see that M¥ <;< M~, and we can set with 
good approximation M~ = 0. This together with (17) 
yields 

(20) 

(21) 

We consider now the motion of the nuclear magneti
zations m1 and m2 in the effective fields AM1 and 
AM2. If we write the corresponding equations of motion 
in terms of the variables (13) with allowance for (20) 
and (21), then after going over to a rotating coordinate 
system 2) and discarding the small rapidly oscillating 
terms, we again obtain a system of the form (7), in 
which now Illa == me; = 2m1a1 = 2m2a2 (m = lmi + m; 
+ m~ ]1/ 2 ), W1 = YnHl1) , where 1) = Hn/Ho is the gain 
and 

1 H. m 
Wp=t;Wnt] Ho+HD M, 

is the maximum pulling. Comparing the last formula 
with (6), we see that in this case the pulling is many 
times larger than in the case of a ferromagnet (at the 
same values of the other parameters). 

We note further that for the considered type of oscil
lations, according to (21), the motion of the nuclear 
magnetizations of the sublattice relative to the proper 
(rotating) coordinate systems is quite identical, so that 
ma in the system (7) can also be taken to mean the 
components of the nuclear magnetizations of each of the 
sublattices (in the proper coordinate system). 

After solving (7) with definite initial conditions, we 
can use (18) and (19) (at H1 = 0) to find the amplitude of 
the free-precession signals amplified by the electronic 
subsystem. As already noted, the largest response to 
the motion of the nuclear magnetization can be exhibited 
by the variable M~ .. According to (10), however, this 
means that in the common coordinate system connected 
with the constant magnetic field (Ho 1\ x) the precession 
of the nuclear magnetizations will induce the largest 
summary electronic magnetization along the z axis: 

. H,+ HD ( ) M •• +M,,= -(M •• , +M2X,)sm¢ "" ----M+" = -t]m.". 22 
HE 

After determining the maximum value of m~ for 
each of the solutions of the system (7) of interest to us 
we can use (22) to estimate the amplitude of the signal 
registered at the frequency W ~ wn. Just as in the case 
of a ferromagnetic (see formula (3)), the gain 1) for the 
free- precession signal coincides with the gain for the 
resonant-frequency field. (The direct Signal would be 
the largest from the component m¥ of the nuclear mag
netization. ) 

4. PERIODIC SOLUTIONS 

Thus, in both cases (ferromagnet and antiferromag
net) the problem has been reduced to the solution of the 
nonlinear system (7). Since m 2 = mi + my + mi is an 
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integral of the motion, it is convenient to solve this 
problem by changing over to the polar coordinates 
mx = m sin fj cos CP, my = m sin fj sin cP and mz 
= m cos fj. We then obtain in place of (7) the two equa
tions 

e = OJ, sin <p, (23) 

~ sin e = OJ, cos a cos <p - (L~OJ - OJ p cos a) sin a. (24) 

It is easy to see that this system has one more inte
gral of motion: 

A = -OJ, sin e cos <p - ~ OJ cos a + '/,OJ p cos' a, (25) 

which represents (apart from a constant factor) the 
energy of the system. The concrete value of A is deter
mined from the initial conditions of the problem. If we 
obtain sin cp as a function of cos fj from (25) and sub
stitute it in (23), the latter can be easily integrated: 

where K(k) is a complete elliptic integral of the first 
kind for the modulus k = €-1 or €, respectively. If €2 
= 1, both solutions coincide and degenerate to the non
periodic function 

sin e = th OJ,t. (31) 

This is a new type of motion connected with the pulling, 
and we shall deal with such aperiodic solutions in 
greater detail in the next section. As to the periodic 
motions, their period and amplitude depend essentially 
on the parameter €. In particular, for an antiferromag
net of the "easy plane" type 

(32) 

where 

(33) 

co.. d~ 

± S ==OJp(t-to), 
"l'P.m 

is the electronic static magnetization of the antiferro
(26) magnet in a transverse field Ho, and 

cos 6 0 

where 

( 
(0, )' ( ') ({ , ~OJ. A)' P.(£)= - 1-£ - -£ --6--
,OOp 2 Wp Wp 

(27) 

is a polynomial of fourth degree, and fj 0 and fj are re
s pecti vely the polar angles at the initial instant of time 
to and at the instant of time.t. The sign in the left-hand 
side of (26) is determined by the initial value of cp. 

Formula (26) solves our problem in principle, since 
we can determine for arbitrary initial conditions the 
variation of the angle fj as a function of the duration of 
the resonance-frequency pulse (t - to), and we can 
then determine also the angle cp from (25). If the 
parameters W1,.o.W = wn - wand wp are known, then 
a successful application of (26) makes it possible to 
calculate numerically not only the amplitude of the free
precession signal but also the spin-echo signals. We 
were unable to carry out an analytic investigation of the 
solution (26) in the general case, since this calls for 
knowledge of the roots of the polynomial (27), which are 
of very cumbersome form. We can only state that, with 
the exception of certain special cases referred to in the 
next section, cos fj is a periodic function of the duration 
of the resonance-frequency pulse and is expressed in 
terms of Jacobi elliptic functions. We consider below 
some of the simplest particular cases of definite prac
tical interest. 

1. The Case Aw = wn = 0, 80 = 0 

Let the frequency of the resonance-frequency field 
coincide with the unshifted (by pulling) NMR frequency 
(w = wn), and let the vector m begin its motion from 
an equilibrium pOSition at the instant of time to = O. 
Under these conditions, according to (25), we have 
A = wp/2 and formula (26) takes the form 

• da J OJ,t, 
"1'1-8 'sin'a 

• 
where € = 2wdwp. From (28) we have[7] 

sine = sn(OJ,t; 8-') if 8;;;' {, 

sin e = 8 sn('/,OJpt; e) if e';;; 1. 

(28) 

(28') 
(28/1) 

Thus, in this case sin fj is a periodic function of t 
with a period 

150 

T = 4K(e-') I OJ, if € > 1, 

T = 8K (8) / OJ. if 8 < 1, 
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(29) 

(30) 

m = (fty.) '[(I + 1)NH./ 3k.T (34) 

is double the nuclear static magnetization of one sub
lattice at a temperature T in the hyperfine field Hn; N 
is the number of magnetic nuclei per unit volume in 
both sublattices. 

At low temperatures (in the helium region) the pull
ing for such antiferromagnets is usually so large that 
€ « 1. In this case, according to (28") and (30), the 
amplitude of the deviation of the nuclear magnetization 
from the equilibrium position and the period of the 
motion decrease by a factor € in comparison with 
their values in the absence of pulling. 

2. The Case Aw == wn - w = w p' 8 0 = 0 

Assume now that at the same initial conditions the 
frequency of the resonance-frequency field is equal to 
the NMR frequency with allowance for pulling (w = On 
= Wn - wp). In this case A = -wp/2, 

p.m = '/.[e'(1- £') -(1- 6)']' 

and the solution (26) takes the form[7]: 

,a 1 '{ "" ( 1 ) + 1 ,}-' sin 2" =T e or ZOJpt; g"g, 1"2 e , 

(35) 

(36) 

where :JJ is the Weierstrauss function with the invari
ants g2 = €4/12 and g3 = €4/4 + €6/216. 

If € :s 1 then, accurate to quantities of the order of 
10-2, the function :JJ can be expressed in terms of 
Jacobi elliptic functions[8] 

(~. )""(~)'/'[1+1'31+cn(3'1'(el2)"'0J.t;k)] (37) 
:JJ 2 OJ,t, g" g. 2 1- cn(3'" (e/2)"'OJ pt; k) , 

where the modulus of the elliptic function is k = (2 
- /3)1/2/2"'" 0.26. Thus, sin 2 ( fj /2) is a periodic func
tion of t, its period is determined by the period of the 
function cn in (37) and is therefore equal to 

T 3'/~'~~/ "" 3'~=' ( ; ) '.. (38) 

The maximum value of the angle fj corresponds to the 
condition cn = -1 and is determined by 

. a",.. _ ( 8 )'/.[ {( e )'/']-'1' sm--- - 1+--2 2 3 2 . (39) 

Consequently, with increasing pulling (with decreasing 
€) the maximum deviation decreases like €1/3, Le., 
more slowly than in the preceding case. For example.? 
at W d wp ~ 0.1 the angle {1 max is of the order of 60 . 
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5. APERIODIC SOLUTIONS 

We shall show now that among the solutions (26) 
there are not only periodic but also aperiodic solutions. 
This new type of motion of the nuclear moment is con
nected precisely with the pulling. One particular case 
of such motion was already encountered above (see 
formula (31)). Let us investigate the possibility of the 
appearance of aperiodic motions in more general cases. 

From the general form of the solution (26) it follows 
that the aperiodic motions correspond to the case when 
the polynomial P4 (~) has at least two coinciding real 
roots I ~ I :s 1. Indeed, in this case the integral (26) 
diverges if the value of such root lies inside the integra
tion interval. This means that rotation of the vector m 
through the corresponding angle e will occur after an 
infinitely long time, meaning that the nuclear magneti
zation approaches asymptotically a certain limiting 
direction 3) . 

The physical cause of the possible realization of the 
aperiodic motion is the following. As seen from the 
system (7), the role of the pulling reduces to the fact 
that when the vector m moves a change takes place in 
the z-projection of the effective field (together with the 
change of mz) in which this motion takes place. It may 
turn out that the trajectory of m assumes a direction 
that is parallel (or antiparallel) to the effective-field 
vector. Then 

(40) 

and the vector m will approach the indicated direction 
asymptotically. It can be shown that the requirement 
(40) and the conditions for the multiplicity of the real 
roots ofthe polynomial P 4 (0 are equivalent. 

Let us find the relations that must be satisfied by 
the parameters ~W, WI, and W in order for the mo
tion to be aperiodic, if it again begins from the equili
brium position m II z (cos eo == 1). In this case 

P,(!;) = (1- ~)P,(y); (41) 
P,(y) =y'-3py-2q, y=1-s-'/,fl, 

q = 'I" (-fl' - 9fl8' + 27r.'); (42) 

-38' + ~' (tioo ) 
p= 9 ,~=2 1-- . 

• Wp 

If we disregard the trivial case when the roots of P 4 (~ ) 
coincide (namely, the roots cos e == 1), which is 
realized when WI == 0, then the multiple roots of inter
est to us should be the roots of the polynomial P 3( y). 
The condition for the coincidence of the two real roots 
of such a polynomial, as is well known, is the equality 
p3 == q2, which, taking (42) into account, takes the form 

8' + (2fl' - 18fl + 27) e' + fl' (fl- 2) = o. (43) 

This relation is satiSfied at real € if 

O";;;fl,,;;;'I,. (44) 

The values of €2 corresponding to these values of (3 
are determined by (43) and are represented by curve a 
in Fig. 2. The solution (26) under the condition (43) can 
be written in the form 

J dx 

(x - urn) [x('I, II + 2q'h - x) P' 
o . 

oop 
-t 

2 ' 
(45) 

where u == 1 - cos e and um == 2(3/3 == q1/3. The relation 
Um == 1 - cos em determines the limiting value of the 
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FIG. 2. Plots representing the para
meter € = 2wI/wp(a), the limiting deflec-
tion angie Om (b), and the effective time 
T (c) during which the limiting angie Om 
is reached, as functions of the parameter 
f3 = 2(l-6W/Wp) for aperiodic motion of 
the nuclear magnetization. 

angle e as t - "". The dependence of cos em on the 
parameter (3 is shown by curve d of Fig. 2. 

The integral in formula (45) can be easily calculated, 
and the result is as follows: 

U = Urn (eli + -1) / ( eh + + a) , 
where a = (2um - f3)/( Um - (3) and the parameter 

't= ['/,w;l'u m (2fl-3um »)-' 

(46) 

(47) 

has the meaning of the effective time after which the 
limiting angle em is actually reached. Such a parame
ter can be introduced, since, according to (46), u - um 
exponentially when t » r . 

The possible values of r as functions of (3 are 
shown in Fig. 2 by curve c. For (3 « 1 we have ap
proximately from (47), taking (42) into account,4) 

1 (28) 'I, 1 
't""---=-<-. 

00, '1'3 00, 

Here 1 cos em i'::! 13 (3 i'::! 12 (2€ ):1/3. With increasing (3 
(and accordingly E), the time r increases, and at 
(3 == 2( € = 1) it reaches in accordance with (31) the value 
1/WI' Simultaneously, the formula (46) goes over into 
(31). The time r approaches infinity as (3 - %, mean
ing a transition from an exponential law to a power law. 
Indeed, by calculating in (46) the limit as {3 - %, cor
responding to (2{3 - 3um ) - 0 we get 

3 oo,'t' 
u=----. 

2 w,'t'+3 

6. POSSIBILITY OF INCREASING THE NMR 
INTENSITY BY FREQUENCY MODULATING 
THE RESONANCE-FREQUENCY FIELD 

According to (39), we cannot obtain large changes of 
the angle e at sufficiently low values of the ratio 
€ == 2WI/Wp, even if the frequency of the resonance
frequency field coincided with the NMR frequency at the 
initial instant of time. This case corresponds precisely 
to the experimental situation in[6]. Since the variation 
of the angle e under the influence of the resonance
frequency pulses governs the intensity of the echo sig
nals [9], the question arises whether the variation of this 
angle can be increased by modulating the frequency of 
the resonance-frequency field. Indeed, were it possible 
to vary the frequency of the resonance-frequency field 
so as to keep it resonance on any section of the trajec
tory of the vector m, then it would be possible to obtain 
any change of the angle e. The practical realization of 
such a possibility depends, however, on two circum
stances: first, on whether the indicated resonance con-
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ditions can be realized for the entire volume of the 
sample, and second on the complexity of such a modula
tion. 

Let us assume first an inhomogeneous broadening 
15n « W l' Then, as follows from (7) or from (23) and 
(24), the law governing the modulation and determined 
by the condition for resonance at all the points of the 
trajectory of motion m, is given by 

<il(t) =(U. - w.cos6(t), (48) 

where the function cos () (t) should satisfy the system 
(23, 24). When the conditions (48) is satisfied, this sys
tem describes the precession of the vector m about the 
x axis with frequency W 1, 

(49) 

where the quantities a and () 0 are given by the initial 
conditions . 

We can now assess the modulation needed for the 
frequency w in order to maximize the intensity of a 
two-pulse echo Signal. To this end, as is well known(9 j , 

it is necessary that the first pulse be as close as possi
ble to 90°, and the second to 180°. Before the first pulse, 
the vector m was in equilibrium, Le., it was oriented 
along the z axis. For such initial conditions we have 
from (48) () = w 1t. Thus, the first pulse will be a 90° 
pulse for all nuclear spins, if the frequency of the reso
nant-frequency field varies like 

(50) 

and the pulse duration is t1 = 1T/2w 1. 

The analysis of the second pulse is a more compli
cated task. The point is that in the interval between the 
pulses the transverse component of m decays because 
of the inhomogeneity of the NMR frequency in different 
points of the sample. In other words, the vector m be
comes essentially inhomogeneous over the sample. Yet 
Eqs. (7), on which the entire analysis was based, were 
obtained under the assumption that m is homogeneous. 

It is easy to see that the role played by pulling dur
ing the time of the second pulse depends strongly on the 
ratio of the spatial scale of the inhomogeneity of m to 
the radius of the Suhl-Nakamura interaction. We shall 
demonstrate this using a ferromagnet as an example and 
writing for this purpose one of the equations of the sys
tem (4) (e.g., the first), without assuming that m is 
homogeneous: 

rhx(r) = w.m,(r) - Ynt')h,m, (r) - y.A'm, (r) S x(r - r;) m,(r') dr'. (51) 

Here 
X (r - r') = y~o L 00_- 1 eik (.-.') 

k 

is the local electronic magnetic susceptiuility with re
spect to the homogeneous field, such that the integral 

S x(r-r')dr' =X.L =x==x,,=yMo/wo (52) 

gi ves the total susceptibility (per unit volume) in a 
homogeneous field. As seen from (51), X(r - r') is 
Simultaneously the kernel of the Suhl-Nakamura inter
action. 

We can now separate two cases by introducing the 
characteristic scale ro = v//3 , which is the linear 
dimension of the minimal region within which the aver
age value of the transverse component of m (at the 
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instant when the second pulse is turned on) vanishes, 
Le., 

Smx(r)dr= S m,(r)dr=O. (53) 

Let ro« rSN, where rSN is the radius of the Suhl
Nakamura interaction. In this case x(r - r') can be 
approximately regarded as constant over distances of 
the order of ro, so that the integral in the right-hand 
side of (51) vanishes by virtue of (53). This means that 
the nuclear spins will move just as if there were no 
pulling. Thus, at ro« rSN the second pulse will be 
180° for all spins at a constant frequency of the reso
nance-frequency field w = wn and at a pulse duration 
t2 = 1T/W1. 

In the other limiting case r » rSN, the quantity 
my( r') can be regarded as constant in a region with 
dimensions of the order of rSN and taken outside the 
integral sign in (51). Then, taking (52) into account, we 
obtain an equation that coincides exactly with the first 
equation in (4). Then the problem of the motion of the 
nuclear spins during the time of the second pulse again 
reduces to the system (7). The initial value of the angle 
() 0 can then be regarded the same for all spins ( () 0 

= 1T/2), whereas the initial angle CPo can assume all 
values from 0 to 21T. In this case we can attempt to off
set the action of the pulling, which leads to a deviation 
from resonance, just as in the time of the first pulse, 
by frequency-modulating the resonance-frequency field 
in accordance with (49). The constant a in this case, 
however, depends on the initial value of the angle cP, 
namely a = sin CPo. Therefore the frequency modulation 
necessary for the resonance should be given by 

(54) 

meaning that the resonance conditions cannot be simul
taneously satisfied for all points of the sample (since 
they correspond to different angles CPo). It can be as
sumed, however, that in the case of a modulation in ac
cordance with (54) the resonance conditions are approx
imately satisfied not for some particular concrete 
value of CPo, but for a certain angle interval 15cp defined 
by the inequality 

&00 < WI, 600 = (u. [sin (<Po + &<p) - sin <Po], (55) 

where 15w is the maximum frequency deviation for the 
indicated interval of the angles 15CP in comparison with 
its exact resonant value (54). 

It is easy to show that, at a given value of the detun
ing (satisfying the inequality (55», the interval 15cp will 
be the largest for the angles CPo = ±1T/2. For these 
values we have 

. , B<p 16w I 
Slfi-=--. 

2 2m. 
(56) 

In accordance with (54) and (55), the equality (56) means 
that in the case of frequency modulation of the type 

w(t) =w.±w.sinw.t 

some of the nuclear spins, for which CPo lies in the 
angle interval 15cp satisfying the inequality 

I · 6cp I (WI) 'I. 
Slfi- < --

2 2w. 
(57) 

(near CPo = ±1T/2), are apprOximately at resonance with 
the resonance-frequency field over the entire trajectory 
of its motion even at W1« wp' At € ~ 0.1, for example, 
approximately 10% of all the nuclear spins satisfy the 
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condition (57), and consequently contribute to the echo
signal intensity. For these spins, the duration of the 
1800 pulse is, as usual, 

t, = 1t / Wt. 

As noted above, the foregoing estimates are valid 
only if the inhomogeneous broadening is on « WI. When 
on > WI a contribution to the intensity of the echo signal 
is made only that fraction of the spins for which the in
homogeneous broadening is smaller than WI. 

The authors thank M. P. Petrov and B. S. Dumesh 
for a discussion and for useful remarks. 

t)We make here the important assumption that the magnetic sublattices 
are strictly equivalent. 

2)l.e., after a transformation of the type 

mixt = mixt, cos wt - milll' sin rot, 

milli = miVi' cos wt + mixj' sin rot 

(we then omit the primes). 
3)U must be borne in mind, however, that actually there is always a cer

tain spread lin of the NMR frequency for different sections of the 
sample. We can therefore speak of aperiodic motion only in a time in
terval not larger than li t = (lin r t . 

4)The formula is valid, accurate to 10%, up to the value {3 = I. 
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