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The possibility of extracting additional information about the terms of diatomic systems 
from the curves of the total inelastic cross section due to the quasi-crossing of the terms 
is studied. For this purpose a systematic investigation of the influence of the character­
istic parameters (6) on the shape of the energy dependence of the total inelastic cross 
section when a method more accurate than the Landau-Zener (LZ) model is used to com­
pute the transition probability is carried out. It is shown that the maximum value of the 
cross section can exceed the value given by the LZ theory by a factor 1.5-2, depending 
on the magnitude of the interaction (the parameter A), and that the position of the peak 
with respect to energy varies appreciably as the rate of change of the interaction (the 
parameter II) is varied. 

A great number of the charge-transfer and excitation 
processes that occur in atomic collisions is determined 
by transitions in the quasi-crossing region R ~ Ro of 
the terms usually characterized by the diabatic terms 
U 1( R) and U2( R) and the interaction V 12( R) between 
them[1,2]. The computation of the inelastic cross sec­
tion, which can be represented as an integral over the 
impact parameters 

a=2n JP(p)Pdp 

then requires knowledge of the transition probability 
P(p). In the simplest method of describing such pro­
cesses, when the well-known Landau-Zener (LZ) 
formula for P(p )[3,4] is used, the inelastic cross sec­
tions are described by a single universal function[S]: 

(Z) 

aLZ Y 
nRo' = y+UoIE, f(y), 

• 
f(y)= J dx2exp(-x-''') (1-exp(-x-''')). 

o 

Here Uo/E1 is the potential at the crossing point in 
units of E1, 

y= E- Uo ; X=.§:=~rE (1-4) - u.] 
E, E, E, Ro 

(1) 

(2 ) 

(3 ) 

(4) 

are the dimensionless relative energy of the atoms 
above the threshold, i.e., the energy measured form the 
value Uo, and the dimensionless radial energy at the 
crossing point. 

Thus, the cross section (2) is determined in the LZ 
model by two scale factors: 

ao = nRo', E, = 1/2m(2nVo' / IiI'1F)', (5) 
where Vo = V12(Ro) and t.F = F1 - F2 is the p-inde­
pendent difference between the slopes of the terms at 
the crossing point. 

Comparison of the experimental cross sections with 
the theoretical curve shows, however, that the formula 
(2) leads to a systematic underestimate of the maximum 
value of the cross section and to a shift in its position 
along the velocity axis. The reasons for the deviation of 
the cross sections from uLZ have been repeatedly 
analyzed[6,7] and can be reduced to the following: 

1) The dependence of the interaction V 12 on R, 
which cannot be taken into account in the LZ calcula­
tion, usually has the form 
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V,,(Rl "" Vo exp [-a(R - Rol J. 

The influence of the parameter II = 2 aVo/ t.F = 2a oR on 
the transition probability has been investigated by 
Bykhovskii and Nikitin[8]. From their results one can 
draw qualitative conclusions about the effect on the 
shape of the cross sections: the displacement of the 
cross section peak with the growth of II. 

2) The LZ formula for the transition probability 
does not take into account the considerable interference 
of the contributions from the transitions which occur 
during the forward and backward flights, the nonuni­
formity of the motion in the transition region when this 
region is close to the distance of closest approach, as 
well as the presence of tunneling when the point Ro is 
classically inaccessible. The effect of these factors on 
the transition probability has been investigated by 
Bykhovskii et al. [9]. Owing to the contribution of the 
peripheral collisions with p ~ Ro, we can expect that 
allowance for these effects will lead to a maximum 
cross section which is larger than the value ~O.451TR~ 
given by the LZ formula (2). 

The computation of the reaction Be ++ + H - H+ + Be + 
carried out by Bates et al.[lO] on the basis of a numeri­
cal solution of the equations demonstrates these effects. 

It is Significant that of the many characteristic terms 
in the transition region, only the quantities 1TR~ and E1 
can be estimated on the basis of the LZ description of 
the inelastic process. Two questions arise: firstly, how 
accurate can we take the parameters found in such a 
treatment to be, and, secondly, can we extract from the 
deviation of the total inelastic cross section curve from 
the LZ curve (without the involvement of the differen­
tial cross sections) additional information about the 
terms and the interaction of the system in the transi­
tion region? To answer these questions we must ascer­
tain the number of the most important parameters which 
determine the cross section without the simplifying as­
sumptions of the LZ theory. 

In this connection, we analyze in the present paper 
the total inelastic cross section using a more exact 
model for the computation of the transition probability; 
this allows us to distinguish the characteristic parame­
ters and systematically investigate their influence on 
the shape of the inelastic cross section. As such 
parameters we can, as we shall see below, choose the 
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following dimensionless quantities: 

A=~(~)"', v=2a6R, $=~;o. (6) 

Here OR = Vo/AF; A characterizes the width OR of the 
transition region compared to the crossing radius, 1I 

characterizes the extent to which the interaction V l2( R) 
= V 0 exp [ - a (R - Ro)] changes in the transition region, 
and ~ is the average slope F = (Fl F 2)J./2 of the terms 
in units of 2E l/Ro, where the characteristic energy 
scale El is given by (5) and roughly determines the 
position of the peak of the cross section. 

In subsection (I) below we give the general formula­
tion of the problem. In (II) we reduce the problem to a 
model problem and separate out the parameters. The 
final formulas used in the computation are gi ven in (III), 
and then in (IV) we present the results of the computa­
tions and discuss the experimental cross section[ll) for 
the charge-transfer reaction in B+3 + He collisions. 

I. Since the LZ model is a reasonable approximation, 
the dimensionless energies (4) with the scales (5) can 
conveniently be used, as before, for the investigation of 
the cross sections. Then the cross section (1) can be 
rewritten in the form 

cr(E) 

nR02 

• 
----.::,y~,--- S P(x,y)dx. 
y+ VolE, (7) 

Let us briefly go over the derivation of the equation de­
termining P. 

In the basis of two diabatic states Xl and X2 the wave 
function of the system has the form 

1jJ = 1jJ, (Rh, + 1jJ, (Rh,· 

We shall use the momentum representation for the 
nuclear functions [12, 9) 

1 S- { SP, '} cJ(p)dp li'J(R)=---==- exp ipR-i Rj(p )dp , 
1'2n1i _00 F/' (Rj(p» 

j = 1,2, (8) 

where the Rj(p) satisfy the equation 

p' [ p ]' dVj(R) -+V,(RJ(p»+E -~ =E, Fj(R)=---. 
~ ~~) ~ 

(9) 

Under quasi-classical conditions the system of 
second-order quantum equations for I/Jj( R) reduces to 
semiclassical first-order equations for the amplitudes 
Cj (p)[12). After the introduction of the dimensionless 
time variable 

Vo S' dp 
'C(P)=T F(p) , F(p)=[F,(R,(p) )F,(R,(p» l'" 

these equations have the form 

. dCt V,,(R(p» is(,) 
1-= e c2, 

rk Vo 

dc, 
i­

d'C 
V" (R (p» e-'S(p) C" 

Vo 

S(p)= S [R,(p)-R,(p)]dp, R(p)=[R,(p)R,(p)j"'; 

(10) 

(11 ) 

p and T are connected by formula (10). The transition 
probability Pi ~j is given as usual by Pij = 1 Cj ( + <Xl ) 12, 
with the initial conditions Cj ( - <Xl) = 0ij' It is easy to 
see that when p2/R2» Uj(R)/E Eqs. (11) go over into 
the equations of the impact-parameter method, Le., into 
the time-dependent Schrodinger equations with a straight­
line trajectory. 

Equations (11) in the momentum representation do 
not, in contrast to the coordinate representation, ex­
clude from the analysis the neighborhood of the point of 
closest approach, and only require for their derivation 
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(besides quasi-classicality) a slow variation of V12(R) 
~ 2 2 

as compared to Uj(R, p) = Uj(R) + Ep /Ro: 

dV,,(R) 2Ep' (12) 
---¢:IPj(R, p) 1= -FJ(R)+-R' . 

dR 0 

Under this condition we can consider the distance R, on 
which the interaction V12 in (11) depends, to be equal to 
R(p), for example, since we have R1(2)(P) - Ro 
» Rl(p) - R2(P) when (12) is fulfilled. At high energies 
E (the limit of the straight-line trajectories), when 

2Ep'l R'::l> dV" I dR ~ aVo, 

the condition (12) does not impose any restrictions on 
the ratio of dVlddR to Fj, Le., on the parameter 
1I = 2aVo/AF. 

II. We adopt for the computation of the transition 
probability a natural model in which we replace the 
true terms Uj(R) by linear terms. The question, how­
ever, arises as to how to carry out such a replacement 
correctly for different impact parameters. The sim­
plest method is to use the linear expansion of the poten­
tials Uj (R) in the neighborhood of the point Ro. 

For above-the-barrier transitions, when ER> 0, or, 
in terms of the variables (4), when x > 0, this simple 
method is the most judicious, since the pOint of slowest 
oscillations of exp[iS(p)] in the system (11) coincides 
with the point Po for which Rl( Po) = R2( Po) = Ro. The 
departure from linearity of the terms turns out to be 
substantial only for impact parameters corresponding 
to high ER (or x): it leads to inaccuracy in the phase 
r of the oscillations in the transition probability 
P(p) = 4w( 1 - w) sin2 r. But for such p the phase r is 
large, and the contribution from these impact parame­
ters to the total cross section (1) will be determined by 
only the magnitude of the probability w of a single­
stage transition, which is accurately reproduced by the 
model 1). 

Thus, for above-the-barrier transitions, we set 

V,,(R) = Voexp [-a(R- Ro»), aj(R) = Uo - Ep'l Ro' +P,(R-Ro), 
P j = -F(Ro) + 2Ep' / Ro' = const. 

Then 
1 ( p' ) Rj(p) = 17' 2m -En 

and, after the introduction of the new variable 
~ = 'l'2P(AF/FmVo)1/2, the system (11) acquires the form 

. dCt 1 . dc, 1 
1-d =-b<p(~)e'Sc2 i-=-b<p(t)-C-iSC 

~ 2 ' d~ 2 " t, 
(13 ) 

, 
<P(s)=exp[-v(~'-e)], S=b S (S'-e)de. (14) 

Here 1I is defined in (6), and 

e=FR/t,.F b=4Vo(mVo)'" P=(PF)'" 
2VoP' Ii P/t,.F' , , 

are the well-known parameters of the model [9] which 
depend on the impact parameter p and the energy E. It 
is convenient to represent this dependence on E and p 
in terms of the dimensionless variables (5). We then 
obtain 

b =A[($, + y-x) ($,+ y -x)]-''', e= (nb/ 4) 'x. 

Here A and ~j are given by the formulas (6) with F 
replaced by Fj. Among actual charge-transfer reac­
tions, those which occur most frequently are the cases 
when FRo ~ Uo ~ AE « 2El (the applicability condition 
for the impact-parameter method) or <Pj « 1. Then, in 
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the energy range of interest 0.1 < y < 1000 we can set 
<P 1 = <P2 = 0, since <Pj « l). For the other class of 
processes (excitation reactions with a high energy 
threshold Uo » ~E) we can assume that ~F/F « 1, 
Le., that <P1 ~ <P2 ~ <P = (<P1<P2)1/2. 

Thus, for the indicated types of processes we should 
assume <P1 = <P2 = <P and write the parameters £ and b 
in the form 

b~ (1lJ+:-X)'I;' e~(:b)'x, x>o. (15) 

Let us now turn to subbarrier transitions, when ER 
< 0 or x < O. If, as before, we replace the real terms 
by the tangents to them at the point Ro, we find that as 
p - 00 (x - - 00, b - 0, and £ - const), the probability 
of a subbarrier transition tends to a constant value and 
that when V 12 = const (II = 0) the cross section (7) 
diverges. The reason for this circumstance, first noted 
by Devdariani and Bobashev in [151, is clear. In such an 
approximation the slopes Fj = Fj = Fj + 2Ep2/R~ of the 
terms grow so rapidly as p - 00, that despite the de­
crease of the energy ER - - 0() , the effective barrier 

• which must be overcome before reaching the crossing 
point does not increase as p - o(), as obtains in reality. 

In order to correctly simulate the actual terms by 
linear ones, let us turn to the basic system (11). The 
latest oscillation rate for eiS occurs at p = 0: 

min (dSldp) ~R,(O) -R,(O) ~R,r -R,'. 

Therefore, it is natural to expand the quantities S( p) 
and Ri ( p) in the vicinity of the point p = O. This is 
equivalent to replacing the actual terms by the tangents 
to them at the reversal points Rf = Ri (p = 0). This 
yields 

S(p)"" -(R,' -R,')p_~L, Fr ~[F,(R,')F,(R,') p. (16) 
IF'! 6 

The position of the reversal points is determined by 
the equation 

, p' ( Ro )' F,(R. -Ro)+E,y-, -, +E,y~O. 
Ro R, 

(17) 

Limiting ourselves, as has been noted, to the most in­
teresting cases ~F« F (a<p « <p), or ~<p « y, we 
obtain from (17) when Rf - Rf « Rf - Ro, 

1!Jl' I Ro ~R,' R,' I Ro ~ 21lJ(1I k -f), 

where ~<p = aF/2E1 and k = Ro/Rr (Rf ~ Rf ~ Rr) is 
determined from the equation 

(y- x)k'- y ~ 21lJ(11 k-f). (18) 

Further, after the change of variable 
~ = Y2(~F/FrmVo)1/2p, the system (11) reduces to the 
same system as for x> 0, namely, the system (13)-(14), 
since we have - O! (R - Ro) ~ - O! (R - Rr) - O! (Rr - Ro) 
= II~ 2 + O!Ro(1/k - 1) = II~ - £. The parameters £ and 
b then turn out to be equal to 

A (nA)'(f) b~ (1lJ+(y-x)k']"" e~-2 4 -,;-f, (19) 

where k is a root of Eq. (18). 

Thus, the computation of the transition probability for 
any value of the impact parameter reduces to the solu­
tion of the system (13)-(14), with the parameters £ and 
b given by (15) when x > 0, or by (19) when x < 0, and 
the shape of the inelastic cross section ultimately turns 
out to be dependent on the three dimensionless parame­
ters (6). 
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III. Let us briefly discuss the method of integration 
of the system (13). It is convenient to look for the 
numerical solution in the adiabatic basis in which Eqs. 
(13) take the form: 

. da, 'H 'S ' da, , 
£--= - t el az ,- = iHe18a 
d~ 'ds 1, 

I 

8~ SL(S'lds', L(s)~-b(t'+e-'vt)''', t~s'-e, (20) 

H(s) ~se-'t(f+vt)[f+e-"tl-'. (21) 

To find the probability, it is sufficient, on account of 
the symmetry of the problem, to know the solution only 
in the interval (0, 00) of ~ [121. 

Let us represent the solution a1(~) and a2(~) with 
the initial conditions 1 and 0 for ~ = 0 in the form 

a,(s) ~ (1-z'),I· exp (if,), a,(s) ~zexp (if,). (22) 

Then, from (20) and (21) we arrive(12] at the following 
equations for the real functions z, r b r 2, and :=: 

dz I ds ~ -H(6) (1- Z;)'I. CuS (8 + f, - f.), dE I ds ~ L(6), 

df.lds ~ H(s) z sin(8 + f. - f.), 
(1-z')'" 
(i-Z')'I. 

df,lds ~ H(s) sin(8 + f, - f.) (23) 
z 

with the initial conditions z(O) = r 1(0) = :=:(0) = 0 and 
r 2(0) = 1T, and the functions H(O and L(O defined in 
(21). Using the asymptotic values of z, r 1 and r 2 for 
~ - 0() , we compute the transition probability as follows: 

p ~ 4z'(i- z') sin' (f.+ f.). (24) 

For £ > 0 the system (23) was integrated from the 
point J = £1/2 (the crossing point) to ~ - Q() and from 
~ = £ 2 to ~ = 0 (the reversal point), or to the point 
where z(~) first assumes the asymptotic form, with an 
eye to the possible computation of the average value 
If = 2Z2( 1 - Z2) of the probability (24) for the asymp­
totic region of large phases 0 = r 1 + r 2 » 21T. Detailed 
computational formulas are given in the Appendix. The 
computation of the cross section (7), in which the prob­
ability P(x, y) was foung by integrating the system (13), 
was carried out on the BESM-4 machine. 

IV. Let us proceed to discuss the results of the in­
vestigation of the influence of the various parameters 
on the dependence of the dimensionless cross section 
o/lIR~ on the dimensionless energy y = (E - UO)/E1. 
Figure 1 shows the transition cross sections for a con­
stant interaction V12 = const, II = 0, for the computa­
tion of which the straightline trajectory approximation 
was used: E1 » FRo, <P "" O. The varying parameter A 
(see (6)) characterizes the magnitude of the interaction 
of the width of the transition region relative to Ro 

6R Vo (2 )' 
Ro ~ !:1FRo ~ nA 

(for A = 1.5, we have oR/Ro = 0.36). It can be seen that 
the variation of A very insignificantly changes the 
position of the peak of the cross section, but that, owing 
to the contribution of the peripheral (p ~ Ro) COlliSions, 
the magnitude of the maximum cross section can change 
considerably. The dependence of Omax on A or oR 
can be described by the formula 

Om •• = ~.445:n: (Ro + 2.286R) '. (25) 

It is worth noting that for transitions with rotational 
coupling, which have been investigated by Russek in[16], 
the cross section can even exceed the value 1TR~, and 
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FIG. I FIG. 2 

FI G. I. The dependence of the cross section on the logarithm of the 
dimensionless energy y = (E-Uo)/E, for different values of A at II = <l> = 
O. The dashed curve is the plot of the Landau-Zener cross section. 

FIG. 2. The'dependence of the cross section on the logarithm of the 
dimensionless energy y = (E-Uo)/E, for different rates of change of the 
interaction V 12 (R), which are characterized by the parameter II. A = 2 
and <I> = O. 

does not, on account of the dependence of the interaction 
V 12 ~ Ep2/R2 on E and p, decrease at high energies. 

In Figs. 2 and 3 we demonstrate the effect on the 
shape of the cross section of the exponential dependence 
of the interaction V 12 on distance for two values of the 
parameter A (A = 2 and A = 4) characterizing the in­
teraction strength. As was to be expected from the in­
vestigation of the transition probability carried out by 
Bykhovskil and Nikitin [8], for v ;00 0 the c ross section 
increases at considerably lower energies than the LZ 
cross section. Thus, for v = 2 the peak of the cross 
section occurs at energies y which are an order of 
magnitude smaller than the energy y ~ 5.6 of the LZ 
cross section peak. At high energies the cross section 
does not decrease in a fairly large region, due to the 
fact that for v;oO 0 the probability of a single-stage 
transition does not tend to unity with increasing energy, 
as obtains in the LZ model with v = 0, the influence of 
the second transition region is felt[8]. For v = 0.5 the 
energies of the predominant contributions of the two 
transition mechanisms are separated by a minimum at 
y ~ 100. The difference between the cross sections with 
A = 2 (Fig. 2) and A = 4 (Fig. 3) consists in the large 
contribution of the peripheral collisions with p ~ Ro to 
the magnitude of the cross section in the range 0.1 
< Y < 10. 

In the adiabatic region, the cross section function 
a( A, v, y) for v ;00 0 can be described with the aid of the 
cross sections a(A, v = 0, y) corresponding to a con­
stant interaction by simply changing the energy scale: 

u(A, v, y) =u(A, '\'=0, Y/Yo('\'); 
Yo (v) = e-I."'. 

In particular, for A > 4 we have in the adiabatic 
region (y/yo < 2): 

U(Y)=y+~o/E,fcYorv) ), 

(26) 

(27) 

where f(y) is a tabulated function (see, for example[5]) 
defined by the formula (3), while the function Yo(v) is 
given by (26). 

The nonvanishing of the parameter <I> = FRo/2El is 
characteristic of reactions with a substantial reaction 
threshold Uo ~ FRo; the shape of the cross section near 
the threshold then depends on the threshold energy Uo 
(see the factor y + Uo/E in (7)) and on the parameters 
(6). At high energies y» <I> the cross section curves 
with the given parameters v, A, and <I> coincide with 
the corresponding curves with v, A, <1>' = 0, which have 
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FIG. 3 
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FIG. 4 

FIG. 3. The dependence of the cross section on the logarithm of the 
dimensionless energy y = (E-Uo)/E, for different rates of change of the 
interaction V 12(R), characterized by the parameter II. A = 4 and <I> = O. 

FIG. 4. Threshold behavior of the cross section ~(y) = Eu(E)/E,1TR~ 
for A = 2, II = 0, and different values of the parameter <1>. 

previously been investigated (but not with the LZ curve, 
as was supposed in(15]). The extent of the difference be­
tween the actual threshold of the process and the classi­
cal value E = Uo (y = 0) for A = 2 can be seen in Fig. 4. 
Plotted along the ordinate is the dependence on the 
dimensionless energy y = (E - Uo)/El of the quantity 
E(y) = Ea/E l1TRg, which does not depend on the addi­
tional parameter Uo/El' The value of the cross section 
at E = Uo sharply decreases like 

u(E= Uo)-4 E, ;rtRo'<D'I,A- 3 exp( _ 1.24A) 
Uo cD'h ' 

as A increases and <I> decreases. The experimental 
detection of the displacement of the actual threshold of 
the process relative to the classical threshold E = Uo 
is quite problematic: for this purpose it is necessary 
to find the other transition parameters with sufficient 
accuracy from the entire high-energy cross section 
curve. In view of the large number of parameters such 
a procedure is not unambiguous, even if, in accordance 
with the model of the description, the process being 
measured is due to transitions in only one quasi-cross­
ing region. 

The cross sections shown in Fig. 4 also exhibit 
Stiickelberg oscillations connected with the fact that the 
largest phase q; (p) for p = 0 of the oscillations in the 
transition probability P(p) is a small quantity near the 
threshold. The arrows in Fig. 4 indicate the values of 
the energy at which q;( En, P = 0) = 1Tn. The indicated 
oscillations differ from the Olson-Smith oscilla­
tions[l7,18] connected with the extremum of the phase 
q;(p). They are oscillations in the energy derivative of 
the cross section and not in the cross section itself, and 
their amplitude vanishes with growth of the energy, as 
well as with increasing A and decreasing <1>. 

Thus, the results enable us to make an estimate of 
the degree of accuracy of the parameters El and Ro 
found by analyzing the experimental cross sections with 
the aid of the LZ curve, and in the case, when some of 
the quasi-crossing parameters (e.g., Ro and ~F) are 
known, they allow a more accurate determination of the 
other parameters of the model. On the other hand, the 
proposed computational method is suitable for predict­
ing the cross section when the parameters of the prob­
lem are known, since the computation of the probability 
for any impact parameter reduces to the solution of the 
same type of system of equations. 

Let us briefly touch upon the charge-transfer pro­
cess B3+ + He ~ B2+ + He+ for which Zwally and 
Cable[ll] have recently measured the cross sect~on and 
have discovered that its maximum value differs from 
that of the LZ cross section by almost a factor of two. 
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In[u) the parameters R's, ~Fs and Rp, ~Fp character­
izing the terms in the two quasi-crossing regions which 
are responsible for the charge transfer to the B2+(2s) 
and B2+( 2p) states are computed with allowance for 
Coulomb and polarization potentials, while the interac­
tions inducing the transitions are estimated to be equal 
to Ys = 1.14 eY, and Yp = 0.043 eY. If we use these 
estimates as characteristics of the terms and assume 
a weak dependence of Ys on distance, then the parame­
ters (6) that determine the cross section in our model 
will be equal to A = 2.25, <I> = 0, and II = O. The posi­
tion of the peak of the cross section will then practically 
coincide with the position predicted by the LZ theory 
and given by experiment, while the magnitude of the 
maximum cross section O"max changes from the value 
7.4A2 given by the LZ theory to the value 10.2A2, which 
is closer to the experimental value O"max = 14.3A2 • The 
remaining difference is possibly due to the fact that the 
strong exchange interaction which obtains at R ~ Rs 
and which moves the adiabatic B3+He and B2+(2p)He+ 
terms apart and leads to an increase in the crossing 
distance Rs is not taken into account in determining the 
crossing point Rs. 

In conclusion the author expresses his sincere grati­
tude to E. E. Nikitin for continuous interest in the work 
and for valuable comments, to A. S. Zembekov and 
E. P. Gordeev for their help in the work, and to S. Y. 
Bobashev for useful discussions. 

APPENDIX 

At large € the phase 0 = r l + r 2 of the oscillations 
in the transition probability (24) is large, so that the 
contribution of the corresponding range of impact 
parameters p to the cross section will be determined 
by the average value of the probability Ii = 2Z2( 1 - Z2). 
The quantity z is then determined largely by the solu­
tion to the system (23) in the region ~ ~ €J/2. Therefore, 
it is natural to inteurate the system (23) from the point I '""" q.:;.. I"W ,..,.. \: ,.. 

~o = €l 2. Let Z, r l , r 2, :=: and z, r l, r 2,:=: be the solu-
tions of the system in the intervals ~ 0 < ~ < 0() and ~ 0 
> ~ > 0 respectively with the initial conditions: 

i, I\, 1\, 8li-iio = z, t\, r" 81 H" = (0,0, it, 0). 

Let us denote the values of these solutions at the end 
points of the integration ~ = ~ k (~k - O() and ~ = 0 by 

• 
z~ f" 1'2,:@ 1,_0 = U, '\'" '\'2,30, 3 0 = J L(£)ds. 

'. 
Then the probability (24) can be expre.ssed in terms of 
these quantities as follows: 

P = P(80) = 41 (1- u')v(1- V'),/· sin(6, + <,>, - 2,\" + 3 0 ) 

-u(1- u'),I'(1- 2v') sin ('Y2 - V' + 3.,) - (28) 
- u'v(1- V')'" sin(-6, - 6, + 2,\" + 3 0 ) I'. 
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This result is easily obtained from the properties of 
G (~, ~'), the matrix of the solutions of the system (20)[11). 

Further, the average probability is equal to 

P = 2z'(1- z') = '/,[P(3 0 = 0) + P(3 0 = it / 2)], 

where P(:::o) is determined by the expression (28). 
Then to find P it is not necessary to find the solution 
z r' r2 Z orthe system (23) in the entire interval of , 1, , A,.. .... 

~ from ~o to zero if the functions z, r l, and r 2 assume 
their asymptotic values at some values of ~ greater 
than zero. This is important for the determination of 
the contribution to the cross section (7) of the region of 
small impact parameters, where the probability P os­
cillates strongly. 

I)If necessary (e.g., for the differential cross section), the correct phase of 
the transition probability oscillations can also be computed [13,14). 

2)Notice that when <I> = 0 and x "* y (p "* 0), the parameters E and b tend 
to 00. However, in this case the average probability P = 2w(l-w) is de­
termined by only one parameter 21T6 = Y..1TbE-lIz = x-liz (9), which does 
not depend on how good the choice of <I> is if <I> ~ I. 
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