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An analogy is drawn between hydrodynamic turbulence and collisionless-plasma turbu
lence at frequencies between the ion and electron cyclotron frequencies, when the ions 
can be assumed to be stationary while the electrons drift in crossed (self-consistent) 
random fields. In this case the system o( equations can be reduced to a single equation 
(for the magnetic field H) which is close in structure to the velocity-field equation. 
The presence of spectral transfer in the region of large wave numbers is successfully 
demonstrated using the closure hypothesis. The pulsation spectrum of the magnetic 
fields is found with the aid of the Kolmogorov hypothesis to be ~k-7/3. A similar situa
tion may obtain in a collision plasma with a strong Hall current and, possibly, in 
metals. The microcurrent power spectrum or, what is the same thing, the pulsation 
spectrum of the electron-velocity field, is derived from the Maxwell equations and the 
spectral dependence of H. 

1. INTRODUCTION 

Strong turbulence develops in the presence of intense 
noise in a plasma, so that to separate out a a-function 
dependence of the spectral function J(k, w) on the fre
quency w no longer makes sense. On the other hand, it 
is often assumed that the fluctuations in the electric 
field are largely potential fluctuations. In the present 
paper we shall consider the inverse situation, Le., the 
other limiting case, when the electric fields are largely 
rotational in nature. In view of the foregoing, it is 
natural to expect that we can trace the analogy between 
such turbulence and turbulence in hydrodynamics. It is 
significant that both the potentiality condition and the 
assumption that the turbulence is weak are often vio
lated(l]. To consider strong turbulence we could use 
weakly coupled integral equations in which the adiabatic 
interaction is separated out. However, in view of the 
fact that there is no rigorous method for separating out 
such an interaction for an arbitrary situation, of no less 
validity will apparently be the other method-the con
struction of an analogy with hydrodynamic turbulence. 
Notice that Kadomtsev(2,3] made an assumption about 
the mixing length and used it to describe the turbulent 
diffusion of a plasma in a trap and in a positive glow
discharge column. 

In the present paper we shall use the Kolmogorov 
similarity hypothesis to derive the pulsation spectrum 
of the magnetic field. It becomes clear right from the 
beginning that this approach cannot at all prove to be 
universally applicable to strong plasma turbulence, in 
view of the great variety of conditions and processes 
that occur in this case. In this connection we can at 
least point out the numerous attempts that have been 
made to obtain by this method the magnetic-field fluc
tuation spectrum in magneto-hydrodynamics for large 
magnetic Reynolds numbers and in the presence of 
strong fluctuations, i.e., when it no longer makes sense 
to speak of waves (see the reviews(4,5]). In other cases 
similarity and self-similarity hypotheses are used in 
conjunction with the kinetic equations for the waves, and 
it is even possible sometimes to justify these hypotheses 
(e.g., in ion-sound turbulence(6]). 

We consider below a collisionless low-temperature 
plasma of constant density (Le., a homogeneous plasma). 
Let there exist at zero time an ordered electron 
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velocity (much higher than the velocity of the ions) 
which produces a current and, hence, a magnetic field. 
We shall consider the frequencies 

eH eH 
{O;<oo< We, (01=-' W e =--. 

miC meC .<1.1) 

We should bear in mind then that w will subsequently 
not be the oscillation frequency, but the reciprocal of 
the fluctuation-correlation time. The assumption that 
the ions are stationary becomes natural at these fre
quencies. The electrons, on the other hand, drift in 
crossed fields. Electric (nonpotential) fields appear 
because of the variation in time of the magnetic fields. 
A nonlinear equation for the field and the fluctuation 
spectrum will be derived below. 

2. THE BASIC EQUATIONS 
All the fields in the present problem will be self

consistent; in particular, the existence of a uniform 
external magnetic field is not assumed, so that the 
frequencies Wi and we in (1.1) should be understood 
as gyrofrequencies in magnetic self-fields. The situa
tion is reminiscent of quasi-hydrodynamics (7] , but in 
view of the fact that the ions are not magnetized (they 
can be considered to be stationary), the drift approxi
mation is applicable only for the electrons. 

Further, it is necessary to use Maxwell's equations 
and the equations of motion. The displacement current 
can be neglected, for we shall assume that we « Wo (wo 
is the plasma frequency), and, furthermore, the primary 
electron velocity is the electric-drift velocity in the 
crossed fields: 

v, ~ c[EHll H' (2.1)* 

(all the velocity corrections, connected with the non
uniformity and nonstationarity of the fields, contain the 
parameter wi we, which we conventionally assume to be 
small; moreover, the plasma is a low-temperature 
plasma, and p = 0). 

Let us write out the equations which will be needed 
below: 

4" 
rotH = --nev 

c " 

rotE=-~ iJH 
c iJt 

Copyright © 1973 American Institute of Physics 

(2.2) 

(2.3) 
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The interaction matrix Vijf for (2.4) has the form 

(3.6) 

Substituting (3.6) into (3.5), we obtain (here C(k, t) is 
the spectral function of the H field) 

f)'C(k) 4 ( )' 
-f)-+ -k'C{k>X.~' =~' J (1-~) [q' + p' + (pq) ] 

t' 3 q'p' 

x{p' + q')C{q)C-(n)dq, Xo = J C(k)dk = 'I,(H'). (3.7) 

It is not difficult to show (by integrating (3.7) over 
k) that (3.7) conserves energy. In hydrodynamics an 
equation of the type (3.7) is deri ved by equating the 
fourth-order semi-invariants to zero. The equation 
obtained also conserves energy and yields at the same 
time a growing vorticity: 

d'({rotv)') 1 
. . -( (rot v) ') 
dt' 3 

(3.8) 

(see[llJ Sec. 19.3). The growth of «curl V)2) is not ap
parent from (3.8), but can be seen from the plot of the 
solution (see the figure). Even if the beginning (t = 0) 
of the process corresponds to the point 1, i.e., the de
rivative is negative at t = 0, the vorticity eventually 
increases-after the point 2. This circumstance il
lustrates the transfer of energy into the region of large 
wave numbers. 

«( rot ~ )'), «rot' H)') 

From (3.7) we obtain an equation similar to (3.8): 

d'x,_4 2,+64 0 , . 

dif." - "3 ~ X' 15 I' X'X', 

x' = J k'C{k)dk, X· = J k'C(k)dk, 

X' = J k'C(k)dk. 

(3.9) 

It can be seen from (3.9) that dX4/dt increases in time 
{just like d < (curl d)/dt from (3.8», so that if at 
t = 0 the derivative dX4/dt ~ 0, then the growth of X4 
is guaranteed. If, however, at t = 0 the quantity dx4/dt 
< 0, i.e., the function is at a point such as 1 (see the 
figure), then, since the second term on the right hand 
side of (3.9) is positive definite, the plot of X4 as a 
function of t will lie above the plot of «curl vn 
(naturally, it is assumed that « cur I V)2) and X 4 have 
been reduced to the same dimensions); see the dashed 
curve in the figure. Therefore dX4/dt will pass through 
zero and X4 will subsequently increase. Thus, we have 
obtained from (3.7) that at large t 

d Xi 
-->0, 
dt ·x, 

i.e., we have found a transfer to the region of large 
wave numbers. 

We have used the weak-coupling approximation to 
derive the spectral transfer. It is significant, however, 
that in hydrodynamics the correct spectrum of the sta
tionary fluctuations cannot be derived from an equation 
of the type (3.7), and, therefore, it is hardly worth while 
to derive C(k) from (3.7) when ac/at = O. For this 
reason we shall use Kolmogorov's self-similarity hy
pothesjs, assuming that there is energy flow to the 
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region of large k. As in hydrodynamics, let us divide 
the k-range into three regions: I) the energy-contain
ing region (the source of the fluctuation magnetic field 
for small k, k < ko); II) the inertial region, where the 
energy flow is realized, ko < k < kd; III) the dissipation 
region, k > kd. Notice, however, that we have not in
troduced a dissipation term into (2.4), but we have im
pliCitly assumed the existence at large k of dissipation, 
whose nature is not important for the region II. 

Let, following Kolmogorov, a quaSi-equilibrium 
state be realized in the region II) (EM, the constant 
energy flux in the region III~ has the dimension of the 
energy derivative of dH 2/dt ). Since in this case the 
strongest interaction is that between harmonics with 
close k (localization), EM should be expressed in terms 
of the spectral density EM and k (it should be linear in 
j3). Hence, 

(3.10) 

The expression (3.10) should be fulfilled up to a dimen
sionless constant of the order of unity. 

From (3.10) we can derive the following spectrum: 

(3.11) 

where A ~ 1. We recall that the Kolmogorov spectrum 
has the form E ~ k-S/ 3• The difference between the 
Kolmogorov spectrum and (3.11) is evidently due to the 
fact that, although Eqs. (3.2) and (3.3) are similar, they 
differ in their order: (3.3) contains a second deri vati ve, 
whereas (3.2) contains a first derivative. 

It is not difficult to show that the presence of the 
dimensional parameter j3 in Eq. (2.4) does not in itself 
affect the possibility of using dimensional considera
tion. Indeed, going over to the new system of coordi
nates x = x' fji72, k = k' fj1l2, we obtain an equation free 
of j3: 

f)H , 
-=rot [Hrot'H] 
f)t 

(rot' represents rot in the new system). Repeating the 
above-presented arguments, we have 

Bill ,.., H. 3k'2 ,.." E~/2 (k') kl1/2; 

E(k') - E~I. k"". E(k) - (E./~)'/'k-'''. 
E(k')dk' = E(k)dk, 

which coincides with (3.11). 
If now Ho is the field intensity in the energy-contain

ing region, then it follows from (3.10) that 

(3.12) 

(in the Kolmogorov turbulence € = v~rl), so that (3.11) 
can be written in the form 

the decay time for the field of the interaction time 

s. = (Ho~ko') -, (3.13) 

(in hydrodynamics s = v~lk~l). Comparing (3.13) with 
(2.5), we see that SM is the reciprocal of the frequency 
of the helicons with the smallest k. Finally, the charac
teristic frequencies for different wavelengths (or the 
reCiprocal of the correlation time for different k) 

(3.14; 

It can be seen from (3.14) that the lifetime of the 
pulsations falls off sharply with the scale (in hydrody
namics w ~ k2/ 3). USing the system (2.2), we can easily 
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Performing the curl operation on the expression 
E = c-lve x H, which is equivalent to (2.1), and using 
Eqs. (2.2) and (2.3), we obtain 

oH c 
- = --rot[HrotHl. 

at 4nne 
(2.4) 

To concretize the physical conditions, let us write 
out certain characteristic field quantities (the radius 
Pe of gyration of the electrons is determined by only 
their ordered motion: Pe = ve/we): 

E"" wH / ck, v, = w / k, 
p, = w I kw, ~ 1, v, ~ w, I k ~ v" 

k is the wave vector. The condition Pe « k-l should 
naturally be fulfilled for the drift approximation, and 
the expression Vi « ve verifies the self-consistency 
of the problem. 

Notice that an equation of the type (2.4) can also be 
derived in the case of a collision plasma (it was, in 
particular, used by Gordeev and Rudakov in(8] (where, 
in addition, Pe c,I! 0 and n c,I! const), and that the right 
hand side corresponds to the Hall current. One would 
think that the same equation will describe magnetic
field fluctuations in a metal, fluctuations whose frequen
cies will be lower than wi, as the ions there are sta
tionary. It is remarkable that instead of the system 
(2.1)-(2.3) we have to deal with the single equation 
(2.4) containing a single unknown field. Knowing the 
spectrum of H (Eq. (2.4) alone is adequate in this case), 
we can easily derive from the system (2.1)-(2.3) the 
spectrum of the electron-velocity field (i.e., the micro
current correlation), as well as the electric field. 

In conclusion, we note that linear fluctuations for the 
region (1.1), namely, helicons, which are well-known 
from the theory of electromagnetic waves in a plasma, 
can also be derived from (2.4). Indeed, let H = Ho + h, 
where Ho is a uniform external field; then we obtain for 
the Fourier transform of h 

- iwh = _c_[khl (kHo). 
4nne 

Representing h in the form h = hl + h2, we easily derive 
the dispersion equation (the equation being the same for 
hl and h2): 

w=± w,c'~~ icosol cos8= kHo (2.5) 
L <DoZ ' kHo ' 

which coincides with the dispersion equation for heli
cons(9]. The spectrum for a weak helicon turbulence 
was obtained by M. Lifshitz and Tsytovich(lO]. 

3. FLUCTUATION SPECTRUM IN k-SPACE 

In view of the fact that no rigorous theory of strong 
turbulence exists, we are obliged to enlist the help of 
di verse sorts of hypotheses (isotropy, the Similarity 
hypothesis, the spectral-transfer hypothesis). Let us 
outline the plan for the subsequent considerations. 
First of all, let us construct an analogy between the 
turbulence being investigated and hydrodynamic turbu
lence, which has been well investigated. Let us illustrate 
the existence of spectral transfer by the same methods 
used in hydrodynamics-no proof exists. For this pur
pose we use the closure hypothesis, or, equivalently, 
the weak-coupling approximation. In doing this we do 
not go over to the weak helicon turbulence approxima
tion, for we assume that the turbulence is isotropic 
(whereas there exists in a weak turbulence a preferred 
direction-the direction of the uniform magnetic field). 
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In essence, we shall use the hypothesis whereby we can 
equate the fourth-order semi-invariants to zero; the 
derivation of the equation for the spectral function is 
then mathematically analogous to the weak-coupling 
approximation. 

Further, we shall use the Kolmogorov hypothesis to 
derive the fluctuation spectrum. The construction of 
the analogy with hydrodynamics is necessary for the 
justification of the introduction of the hypothesis. We 
shall henceforth analyze Eq. (2.4). It is important to 
note that (2.4) is similar in structure to the equation of 
motion for an incompressible fluid: 

:; +(VV)v=--;-Vp, divv=O (3.1) 

(we have neglected viscosity). This can be seen espec
ially clearly if we express p-lVp in terms of v using 
the incompressibility condition and the fact that 
P = const. It is convenient to go over into Fourier 
space: 

f)u/f)t + iO"J(,k)k. S u.(k(!') u;(k(Z,) dl. = 0; 

O'iJ(k) = ll'j - k.k,l k', dl. = dk(t)dk("ll(k - k(t! - k"'), 
(3.2) 

while in Fourier space (2.4) has the form 

f)Hif)t = 2~"["bkn Sk.«)Hb(k(!')Hn, (k(2')dl., (3.3) 

{3 = c/41Tne. Here antisymmetrization with respect to 
the indices (ij] = %( ij - ji) has been used. 

Let us now turn to the turbulence problem, Le., we 
shall assume that both the v and the H fields are 
random fields. As is well known, primary turbulent 
processes are connected with the nonlinear interaction 
of fields. In hydrodynamics, if (v) = 0 and the turbu
lence is homogeneous and isotropic, then the nonlinear 
interaction conserves total energy (this is easily veri
fied: if we take the scalar product of (3.1) with v(x) at 
the point x and average, using the homogeneity assump
tion, then a( v2)/at = O}, energy being in this case trans
ferred to the region of large wave numbers. It is easy 
to show that the nonlinear interaction in (2.4) also con
serves energy. Indeed, (H curl(H x curl H]) can be 
expressed in terms of the divergence operator and, 
hence, in terms of a surface integral which vanishes in 
virtue of the homogeneity assumption (we recall that the 
Hall current conserves the energy of the magnetic field). 
Thus, a(H2)/at = O. 

The conclusion concerning the spectral transfer of 
energy in hydrodynamics cannot be arrived at via the 
normal methods, and we are obliged to use the closure 
hypotheses, or, which is often an equivalent procedure, 
perturbation theory. Let us illustrate this transfer, 
using the same method for the v and H fields. For 
this purpose let us construct the analog of the kinetic 
equation by the method used in the weak-coupling ap
proximation. It is useful to use the model equation 

f)C,(k)/fJt = S V"m (k, q, p)C,(q)Cm(p)dq; 
(3.4) 

V"m (k, q, p) = V'm,(k, p, q), p = k - q. 

which differs from Kadomtsev's model equation(ll in 
that it is vectorial in nature and the time dependence is 
retained (nonstationarity is important in this case and 
the transition to the frequencies w is not made). Re
peating Kadomtsev's[ll calculation, we obtain 

fJ'C(k, t)/at' = 4 S Vijm(k, q, p) V,.b(q, p, k)O'.m(p)aib(k)C(p)C(k)dq 

+ 2 S Vijm(k, q, p) V':b(k, q, p) a,.(q) O'mb(p)C(q)C(p) dq, (3.5) 
(C,(k, t)C,(k', t»= C(k, t)li(k + k') O'ij(k). 
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derive the fluctuation spectrum Ev of the electron
velocity-pulsation field ve: 

(3.15) 

the frequency dependence here evidently remains the 
same as for the magnetic fields (3.14). Naturally, the 
microcurrent power spectrum is similar to (3.15). It is 
worth noting that the energy of the electron pulsations 
is concentrated in the region of small scales (the inte
gral J Evdk diverges as k - 00); at what scales we 
should cut off the spectrum (3.15) is not known, since 
we do not consider the dissipation mechanism here. 
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