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The flow of a plasma located in a strong external magnetic field Bo around a weak charge 
is considered. The velocity of the charge Va is much greater than the ion thermal veloc
ity but much smaller than the electron thermal velocity and is inclined to the field. Dis
tributions of the electric potential and perturbations of the electron and ion concentrations 
5N along the z axis perpendicular to the (Va, Bo) plane and passing through the charge 
and also distributions for large and small distances from the charge in the (Va, Bo) plane 
are obtained with quadratic accuracy with respect to a small dimensionless charge. The 
angular distribution near the symmetry plane z = 0 has a petal-like structure character
istic of supersonic streamlining. In contrast to the case of an unmagnetized plasma, now 
5Ne .. 5Ni. At distances greatly exceeding the ion Larmor radius Li (I z I .,..,. 4, 
P .,..,. LiVo/vTi) the results hold for any value of the magnetic field. 

1. INTRODUCTION 

The problem of the perturbation of tenuous plasma in 
a magnetic field of arbitrary intensity, either by a 
rapidly mOving large body with dimension Ro » D, or 
by a pOint-like charge Ro <: e I Q liT « D (-e is the 
electron charge, Q is the charge of the body, T is the 
temperature, and D is the Debye radius of the plasma) 
was considered by Pitaevskil [1] (see also [2]). He ob
tained the Fourier components of the electric potential 
of the plasma (<pq) and of the perturbations of the par
ticle concentration (5Nq ). The inverse Fourier trans
formation reduces to a calculation of very complicated 
multiple integrals. Even in the limit of large distances, 
all that could be obtained were expressions averaged 
over the spatial coordinate z perpendicular to the 
(Va, Bo) plane (see[3]). 

Perturbation of a plasma with a strong magnetic 
field, when the Larmor radius of the ion is much less 
than the characteristic dimension of the problem, Li 
== vTi I wBi « Ro, was considered by one of the 
authors[4] for the case of flow around a large body 
(Ro » D). The perturbations of the particle densities 
and of the electric and magnetic fields in the wake of 
the body were calculated on the basis of the drift 
kinetic equations. 

The drift equations constitute the zeroth approxima
tion in the expansion of the kinetic equation in the small 
parameter ~l/Bo (see, e.g., [4,5]). When such an expan
sion is used, the formulas of Pitaevskil's paper[l] be
come much simpler, and it becomes possible to obtain 
exact (not averaged) expressions for the asymptotic 
forms. 

In the present article we use the drift equations to 
solve the problem of stationary flow around a point 
charge, when 4 « D. Assuming the charge to be weak 

IQ'I=~~<t::~ 
TD Vo Vo 

we calculate by the perturbation method the Fourier 
components of the plasma parameters. The Fourier 
components of the linear approximation can be obtained 
formally from Pitaevskii's formulas[l] by substituting 
Bo = 00, while the quadratic approximation for the case 
of a strong magnetic field was never calculated before. 
From the obtained Fourier components we calculate 
analytically the perturbations of the particle densities 
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and of the field potential for the limiting cases of large 
and small distances. At very large distances it is neces
sary to take into account the approximation quadratic in 
the charge, since the linear expressions fall off more 
rapidly [ll. 

2. THE EQUATIONS 

Assuming vTe » Va, we obtain for the distribution 
function of the electrons in the coordinate system con
nected to the charge, with accuracy ~Vo/VTe, the 
Maxwell-Boltzmann formula 

( m, ) 'J. { m, , e<P} f,(vlI) = No -- exp --VII +- . 
2nT 2T T 

(1 ) 

The drift kinetic equation for the ion distribution func
tion is 

of, e a'll ofi 
(VII - VO.l)- - ---= O. 

ar m i arll aV 11 
(2) 

The elliptic potential of the plasma is determined in 
terms of these distribution functions from the Poisson 
equation 

t;(P = - 4ne J (t, - f,) dVIl - 4nQ6' (r). 

It is necessary to add to (2) and (3) also the boundary 
conditions that express the fact that the plasma is not 
perturbed at infinity: 

/., 00 ~ t: ~ N,(m,/2ltT)'J. 

,xexp{-m.(v ll + VolI )'/2T}, <pI 00 =0. 

(3 ) 

(4) 

Here No is the unperturbed particle concentration, ma 
is the mass of particles of type a, <p is the electric 
potential of the plasma, VII is the velocity component 
parallel to the field Bo, and VOL is the component per
pendicular to Bo. 

Representing the particle distribution in the form 
f = fa + 5f and changing over to the Fourier transform 

6fq = S d"re- iq '6f(r), 

we can write the kinetic equation in the form 

i(q ll v lI -Q.lVol.)6fi,q+ e~q iqll(vlI+VolI)f,'=lq(vlI ), 

() e Sd" -i' a'll obf, 
/q VII =- re q ---, 

m arll aV 11 

(5) 

(6) 

Assuming the charge to be sufficiently weak, we seek 
the solution in the form of an expansion in powers of Q. 
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FIG. I. 

3. SOLUTION. LINEAR APPROXIMATION 

Elementary calculations yield 

(I) 4nQD' 
q>q=~, 

Near zone (e I Q liT « r « D). In this case we can 
put q: » .:l 0 under the radical sign in (9), and therefore 

Q 'n 
q>(I)""-Sd~ .,1 

2n, rZI+ipcos~ 
Q 

(11) r 

Ni(l)""-No.!!!...~T d~ K(~ cos(~+a) ).(12) 
T2n, Izl+ipcos(~+a-a) VTi Icos~1 

The integral in (12) can be calculated for Vo/vTi 
» 1 and z - 0 (near the symmetry plane (Vo, Bo»: 

(I) eQ. (Vo sin a ) Ni "" - 2No-h(sm(a - a) )Re K , 
Tp VTi sin(a - 8) 

h(x)"" {1, x >0, (13) 
0, x<o. 

Since e I Q I lTD « 1, we have the region of applicability 
of the obtained solutions 

f- (I) = _ --=- 4nQD' qu (vu + Vou) f.o 

,.q T Aq qqVU - qVO.l - iO (7) r»eIQIIT. (14) 

N/~)"" r fi~) dvu = - No ~ 4nQD' K (~) 
, T Ao Igurv" 

Far zone (DVolvTi « p < DVolvTi I Q* lin 11/Q* I). 

Here 

A. = D'g' + Ao, Ao = 1 + K(qVo / IgulvTi), 

D = (T /4ne'No)"', VTi = (2TI mi)"', 

1';; 2i 'J 

When the parameter plD in the argument of the expo
nential in (9) is large enough, we can assume q~« .:lo 
in the expression under the radical sign. We then have 
for (I z I D)1I2» p » DVo/vTi ~ain formulas (10), and 

(8) for p » DVo/vTi, P » (I z I D) 2 we get 

K(z)=-w'(z), w(z)=-:=-e-" e"dt. 
2i l'n ioo 

The Kramp function w( z) has been tabulated (see [6] ). 

The function K( z) has neither zeroes nor singularities 
in the upper half-plane. 

The sought values of the potential and of the densities 
are given by the inverse Fourier transforms of (7). We 
consider a cylindrical coordinate system with z axis 
perpendicular to the (Vo, Bo) plane and we measure all 
the angles in this plane in the positive direction (see 
Fig. 1). The argument of the function .:lo in (7) does not 
depend on qz; therefore, integrating with respect to 
dqz, we obtain 

Q 00 'n d~ I I 
q>(I) = 2nD! g, dg , !. (g,' + tlo) 'I. exp{ - -i-(g,' + tl o) 'h 

- iq, ~ cos(~ - a) }, (9 ) 

( Vo cos ~ ) 
Ao "" tlo VTi i I cos (~ - a) I . 

Here ql and p are the projections of Dq and r on the 
(Vo, Bo) plane, respectively. 

Solution on z axis. The integral (9) can be easily 
calculated at p = 0 (on the z axis). In fact, replacing 
the variable f3 by -cos( f3 + a)/cos f3 = t and closing the 
contour of the integration with respect to t in the upper 
half-plane, we can evaluate the integral with respect to 
df3. The integration with respect to dql is elementary. 
As a result we get 

Q {Izl V )]"'} q>(I) =-Reexp __ [1+K(_0 e" , 
Izl D VTi 

N;I) = -No~Re{K(~e") exp (-..!.:!...[ 1 +K(~e")] "')}, 
Tizi VTi D VTi 

(10) 

It is seen from (10) that the potential and the density 
perturbations oscillate, generally speaking, along the 
z axis. For the case Vo/VTi » 1 (as well as for the 
case Vo/vTi «1), the functions cp(l) and N(l) attenuate 
with increasing z long before these oscillations appear. 
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[
'1'(1) ] _ • (DVo ) '[ T$.le ] 

(I) ~-Q -
Nt PVTi NoF, 

[ $F' ] "" h(sin(a - a) )-. -:c:c-(in_a-:-:_ 
1 sm a-a) 

(15) 
X2Im~{[ -1 ] exp(-Izl [HK(t)J"'ID)} 

dt K(t) [1 +K(t)]'/ ' 

t"" -
Vo sin a 
VT, sin(a - 8) 

4. SOLUTION. QUADRATIC APPROXIMATION 

The quadratic approximation is significant only in the 
far zone p > DVo/vTi I Q* lIn 11/Q* I, where it is first 
comparable with the linear approximation, and then be
gins to exceed it. Taking (14) into account for 

VolvT'» 1, gt ~ (DVolvTi)-t, Ig,1 ~ (IQ'ID)-' 

we get from (6) 

'I' (2l = -~Q"ln I ~ I nD'~sin'aK' (~)_1_ 
• e Q' VTi Ig,llvTi ilgu1tl.' 

Ni,~)= No (D'g' + 1)erp~') IT. (16) 

Integrating, in analogy with the procedure described 
above, we finally obtain for p » DVo/vTi,P » (I z I D)l/2, 
I z I » I Q* I D: 

[ 
'1'(') ] ~ Q"ln I-!.I DVo [TIJJ,le] , 
N\') Q PVTi NoF, 

[ $, ] sin' a 
=h(sin(a-8)) 2 "( ) F, sm a-8 

X Im{[ -11~(-lzl[1+K(t»)'/'ID) K'(t)} 
K(t)U [1+ K(t) j''' ' 

N (') = N erp(2) 
" 0 T ' t"" -

Vo sin a 
Vri sin(a - Il) 

(17) 

Generally speaking, the inverse of the Fourier com
ponent Nt:~ (16) contains in addition to (7) also a term 
~a(z/D). A more rigorous calculation [Eq. (16) does 
not hold for large values of qz] leads to a smeared-out 
a-function in Ni 2) of the order of 1/Q* for I z liD 
;: I Q* I. At such values of z, the assumptions of per
turbation theory are violated (Ni 2) turns dut to be close 
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to Q*), and it is necessary to solve a nonlinear prob
lem. This is physically understandable: at small dis
tances r from the charge, the Coulomb potential Q/r 
exceeds the characteristic plasma potential Tie; the 
perturbation cannot be regarded as small. Since the 
plasma particle trajectories far from the charge in a 
strong magnetic field lie in a plane z = const, the 
strong perturbation at small p and z will change the 
flow picture at the same values I z I ~ I Q* I D for all p. 

5. PLOTS AND DISCUSSION OF RESULTS 

Figure 2a shows the angular dependence of the-linear
approximation quantities in the plane I z I ~ I Q* I D in 
the far zone. We consider the case O! = 45°. The curves 
are slightly asymmetrical. Near the axis directed 
along - Vo there is a maximum that is positive for both 
cp(l) and Nil). On the two sides of the axis there are 

J 

r, 

fO 10' If· 

-$ 

-J 

I 

Fl("i. 2. Angular dependences of the perturbation of the ion density 
and of the potential in the far zone (p > DVo/vTf, ~ Q*D. a = 45°, 
VofvTf = 8). 

a) linear approximation (., 
F. = -N, /NoQ·(DVo/pvTj)'. / 

T (DVO)' <1>, = -'I>'" --'-Q' - ; 
e PVTi 

b) quadratic approximation 

(2, / DVo I 1 I / T DVo I 1 I F2=Ni No-Q+zln ~ ,@z=qJ(2) -_Q*21n --
pv", Q e pv,., Q. 

79 Soy. Phys.-JETP, Vol. 37, No.1, July 1973 

negative minima. The entire perturbation is concen
trated in a narrow angle range near the - Vo axis, as 
is typical of supersonic flow. 

In the second approximation (Fig. 2b); the extremal 
values of the perturbation of the ion density and of the 
potential (eledron density) have opposite signs near the 
axis. It is interesting that in general the densities be
come equalized in our problem only in the zeroth ap
proximation. The reason is that the decrease of the per
turbations towards the z axis is exponential. The 
curves of Figs. 2a and 2b for the potential are close to 
those given by Vas 'kOV[3]. The point is that the Fourier 
componE"1ts at qz = 0 (averaged with respect to Z)[3] or 
I qz I « l{l and ql « (LiYo/vTifl (large distances) co
incide in the case of arbitrary Bo[l] with the expres
sions for the strong field (Li «D). The results of the 
averaging, however, must be approached with caution. 
Thus, Yas'kov[3j obtained an (average) perturbation of 
the ion density equal to the electron density, whereas 
the local values of <5N should be unequal. Moreover, 
when averaging over z it turns out that the term with 
the <5 -function (see Sec. 4) is ~ecisi ve. Consequently, in 
the case of a strong field the averaged perturbation of 
the ion density can give a qualitative picture only near 
the plane z = 0 (if it is assumed that the perturbation 
method is applicable for such z), and ceases to hold 
true starting with small distances I z I ~ I Q* I D. 

In conclUSion, the authors are grateful to Ya. L. 
Al'pert for a discussion and to G. D. Komleva and L. Y. 
Lisina for help with the numerical calculations. 
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