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The electromagnetic properties of a multicomponent charged Fermi liquid in a stationary 
magnetic field are considered. The dielectric-constant tensor is derived and used to ana­
lyze the effect of Fermi-liquid interaction on excitation spectra and polarization. The pos­
sibility in principle of determining the zero and first expansion coefficients of the Landau 
function is mentioned. 

1. An analysis of the properties of a one-component 
charged Fermi liquid shows (see, for example, the re­
views[I,Z]) that an interelectron correlation should be­
come effectively manifest at frequencies w on the 
order of the cyclotron frequency 0 and at perturbation 
phase velocities comparable with the velocity vF of the 
quasiparticles on the Fermi surface (we do not concern 
ourselves here with spin waves). Under the experi­
mental conditions, however, in view of the inequality 
w ~ 0 « kc «wp, where wp is the electron Langmuir 
("plasma") frequency, the current and charge densities 
of the electromagnetic perturbations vanish. This 
eliminates from the cyclotron-wave theory the most 
important zeroth and firth coefficients Ao and Al of the 
expansion of the functional kernel (/i(p, p') of the 
Fermi -liquid theory. As a result, experiments in the 
long-wave region make it possible to determine only the 
second and higher coefficients, which are small in mag­
nitude; for example, Az = -0.03 for potassium. 

As to the coefficient AI, it can be determined im 
principle from experiments on cyclotron resonance in 
the short-wave region kR ~ 30, where R = vF /0, but 
the corresponding effects are small and are not ob­
served in experiment[3]. One can also attempt to obtain 
the first coefficient Ao and Al from experiments in the 
optical region[4-7], but this is a rather complicated 
matter. In addition, the high-frequency coefficients 
(w » wD, where WD is the Debye frequency) obtained 
in this manner, may generally speaking differ from the 
low-frequency coefficients that appear in cyclotron 
resonance [1,7]. 

A different situation develops in a multicomponent 
liquid, for while the summary current denSity and 
charge may be small in this case, the currents and 
charges of the individual components can nevertheless 
be appreci.l!-ble. As a result, even the "zeroth" coef­
ficients A~J begin to playa noticeable role in the low­
frequency region W « wp even in the absence of a mag­
netic field[8]. As will be shown below, an experimental 
investigation of the oscillations and waves in a multi­
component liquid in a magnetic field could afford new 
possibilities for the determination of the Fermi-liquid 
coefficients Ao and Al (as well as the higher-order co­
efficients), both for interparticle correlations within a 
single component and for the interaction between them. 

It should be borne in mind that in the analysis of 
concrete experimental data it is necessary to take into 
account the symmetry of the crystal and the shape of 
the Fermi surface. Therefore, in the general case, 
especially in the presence of sections with open Fermi 
surface, the theoretical analysis must take anisotropy 
effects into account. Among the materials dealt with in 
the case of a multicomponent Fermi liquid are metals 
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with several conduction bands, for example, transition­
group metals, semimetals, and degenerate semiconduc­
tors. Also included is the "electron-hole condensate ,,[9] 

produced in semiconductors at low temperatures under 
the conditions of intense illumination. 

The question of the shape of the Fermi surface of 
transition metals is still undecided, and all the available 
calculations are carried out in the isotropic-effective­
mass approximation [10]. With respect to other materials, 
one can speak with assurance only of anisotropy. Even 
for these, however, by virtue of various factors (for 
example, the chOice of the direction of the magnetic 
field), an effective contribution to the conductivity can 
be made by Fermi-surface sections with isotropiC dis­
persion. In this case the anisotropy is imitated by the 
difference between the density of states, and in a num­
ber of cases one can confine oneself to the isotropic 
model, thereby greatly simplifying the analysis and 
making it possible to obtain clearer physical results. 

We consider in this paper a two-component charged 
Fermi-liquid in a constant magnetic field. The carrier 
dispersion is assumed to be isotropic and in general 
non-quadratic. By solving the system of kinetic equa­
tions we obtain the dielectric tensor of the two-com­
ponent liquid. In the long-wave limit kR« 1 we obtain 
the spectrum of the cyclotron and hydrodynamic waves, 
helicons, etc., and analyze in detail the role of the 
liquid interaction. 

2. The system of linearized quasiclassical kinetic 
equations for the deviation of the spin-symmetrical part 
of the distribution function /ifi ( p, r, t) from the equili­
brium function fiO( p) takes the following form (cf. [8]): 

a (a e, a ) ( iJt") at" . -6/,+ v,-+-[v,xB]- lit,--6e, + e,Ev,-= I.,', at ar, c ap, a8, a8, 
I • ( at.,) ,,=-v, lit.--li8, . a8, (1 ) 

Here i is the index of the component, Vi = aEOi /api> the 
collisions are taken into account phenomenologically by 
introducing the collision frequencies IIi, and the energy 
correction necessitated by the interaction with all the 
components j of the liquid is written in the form 

lie, (p" r; t) = J dpjq>,j(p" Pi) liti(PJ,'; t). (2) 

Separating, as usual, the energy dependence /if 
= -(afo/aE)g from /if we can then expand the functions 
g and (/iij in eigenfunctions in accordance with the sym­
metry of the crystal and the shape of the Fermi surface, 
and obtain with the aid of (1) a system of equations for 
the expansion coefficients. 

We confine ourselves here to a two-component iso­
tropic Fermi liqUid, assuming the equilibrium distribu-
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tion fQi(Pi) to be spherically symmetrical. Then, ex­
panding g in spherical functions and f{Jij in Legendre 
polynomials 

ZJqJ,;(p"p;)= .E (21 +1) AiiP, (cos x), Z;= J dp; (- ;:;) , (3) 

we can obtain an expansion of OEOi in spherical functions 

(4) 
I,m 

Finally, integrating the system (1) with respect to f{J 
and taking the periodicity .condition into account, we ob­
tain for the coefficients gi in a spherical coordinate 
system the following system of equations : 

~[A··) .. 'm i .'m (5) ..:... (c5'; +/J 6ll ,c5mm , - A,,'J!\>"m' (I) ]gl'm' = a}'v,,_.(i)E., i, j = a,~. 
l'rn' 

In the derivation of (5), the time and space dependences 
of the functions g were chosen in the form exp{-iwt 
+ ik . r }, the z axis is directed along the constant mag­
netic field Bo, the y axis is perpendicular to the 
(k, Bo) plane, and we have introduced the notation 

where In(kIvIi/ni)is a Bessel function of order n, 
@lm( 9) is an associated Legendre polynomial normal­
ized to unity, aa = ~lTieavalWQ:' wa = w + iVa, na 
= eaBoVFa/CPFa, kll, VII and kl, VI are the components 
of the vectors along and across the magnetic field. We 
note also that in the spherical system bz = bo, b±l 
= (bx ± iby)/I2; in particular, the velocity components 
are v/l = VF" "!a1TYl/l, /l = 0, ±1. 

For the problem of calculating the current and the 
dielectric c9nstant, which is of interest to us, the six 
quantities gl/l (i = a, (3) are sufficient, since, e.g., the 

current is given by 

We consider the introduction of wp in place of 1-i 
useful in view of the already noted possible difference 
between the liquid coefficients in the low- and high­
frequency regions. It is important that the drag flOW[ll] 

in a two-component liqUid leads to an "entanglement" 
of the components in the total current. Therefore, to 
separate the current of an individual component a it is 
necessary to vary the total current with respect to ga, 
so that 

jO" = (c5j,jc5g,"-.) g,"-•. (8 ) 

A "coupling" of the components occurs also in the con­
tinuity equation, as can be easily verified by integrating 
the kinetic equation with respect to the momentum. 

We note also that for systems having translational 
invariance we can find the connection between the 
''bare'' crystal mass IDa and the effective mass m~, 
the difference between which is due to the liquid effects: 

m.· = m.(1 + A/· + (v, / Ii.)A,·'). 

The presence of the second component exerts a direct 
influence on the effective mass (cf. [12,131). 

3. If we break up the infinitive system (5), putting 
Al = ° for 1 > lmax, then the solution for gl/l, as in 
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(9 ) 

the case of a one-component liquid[14], it can be written 
in the form 

(10) 

Here aall is the determinant obtained from the deter­
minant a of the system by substituting the right-side of 
the system (5) in the corresponding column and dividing 
by the factor aa. As a result, the conductivity tensor 
takes the form 

• ~ (a.) 

(a) zra, L\"v 
O'II'V =----. 

4nw. L1 
(11) 

In a two-component system, as indicated in the intro­
duction, the liqUid interaction becomes manifest al­
ready when the coefficients Ao and A1 are taken into 
account. To reveal most clearly the role of the second 
component, we confine ourselves to excitations with 
lmax = 1, i.e., to precisely those modes for which the 
correlation effects hardly appear in a one-component 
medium. In the considered model with lmax = 1, it is 
expedient to eliminate from the system (5) the quantities 
goo by using the continuitf equation and the properties 
of the coefficients Ni~, 141. Then the system (5) can 

be written in the form 

L: [ (6.; + A,·;) c5., - A,·W,;"(j) ]g,,; - k,k,N .. '" (a) [A,·' (A,"'q.,g,,· 
, 

+ A,"·qaag,J) + ~AO";(1 + A,·') q.,g,,; ] = a.N"'·(a)E_,, (12) 

j =a, ~ 

(and an analogous equation with the substitution a:;::": (3). 
Here qa{3 = vFaVF{3(3waw{3f\ summation over the 
tensor indices II and A is implied, and the sums over 
the components are written out in explicit form. 

Since the system (12) corresponds to a sixth-order 
determinant, the conductivity tensor (11) (as well as the 
dispersion equation) is quite complicated in form. We 
confine ourselves therefore to the so-called "direct 
waves", which propagate strictly along or across the 
external magnetic field, writing out for this purpose the 
corresponding determinants in the cases k II Bo and 
k I Bo• 

For a wave propagating along the magnetic field, k/l 
= M/lO, kl = 0, kll = k, and the determinant ~ breaks 
up into a product of second-order determinants: 

L1 = L1.L1mL1-m. m = ±1; 

L10 = L·'P· - M·'M'·. L·· = (1 + A,·") (1- Ao"·lj.) - (13) 
- 3A t M.tsc/lla - Ao!1~AIf>aSflSa~llla, 

M·' = A,·'s,s. -, [1 - A,"·lj. - 3sa'lj.] - A,·' (1 + A/') lja, (14) 
L\'7! = Gma.G,/' - Ala.flAtflaYmaVm~' G~a = 1 + Ataayll(l. 

We have introduced here the notation SiJ. = (w - j.Ln) 

(kvf\ iJ. = 0, m, 1] = -1 + (2sf1 In [(s + O/(s -1)], 'YJJ. 
= 1 - Nlj.L. In the case under consideration 

IJJ. 

= 1- (sm' -1)lj(sm), Q = mQ = ±Q, 8=So. 

The determinants ~j.L1I are similarly transformed: 

,6.00 (a) = AooCtLl.m6._m, 6. mm (a} = 3.mma L\o6._m , (15) 
x • _ 3 ' [ L.' e, Ma' ] noo - Sa 'fla - --;: llf> , 

limm• = (1 - 'I'm") Gm' - C.,Ym .(1- y,.')A,·', C., = a,a. -'. 

Formulas (13)-(15) together with (11) determine the 
conductivity tensor Uj.LII' and also the dielectric tensor 
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EIlV = 1 + 41TialJ.v/w, We note that the component Eoo 

does not depend on the magnetic field, and cOincides 
with the corresponding expression (2) of[8] as Al - O. 

In the case of transverse propagation we have kll = 0, 
k = kl, and a similar separation of the determinants 
takes place: 

lioo" = (1- yo") Go' - C,,~,"'yo"(1-y"). 
AH = G "G' - A "'A '"y "y' 

limm" = (1 - Ym") (Gm' -.: Q:') - C~,(1'- ~"") (A."'Ym" - Ro"). 

Q." = '/2 k'(1-y.") [Ao""(1 + A,"")q"" + A o"'A,'''q",), (17) 
R: = '/2k'(1-y:) [Ao"'(1 + A,")q", + Ao""A,"'q""l. IL = O. m. 

Am = (Gm" - Qm") (Gm' - Qm') - (A,"'Ym" -Rm") (A/"Ym' -Rm'). 

As to the determinant A (+), it can be represented in the 
form A (+) = AmA-m - AmmA~m' In the long-wave 
limit kR « 1, to which we shall henceforth confine our­
selves, the product A -m A ~ turns out to be of the 
order of (kR)4 (Cf. [14 ]), and will be omitted. In this case 
we obtain 

AI+I =,L\m,A-m. (18) 
yo = -k'v'[5(OO'.:..... Q') ]-'. 

1- Ym =~{1 + 2k'v' [(00 - Q)' - g,]-,}. 
OO-Q 5 

Formulas (11) and (16)-(18)determine the tensor alJ.V 
in the case of transverse propagation. 

4. We turn to the analysis of the dispersion equation 

Ic'(k.k. - k'~ •• ) - oo'e-.(oo. k) 1= 0 (19 ) 

in the low-frequency region wp » k2 c 2 » w2 , and pay 
particular attention to the determination of the conditions 
under which correlation effects should appear. As indi­
cated above, we confine ourselves only to direct waves. 

In the case of longitudinal propagation for the mode 
with IJ. = 0, the dispersion equation coincides with the 
corresponding equation of a two-component Fermi 
liquid in the absence of a magnetic field[8]. At the indi­
cated polarization, as shown earlier, waves of the 
acoustic type can propagate in the liquid in the region 
W « wp. With the aid of (13)-(15) we !!fln generalize the 
results of[8], taking the coefficients A~J into account in 
the dispersion equation. 

For a circularly-polarized wave with m = ±1 in the 
frequency region W ~ 0 « wp, Eq. (19) in accordance 
with the results of the preceding section, can be written 
in the form 

00(1+P.');· limm• +k'c'=O. p.'!., ""'!,,,. (20) 
00. Am 

In a single-component degenerate gas, there can 
propagate under the considered conditions a low-fre­
quency mode (helicon) with W « 0, and in a liquid, when 
the coefficient A2 is taken into account, there can propa­
gate also a cyclotron wave with w - 0[1,2]. In a two­
component gas there is a low-frequency branch (a 
helicon), and also a hydrodynamiC wave. In addition, 
there exists a wave with circular polarization opposite 
to the helicon polarization and with a frequency that de­
pends, if the charge components have opposite Signs, 
eae{3 > 0, on the degree of its compensation, W - 0(IlQ! 
- n{3) (na + n{3f1[15,16] (see also[17]). A similar wave 
with frequency W - 0 exists, as is shown below, also 
for components with eae{3 > O. The reason why a wave 
with frequency W - 0 can propagate in a two-component 
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medium along an external magnetic field is that its fre­
quency is shifted relative to the cyclotron-frequency 
components Oa and 0 (3, as a result of which there may 
be no collisionless damping for the degenerate carriers 
in the long-wave limit, under certain conditions, In a 
liquid, the indicated wave has certain characteristic 
features which we shall examine in greater detail. 

In a liquid, the dispersion equation (20), neglecting 
dispersion, takes the following form (v - 0): 

(r' + k'c'),oo' - oo[F + k'c' (6" + Q,) ] + k'C'Q"Q,K = 0; (21 ) 
F= (1 + PO') F •• F.=~.(Q,-C".Q.A,"'). Q.=Q.(1+A,""), 

r=;·,,+r •• K=1-A,o·A .. •• A,"·=A,·'(1+A,·O)-'. (22) 

The solution becomes particularly simple if the 
following inequality is satisfied 

IFI >k'c'IQI· 

In this case we obtain for a helicon 

where VI = (vaPavclna + v{3P{3v~~{3)(naPavCi 
+ npp{3v~lf\ and there is no Landau damping. The 
second solution of (21) can be expressed in the form 

(23) 

(24) 

(Om = WOrn + L\(i)m, 'WOrn = F;-t - iV2, (25) 

Aoo .. = k'c'r' [ (n. + 11,) - F;-' - Q.Q,ltP-']. (26) 

where V2 = (vaPavCin{3 + v{3p{3v~~)(naPavQ1 
+ n{3p{3v{lT1. 

As follows from (25), the difference (\ wm - Oa \) 
turns out to be of the order of na (na + nJ3p \ 0 (j - Oa \. 
Therefore, in the case of compounds of comparable con­
centration with different signs of the charge, when \ wm 
- Oa \ - 0, there is actually no Landau damping in the 
entire long-wave region kR « 1 if the inequality (23) is 
satisfied. For carriers with eae{3 > 0 in the case of 
close cyclotron frequenCies, the conditions \ Wm - Oa I 
> kVa for the absence of damping are more stringent. 

Actually, in metals it is precisely the case (23) 
which is of interest, for otherwise strong collisionless 
damping appears. In semimetals and semiconductors, 
there is a region of applicability also for the general 
solutions of Eq. (21), limited only by the condition kR 
«1. 

For components with carriers of the same sign, and 
also in the case of "differently-charged" components in 
the absence of compensation, Eq. (25) is the high-fre­
quency branch with Wo - 0 and Aw « Woo The correla­
tion effects under these condjtions lead to a frequency 
shift Aw proportional to OA~J, the expression for which 
becomes particularly Simple in the linear approximation 
in AI: 

Wom = (00 + /)00 - iv,. 00, = Ol'm(A, =0) = ±(Z.Q, + Z,Q.). (27) 
&l = ±(1 + P·')Z.[A," - (v,1 v.)A,·'] ± 

±ZaA,·' (v, I v.) (Q, - e,e. -'Q.) (1- e"e,-'); Z. = Z.v.'(Z.v.' + Z,v,')-'. 

Under the same conditions we have for helicons 

Ol'h:'600 = -A,·'Z.v.v,cB.-'(Q, - e. -'e,Qa) (1- e.e.-') 
x (Z"v"p"e. + Z,v,p,e,)-'. 

Oloh= Olh(A, =0). 
(28) 

Under conditions close to compensation, ZavaPaea 
+ Z{3v{3P~{3 ~ 0, the high-frequency branch in the limit 
of small k and in the absence of correlation effects 
vanishes. In a liquid, condition (23) can still be satis-
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fied, so that the threshold frequency wOrn differs from 
zero and takes the following form (Af« 1): 

The existence of a wave (29) is due entirely to the 
correlation effects. The frequency wOrn is smaller than 
0, but can still be large in comparison with wh and 
proportional to the liquid coefficients, WOrn ~ OACf {3. 
The coefficients Al could be estimated by determining 
from experiment the frequencies WOrn and the polariza­
tion of the wave under compensation conditions, and 
also by determining the threshold for the appearance 
(vanishing of the high frequency mode F ~ 0 as k - 0, 
if it is possible to vary the carrier density. One of the 
examples of a compensated sample may be an even 
metal. 

The liquid interaction can also lead to another effect, 
namely the change of the polarization of the waves (for 
example, from left-hand polarization in the absence of 
correlation to right-hand polarization), this being con­
nected with the possible reversal of the sign of the 
function F in (24) and (25). Neglecting the coefficients 
AI, the function F is proportional to the difference Ila 
- n{3, and its sign (and the polarization of the wave) is 
determined completely by the sign of this difference, 
which can be obtained for example, from experiments 
on the Hall effect. Allowance for correlation effects can 
lead to a reversal of the sign of the function F, which 
is easiest to realize in principle under conditions close 
to compensation. In this case, in the approximation 
linear in AI, we obtain the following system of inequali­
ties corresponding to the reversal of the sign of F as a 
result of the correlation effects: 

IZ.v.p. - z,v,p, I < 2z.IA,·'(p.v, - p,u,,) I, (30) 

A,·' (Z.u.P. - Z,V,h) (p,v. - P.v,) > o. 

The indicated effect, according to (30), exists at any 
sign of the coefficient Al and under sufficiently relaxed 
restrictions on its· magnitude, which is particularly 
clearly seen in the case of a quadratic dispersion law 

A<"'lwfin > 0, 2 IA,·'fiv In. > v.lL'inl; fin = n. - np, ilv = v. - vp, 

(The conditions for the change of the polarization of the 
helicon have the same form, since K is positive by 
virtue of the stability conditions.) 

Thus, by observing experimentally, in the considered 
frequency region, the propagation of a wave whose 
polarization does not correspond to the sign of the dif­
ference Ila - n{3, we can detect an appreciable influence 
of liquid effects. Then, by determining the cyclotron 
frequencies and the Fermi velocity, for example from 
cyclotron-resonance experiments, experiments on the 
de Haas-van Alphen effect, etc. (see. for example,[lB]), 
we can obtain the signs of the coefficients Al and esti­
mate their values. 

The dispersion correction Aw ~ k 2c 2r -10, deter­
mined by formula (26), takes place for semimetals and 
semiconductors. At metal densities, a more important 
role is played by allowance for spatial dispersion, 
which leads under at kR « 1 to the following results: 

L'i(j)m = -(1 + P·P)r.(5')-'[ (wo m - Q,)S.m -, - WOmS'm -'A," (31) 
+ C.pA,·' (Q.sPm -, +WomS.m -') ]. 

We note, finally, that a solution of the type (25) 
exists when the inequality (23) is satisfied; in the op-
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posite limit, a hydrodynamic wave can propagate with 

(32) 

We turn to the case of propagation of a wave per­
pendicular to the magnetic field. The dispersion equa­
tion for the ordinary wave (j.L = 0, odd mode) takes the 
form 0"00 = 0, i.e., 

(33) 

In the long-wave limit, accurate to terms (kR) and 
under the conditions \ 0& - 0 ~ \ » k~2, Af « 1, we ob­
tain the solution 

W,' = go' - '1,(kv.)'Ijl., w,' = pO'w,,, (34) 
"'. = Z.[1 + (v,1 v.)A,·'(e,e,-'-l)]-

-Z.'[A,'· + 2 (v, I v.)A,·'] - Z, (A,·· + A,"). 

In the case of close frequenCies, l/Jl is replaced by 
(l/Ja + l/J (3)/2. The correlation effects are manifest by the 
small dispersion terms ~k2 and can lead to a reversal 
of the sign of the function l/J. 

The dispersion equation for the extraordinary wave 
(m = ±1, even mode) 

- r ~ • 
w(l+P·')-· ~+k'c'=O 

Wa, ~m 

neglecting the dispersion, kR - 0, can be written as 
follows (II - 0): 

(35) 

r(r + k'c')w' - F' - k'c'[F(Q. + (~,) - ~Q.Q,] = O. (36) 

In the region of cyclotron frequencies w::., 0, there 
is a solution WOrn which coincides in form with (25). 
An additional analysis shows that in a liquid, as in a 
gas[15-17], there is actually one wave with frequency 
WOrn, which does not depend on the propagation direc­
tion. The dependence on the angle between k and Bo 
becomes manifest only in the dispersion law (and in the 
absence of collisionless damping at k 1 Bo). When 
k II B o, the wave is circularly polarized; if the in­
equality (23) is satisfied, the circular polarization is 
approximately preserved also at k 1 Bo. 

Just as in the case of longitudinal propagation, the 
influence of liquid effects comes into play most dis­
tinctly when carriers of opposite sign cancel each other. 
In the absence of correlation effects we have W « 0 
under these conditions, and magnetic sound propagates 
in the medium. In a liqUid we have in this case, too, a 
high-frequency branch whose frequency is determined 
by (29). 

Finally, in the low-frequency region W «0, when 
the condition \ F \ «k2c 2\ 0 \ is satisfied, magnetic 
sound can propagate in the liquid. Its spectrum, neglect­
ing dispersion, is determined by the same formula (32) 
as the spectrum of magnetohydrodynamic waves propa­
gating along an external field Bo. The dissipation is due 
to collisions. The liquid interaction renormalizes the 
Alfven velocity and leads to a frequency shift ow, given 
in the linear approximation in Al by 

Wo -'6w = 'I, (Z.A," + Z,A,·· - 2Z.A,·' ~~). '(37) 

Here Wo is determined by formula (32) in the limit as 
Al - O. 

An analysiS of the terms with dispersion ~(kR)2 for. 
cyclotron waves under the considered polarization is of 
interest, since it makes it possible to draw conclusions 
concerning the sign and magnitude of the zero-order 
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coefficients, which can play an appreciable role in this 
case. 

In a liquid, neglecting the coefficients AI, we have 

drom = -(1 +p.')Z. [ 2(kv.)'(room-mQ,) (kv,)' AD.']' (38) 
, 5roDm(roDm - 2mQ.) 6roDm _ 

The quantity A~{3 is determined by the relation A~f3 
- AfJf3 -lAaf3 
- 0 - e~a 0 • 

A simple result that reveals the role of correlation 
effects is obtained in the case of carriers of like charge 
with close cyclotron frequencies (for example, two 
types of electrons): 

ro=±Q± (6Q)-'(1+P·')Z.(kv,)'j.o"'-iv" (39) 

and also near the cyclotron frequency of one of the com­
ponents at a large density of states of the other, 
Zf3v~ » Zav~, w - na: 

ro = ±Q. ± z.v.'(Z,v,')-' (Q, - Q.) ± (6Q.)-'(kv.)'AD'· - iv,. (40) 

Thus, as follows from the foregoing results, an in­
vestigation of the electromagnetic properties (particu­
larly the oscillation spectrum) of a multicomponent 
Fermi liquid offers definite possibilities for the deter­
mination of the zeroth and first coefficients of the liquid 
interaction. The correlation effects lead to a shift of 
the lines, as shown for example by formulas (27), (28), 
and (37), to a change in the dispersion law and in the 
propagation velocity (see formulas (26), (31), and (37)­
(40), and also to a change in the polarization of the wave 
if the conditions (30) are satisfied. Interesting results 
are obtained in the case of equal densities of carriers 
of opposite signs, for example the theory indicates that 
a wave due to the liqUid interaction can become excited 
(see (29)). 

Just as in a one-component liquid[1,2), all these ef­
fects can be observed experimentally only if the dissi­
pation is low enough. If the dissipation, as above, is due 
to collisions, then the necessary condition can be writ­
ten in the form I nAzi » v. At A - 10-1 and n - 1011_ 

1012 sec-I, we obtain for the collision frequency the 
quantity v « 1010 - lOll sec-I. The frequencies v - 109 

sec -1 can be obtained in sufficiently pure metals and 
semiconductors at low temperatures. Therefore, for 
example, an analysis of the experimental data on cyclo­
tron waves in a two-component liquid under favorable 
conditions would make it possible to reconstruct the 
zeroth and first coefficients of the expansion of the 
Landau function. The determination of the zeroth coef­
ficient At) together with the two coefficients of ex~­
sion of the spin part of the correlation functions B~J[19) 
would make it possible to reconstruct, with the aid of 
relations th~~ foHow from the sum rule [20), all six co­
efficients A~J, B~J, i.e., that part of the Landau function 
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which depends only on the Fermi energy. One should 
bear in mind here the remarks made above concerning 
the anisotropy effects and the magnitude of the dissipa­
tion. 

In conclusion, the authors thank Y. P. SHin for inter­
est in the work and for useful remaks. 
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