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The effect whereby waves are amplified during reflection from a rotating "black hole" 
is investigated. This process is connected with the extraction of energy and momentum 
from a "black hole." The conditions for the existence of the effect are found. The 
amplification factor is computed for the model case of scalar waves. For waves with 
frequencies which do not satisfy the conditions for the existence of the effect, partial 
cross sections for their capture by the "black hole" are computed. 

1. Interest in the investigation of the physical pro­
cesses which take place in the vicinity of "black holes," 
i.e., collapsed stars, has of late increased considerably. 
The existence of such objects is predicted by the gen­
eral theory of relativity (just as neutron stars, now 
identified as pulsars, are). It is quite probable that a 
"black hole" is the final phase of the evolution of any 
sufficiently massive star. It is also possible that 
"black holes" of cosmological origin exist. 

Among the diverse phenomena which can occur in the 
strong gravitational field near a "black hole," proces­
ses leading to the extraction of energy from a rotating 
"black hole" at the expense of its rotational energy and 
momentum are of special interest. The first such pro­
cess was discovered by Penrose[l) and investigated by 
Christodoulou (2). It is connected with the diSintegration 
of a particle, which has entered the exosphere of a ro­
tating "black hole," into two particles one of which is 
absorbed by the "black hole," while the other escapes 
to infinity with part of the rotational energy and mo­
mentum of the ''black hole." ThUS, the Penrose process 
requires the consideration of composite or unstable 
particles. 

Zel'dovich has recently pOinted out[3] that the extrac­
tion of energy from a rotating "black hole" can in 
principle be accomplished with the aid of classical 
multipole waves, e.g., electromagnetic waves. Such a 
process does not need composite particles and is a 
distinctive wave analog of the Penrose process. Zel'do­
vich considered the scattering of an electromagnetic 
wave by a conducting cylinder rotating with an angular 
velocity 0 and showed that a wave with an orbital mo­
mentum n and frequency w is reflected from the cylin­
der with an amplitude exceeding the amplitude of the 
incident wave if w < nO. 

In the present paper we investigate directly the am­
plitude amplification effect for a wave reflected from a 
rotating "black hole" whose gravitational field is de­
scribed by the Kerr metric (see formula (1 )), and show 
that the condition for existence of the effect also has the 
form w < nO if we introduce an angular velocity 0 of 
rotation of the "black hole" (see formula (12 )). The 
magnitude of this effect is found for the model case of 
a massless scalar field satisfying the Klein-Gordon 
equation. A scalar field is used here because, unlike the 
electromagnetic field, its equation, as shown in Sec. 2, 
allows complete separation of the variables in the Kerr 
metric 1) • This fact is not apparent, since a rotating 
"black hole" possesses only axial symmetry. 

We investigate with the aid of the exact solutions of 
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the Klein-Gordon equation in the Kerr metric the be­
havior of the coefficient of reflection of the wave for 
low frequencies w - 0, as well as in the vicinity of the 
critical point w = nO, where the effect vanishes. Under 
certain conditions (see Sec. 3) the reflection coefficient 
strongly oscillates in the vicinity of the critical point. 

\ 

For a scalar wave the amplification effect turns out 
to be small: the reflection coefficient differs from 
unity by not more than a few per cent. Estimates show 
that the effect under consideration is also small for the 
electromagnetic wave 2). 

The formulas obtained also allow the computation of 
the partial cross sections for capture by a "black hole" 
of waves with w and n which do not satisfy the condi­
tion for existence of the amplification effect. In particu­
lar, a physically clear result is obtained which indicates 
that the total cross section for capture by a "black 
hole" of scalar waves with wavelengths much greater 
than the gravitational radius of the "black hole" is 
equal to the surface area of the event horizon of the 
"black hole" (the dominent contribution then is, as al­
ways, made by the s-wave). 

In the computations, the gravitational fie ld of the 
"black hole" was considered as an external field, i.e., 
the reaction of the scalar field on the metric was not 
considered. Under actual phYSical conditions the changes 
in the mass and momentum of the "black hole" on ac­
count of the wave amplification effect are negligible 
compared to the initial values. Indeed, it is easy to 
show that the mass of the collapsar can appreciably 
change as compared to M only in a time 

"1'1 - c' I G'Me, 

where M is the initial mass of the "black hole," E is 
the energy density of the wave field around the "black 
hole," and G is the gravitational constant. For M ~ 1-
100Mo this time is much greater than the cosmological 
time tH ~ 1018 sec even when extreme assumptions are 
made about the magnitude of E. Thus, the investigated 
effect does not prevent the existence of rotating "black 
holes" in the Universe. 3) 

Furthermore, T1 is Mc 2/Erg» 1 times greater than 
the characteristic time T 0 ~ r / c ~ GM/ c 3 during 
which the difference between t~e nonstationary metric 
of the collapsing star and the steady-state "black-hole" 
metric vanishes [7,8]. 

Finally, notice that in[3], Zel'dovich puts forward the 
hypothesis that there exists a quantum analog of the 
above-considered classical amplification effect, viz., 
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the process of spontaneous pair production in the Kerr 
metric, one of the particles being absorbed by the 
"black hole" and the other escaping to infinity with 
part of the rotational energy and momentum of the 
"black hole." According to the correspondence princi­
ple, the probability for the creation of a boson pair with 
given quantum numbers should be proportional to the 
difference between the amplification factor found in the 
present paper for a classical wave and unity. Estimates 
show that the characteristic time during which the mo­
mentum of the "black hole" changes Owing to the crea­
tion of a massless pair 

.... , - G'M' / lie', T, < tff for M < 10" g; 

for larger masses the loss in momentum and rotational 
energy is negligible even during the cosmological time 
tHo 

2. The Kerr metriC, which describes the gravita­
tional field of a rotating "black hole," is used in this 
paper in the form found by Boyer and Lindquist[9] 
(G '" ti. '" c '" 1; the electric charge of the "black hole" 
e '" 0): 

ds' = p-'(t; - a' sin' 8)dt' - p'dr" / t; - p'dS' 
- p-' sin'S [ (r' + a')' - ,t;a' sin' 8] ckp' + 4M arp-' sin' edtckp, (1) 

,p' = r" + a' cos' 6; t; = r' - 2Mr + a', 

where M is the mass of the "black hole," L '" Ma 
(0 :::; a :::; M) is its momentum oriented in the direction 
e '" O. We also introduce the notation 

r,,2 =: M ± (M' _ a') 'I,. 

The equation for the surface Shor of the event horizon 
is r '" rl, Le., t:. '" O. 

The scalar field ItJ is described by the Klein-Gordon 
equation (a semicolon denotes a covariant derivative; 
since for the metric under consideration Rik '" 0, the 
question as to whether we should add the term RItJ/6 to 
the scalar-field equation does not arise here): 

(2 ) 

All the variables in Eq. (2) expressed in the Kerr 
metric are separable (the complete separability of the 
variables in the Hamilton-Jacobi equation for the mo­
tion of a test particle when the equation is expressed in 
the Kerr metric was first pointed out by Carter [IO] 4)); 

the same is true for the Klein-Gordon equation with a 
mass term. Thus, we can seek ItJ in the form (w > 0) 

'" =R(r)P(8)e,n.-,.,. (3 ) 

P( e) satisfies the eigenvalue equation: 

_1_~(sins~) -(~+())'a'Sin'8) P+AP=O 
sin e dS dS sin' 8 

(4) 

with the boundary conditions I P ( 0) I < "", I P ( 11) < 00. 

Equation (4) is the equation for a spheroidal wave 
function of the first kind[ll]. The eigenvalues Ay '" A in 

(1 2: In j) are not expressible in analytiC form in terms 
of 1 and n. The smallest eigenvalue for a given n - A~ 
satisfies the inequality, which will subsequently be used: 

n(n+,1)< Ann.,;; n(n + 1)+(wa)'~. 
n+ 3/, 

(5) 

The left-hand side of the inequality is obvious, while the 
right-hand side is obtained when the associated 
Legendre polynomial Pf (cos e) is substituted into the 
variational integral for A~ as a trial function. For 
wa « 1 

2 [ 3n'-Z(Z+ 1) ] 
A,'=Z(Z+1)+(wa)"3 1+ (2/-1)(21+3) + ... (6) 
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The radial function R( r) satisfies the equation 

/':,. ~(/':,. cfB.) +[w'(r" + a')'- 4aMrnro + a'n' - At;]R = O. 
dr dr 

In the presence of the mass term IJ. 21tJ in Eq. (2), we 
should replace w 2 by w 2 - IJ. 2 in Eq. (4) and A by A 

(7) 

+ IJ. 2 (r2 + a 2) in Eq. (7). By changing the variable rand 
the function R( r) with the aid of the expressions, 

!!:...=~_ ~~y<oo, R- b 
dy r"+a" - (r'+a')'/' ' 

(8) 

we can reduce Eq. (7) to the form 

d'/ 
dy' +k'(y)/=O, (9 ) 

k'(Y)~(ro- r"a:a')'- (r':a,),{A-2anw 

- d [ t;r ]} + l'r" +a' dr (r"+a'),/, ' r=r(y). (10) 

As y - 00 (r - 00) the function k2(y) - w 2, while as 
y - - 00 (r - rl) 

( an )' k'(y) ..... w--- . 
r.t 2 +a2 

Christodoulou[2] has obtained a formula expressing 
the mass of a "black hole" in terms of its momentum 
L and "irreducible" mass Mo, which is so named be­
cause it cannot decrease in any process involving the 
''black hole." This formula has the form . 

M'=M,'+V/4Mo'. (11) 

Let us define the angular velocity of the "black hole," 
in accordance with the general rules, as 

Q=~=_a_=_a_ 
aL 4M,' r,'+a" 

(12) 

Let us now determine the phySical boundary condition 
for Eq. (9) for r - rl (y - - 00). It follows from the 
fact that the surface r '" rl is a surface-trap which can 
capture only physical objects. Therefore, the boundary 
condition should be chosen such that the group velocity 
of the wave for y - - 00 is directed towards the sur­
face-trap, Le., 

(13 ) 

Notice that when w < nO the phase and group velocities 
of the wave for y - - "" have different directions: Vg 
'" -1 and vph'" w/(nO - w). From the mathematical 
point of view the boundary condition (13) is the analyti­
cal continuation with respect to a through the critical 
point w '" nn of Matzner's boundary condition[12] for 
the Schwarzschild metric (a'" 0). 

Let the condition (13) be fulfilled, and let, as 
y _00 (r - 00), f has the form 

/ = Ae-'" + Be'·'. (14) 

In Eq. (14) the first term describes the incident wave; 
the second, the reflected wave. Then it follows from 
the Wronskian of Eq. (9) that 

jA'j-jBj'''''sign(ro-nQ). (15) 

Thus, the condition for existence of the effect whereby 
a wave is amplified during reflection from a rotating 
"black hole" has the form 

jBj'> jAj', i.e., 'w<nQ. (16) 

In the electromagnetic-wave equation obtained re­
cently by Ipser[5] in the Kerr metric, the variables r 
and {j are apparently inseparable. However, the condi-
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tion for existence of the amplification effect for these 
waves also have the form (16). This follows from the 
fact that the electromagnetic-wave equation differs 
from Eqs. (2) and (9) only by a term of the form 

Mt. r+iacos9 f 
(r' +a')' (r- iac·os 0)' ' 

which vanishes both as r - rl (A - O) and as r - DO. 

Finally, the condition (16) preserves its form for a 
massive was field (in this case we only have to bear in 
mind that w >~, and not that w -O), as well as for the 
case when the "black hole" has an electric charge e 
(in this case in formula (12) rl = M + (M2 _ a 2 _ e2 )1/2). 

3. Let us find the magnitude of the amplification 
factor, i.e., the coefficient R of reflection of a wave 
from the potential barrier created by the space-time 
curvature in the vicinity of the "black hole." Let us 
first investigate the behavior of R at low frequencies: 
wM « 1. Under this condition we can, in the first ap­
proximation, assume that Ay = l( 1 + 1). Then R has the 
form (for derivation, see the Appendix) 

(I!) , 
R'n - 1 ... - Din = 4Q -;-;~:=C~:-:---:-:-:~ 

[(21)!]'[(21+1)!!]' 

(17) 

r,' + a' 
Q=--(nQ-ro), 

rl- rz 

where D = 1 - R is the coefficient of transmission 
through the potential barrier. As it should be, R1n - 1 
> 0 when w < nO. 

The formula (17) encompasses all the particular 
cases, including the cases a = 0 and a = M; the region 
of its applicability is defined by wM « 1. The asymp­
totic form of this formula for 1 » 1 has the form 

. [ ro(r, - r,)e(1 + 4W)"'] "+' R'n - 1 = sIgn Q . 
. 8(1+'/,) 

Xexp ( 41Qlarc tg ;~) [1- e-"nIQI], 

(18) 

where p = I Q II (l + }'2). 

For n ~ 0 we can replace Q in the formulas (17) and 
(18) by 

r,'+a' an 
Q,=--nQ=--. 

rt -rz rt -rz 

with the exception of the two extreme cases: 

1. a<M (including I a=O), Inl <Mia, ro;;'nQ; 

2. a""M, 
M-a 
-;W-';;; (roM)' < 1, 

For fixed 1 and n, R1n monotonically grows with 
increasing a. Proceeding to the limit, we find that when 
a=Mandn~O 

. 4Inl"+'(roM)"+1 
R'n-1=sIgnn· [(21-1)!!(21+1)!!]" (19) 

At very large 1 (1 ~ Inl/wM» Inl) we should, as 
indicated above, replace n in this formula by n - 2wM. 
Thus, for n ~ 0 and w - 0, I RZn - 1 I ~ w21 +1 • 

The formulas (17}-(19) are also applicable for 
n sO, when R < 1 and the amplification effect is absent. 
In this case the incident wave is partially reflected and 
partially captured by the "black hole." The corre­
sponding partial capture cross section for wM « 15 ) is 
determined from the formula (see[I31) 
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In particular, for n = 0 the transmission coefficient 
D10 has the form 

4(1!)' '" 21 
DIO= [(21)!]'[(21+1)!!]'ro (r, +a)(ro(r,-r,)] , a=l=M, (20) 

221+3 (roM) "+2 
DIO= a=M. 

[(21-1) II (21 + 1) ill"~ (21) 

For w - 0, D10 ~ w21+2 when a ~ M and D10 ~ w·Z+2 

when a = M. The formula (20) is valid for wM 
« «M - a}/M)I/2; formula (21) is also valid for a close 
to M if 

1'/' «M - a) I M) 'I. < roM < 1. 

The transition region is described by the general 
formula (17). 

It follows from (20) and (21) that 

Doo =4ro'(r,'+a') fOr a.:;;M, 
O"cap"" 0". = nDoo/(j)' = 4n(r,' + a') = Shor. 

Thus, for w - 0 the cross section for the capture of 
scalar waves is equal to the surface area of the event 
horizon. Notice that for w - 00 the capture cross sec­
tion for any waves, as well as for ultrarelativistic par­
ticles, is determined from geometrical optics and also 
tends to a constant value, equal, for example, to 
(2/,.}1Tr~ for the Schwarzschild field (a = OP1. Finally, 
for a = r2 = 0 formula (20) gives an expression for all 
(n-independent) D1n in the Schwarzschild field. 

Let us now investigate the behavior of the effect near 
the critical point w = n~l. For a «M and I n I « M/a 
(then I n I OM « 1), we can directly use formula (17), 
which in the present case has the form (a"" r2 "" 0, 
rl "" 2M) 

1 4 (If)' () 
R'n- = [(2I)!]'[(21+1)1I]' ror,21+1r,(nQ-ro). (22) 

It can be seen that R1n - 1 passes linearly through 
zero at the critical point. In the range 0 < w < n~l the 
function R1n has only one maximum at 

21 + 1 
ro='2I-=i=2nQ (l;;>n;;> 1). 

For a comparable with but less than M, formula (17) 
is inapplicable near the point w = nO, but it can be 
shown that here also RZn - 1 passes linearly through 
zero at the critical point, i.e., that R1n - 1 ~ a in the 
region I a I QI « 1, where 

a=1-~ Q,=~>O. 
nQ' r,-r, 

There are two essentially different cases for a = M. Let 
Let A = Af (w = n/2M); then, if 

J.. > 2n' - '/4, 

we have for a - 0 

R,n-1oosigna' exp[2(J..-2n'+ I/.),"ln lal]. (23) 

In this case R1n passes monotOnically through the criti­
cal point. When n = 1 each Ai > 2, as follows from the 
inequality (5). Therefore, for n = 1 there are no oscil­
lations near the critical point. 

If, on the other hand, 

6' "" 2n' - J.. - 'I. > 0, (24) 

then in the region laln2 «I,if o~n (or laln4 «1, 
if 0::1), 

{ ch' n(n -Il) (Rln - 1) -1 = sign a . en {n+lI)(algn cr;-1) 

8h' 2nll 
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--------------------

+ ch' 11 (n + II) e"(n-.)(oIgn <_I) ~ 2 ch 11 (n - II) ch 11 (n + II) e".(.lln <_\) 

sh'21l11 sh'21l11 

x cos[q>o-211In(2n'lal)]}, (25) 

q>o(6) =4argr(1+2M) +2argr(l/2+in-iO) 
+ 2arg r('/2 - in - ill). 

(for the derivation of this formula, see the Appendix). 

In the vicinity of the point a = 0 the quantity RZn - 1 
has an infinite number of oscillations in the region 
I a I n2 « 1 (provided 6 is not small compared to 1, 
which is an exceptional case). For a > 0 

ch'll11 sh'llll 
max(R'n-1)=-. --, min(R,.-1)=-. 

sh'lln ch'lln 

For a < 0 the barrier can be totally transparent: 
D . D sh'21l11 

max ' •. =1, mill ,. = (ch 21l1l + e '"')' 

The condition (24) is satisfied by all Ay with n:2: 2 
and not very large I (I < n f2)-in particular, by At 

For a not equal, but close to M, the quantity Rin - 1 
varies linearly in the region Qll a I « 1 and oscillates 
in the interval Q;:l < I a I ~ n -2 (if, of course, such an 
interval exists )6). Therefore, an additional condition 
for the existence of oscillations (besides (24» when 
a;o' M will be 

n«: (M/ (M-a»)'I •. 

The physical cause of these oscillations is connected 
with the presence of quasi-stationary bound states near 
the event horizon in the Kerr metric when a is close to 
M. An analogous effect arises near the creation thresh­
old for oppositely charged particles [HI. 

Finally, by comparing the formulas (17), (23), and 
(25), we can show that the quantity Rin - 1 does not 
exceed 5% for n = 1, and 0.5% for n:2: 2. 

The author is grateful to Ya. B. Zel'dovich for con­
tinuous attention to the work and valuable hints, .and 
also to his colleagues at the Institute of Theoretical 
Physics and the Astrophysics Division of the Institute 
of Applied Mathematics for a discussion of the paper. 

APPENDIX 

1. DERIVATION OF FORMULA (17) 

We use the method used in the investigation of the 
scattering of slow particles (see[l31). Let us make in 
Eq. (7) the change of variable: 

a;=~ (a""M). 
r1- rZ 

For x « II w( rl - r2) and wM « 1 we can neglect in 
this equation all the terms containing w, with the ex­
ception of the term with w which is contained in Q. 
Then Eq. (7) reduces to the form {AI R: 1 (Z + 1) 

a;(a;+1)~[a;(a;+ 1)!!!...] +[Q' -l(l+ 1)x(a; + 1)]R - O. (A.1) 
da; dx 

The solution of this equation satisfying the boundary 
condition (13) for r - rl (x - 0) has the form 

( a;) 'Q R=(-1)' -.- F(-l; l+1; 1-2iQ; a;+1), 
a;+1 

where F(a, (3, y; z) is the hypergeometric function. 
Then, for x » max (l; Q) 

R = CIa;' + C,a;-'-I; 

C =~ r(1-2iQ) 
I II r(l+ 1- 2iQ) 
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(A.2) 

C =-iQ (1-iQ) ... (l-iQ) (-1)'. 
, (l + 1)! (A.3) 

·,F,(-l,l+1,l+1-iQ; l+2,1-2iQ; 1); 

3F2(0<, (3, Y; 6, €; z) is the generalized hypergeometric 
function (for its definition, see{lll); in the present case 
it is a polynomial of degree Z in z. Cl and C2 satisfy 
the following condition: 

C,C.- - C,-C, = tQ(l + '/2). 

On the other hand, for x » max (Q, Z) we can drop 
in Eq. (7) all the terms except those which describe 
free motion with momentum Z. We obtain 

1 d ( , dR) [, ,l(l + 1) ] 
-- a; - + ro (r,-r,) ---- R=O. 
a;' dx da; x' (A.4) 

The solutions of this equation are the spherical Bessel 
functions. Matching the solutions of Eqs. (A.1) and (A.4) 
in the region 

max(Q, I) «: a; «: II ro(r, - r,), 

we obtain formula (17). We can verify in the process 
that in the region under consideration all the terms 
omitted in Eq. (7) do not influence the answer (they can 
only distort the phase of the wave function, a quantity 
which does not enter into the expression for the trans­
mission coefficient D). 

2. DERIVATION OF FORMULAS (23) AND (25) 

Let a = M and I a I n2 «1. Let us set x = riM - l. 
For x « lin, we can by dropping the small terms, re­
duce Eq. (7) to the form 

d'R ( 2an' 2n' - A ) --+ a'n'---+--- R=O dz 2 Z Z2 , 
(A.5) 

where z = X-l. Its solution is of the form 

R = Cl z'I'-"e-in"'F('/2 - in - to; 1- 2iO; 2ianz) 
+ C,z'I'+"e-in"'F('/2 - in + iO; 1 + 210; 2ianz) , (A.6) 

where F(a, y, z) is the confluent hypergeometric func­
tion. 

The coefficients Cl and C2 should be chosen such 
that the solution satisfies the boundary condition (13) 
for r - rl (z _00). We obtain: 

IC,/Cd 00 lal'I'lfor 0'<0, 
(A.7) 

( chll(n+t'l) )'" IC,/C,I=e-n"'gn< _1.._1 •. • , for 6'>0. 
In the region x » I a In the dominant terms in Eq. (7) 
have the form 

~~[a;' dR]+ [~+~+ 2n'- A ]R-O. (A.S) 
a;'da; dx 4 x x' 

It has the following solution: 

R = C,a;-'I'+"e-"""F('/2 + in + iO; 1 + 216; ina;) (A.9) 
+ C,a;-·I·-"e-t·""F('/2 + in - M; 1- 2iO; Ina;). 

Matching the solutions (A.6) and (A.9) in the region 
la In« x« n-I, we obtain the formulas (23) and (25). 

1) As became known to the author, the last result has recently been ob­
tained independently by Brill et aI. [4] 

2)Thus, scalar and electromagnetic waves are not generated in the Kerr 
metric (cf. [5]). 

3) As has recently been shown by Press [6] , a rotating "black hole" can 
also lose momentum if by chance it is placed in a time-independent 
scalar field produced by sources outside the "black hole." The charac­
teristic time during which the momentum changes is then the same as 
indicated above. In this case, however, the rotational energy of the 
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"black hole" is not extracted from it, but converted into an "irreduc­
ible" (see (2) ) "black hole" mass. 

4)See also the paper (4) by Brill et al. 
5)In this case the angular part of the function 1/1 is, in the first approxi­

mation, simply a spherical harmonic. 
6)In this case the number of oscillations is finite. 
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