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A special class of solutions of the Einstein equation is found for the case of "gravita­
tional collapse" of a central-symmetric qistribution of matter with an ultrarelativ­
istic equation of state. The collapse hypersurface in these solutions is isotropic 
whereas in the "general" solution of the present problem [1] the singularity occurs 
on a space-like hypersurface. 

1. Lifshitz and Khalatnikov (LKh)[I] considered the 
problem of the collapse of a centraily-symmetrical dis­
tribution of matter with ultrarelativistic equation of 
state of matter p = E/3 1). The centrally-symmetrical 
element of the interval was expressed in the form 

-ds' = -dt' + e'dr' + e"(d8' + sin'8d<p'). (1.1) 

The solution was sought in the form of series in powers 
of t 2/3 • The expressions obtained for ,\ and j.J. were 

1.= -'I, In t + AI') + AIl)t';' + ... , J.I = 'I, In t+ J.l I') + J.l (1)t';'+ ... , 

(1.2) 
where ,\(0), j.J. (0), ,\(1), j.J. (1), ••• are functions of r. For 
the energy density E( r) and the radial velocity Ul( r), 
the expressions obtained were E = E(0)t-J./4 + ... and 
ul(r) = u(0)(r)tJ./3 + .... 

The cited solution contains three arbitrary functions 
(for example, j.J.IO)(r), ,\(O)(r), EIO)(r», from which it 
is possible to construct two physically different arbi­
trary functions. This number corresponds to the fact 
that the arbitrary initial centrally-symmetrical distri­
bution of the matter is specified by simultaneous distri­
butions of its density and radial velocity, and this prob­
lem has no "degrees of freedom" corresponding to a 
free gravitational field, since such a field (gravitational 
waves) cannot have central symmetry. On this basis, 
LKh called the obtained solution "general." However, 
since the solution is constructed in the form of series, 
there is no clear and sufficiently detailed connection 
between the two methods of sorting out the solutions: 
with the aid of two phYSically different arbitrary func­
tions constructed from jJ.IO), ,\(0), and EIO ), or, on the 
other hand, by specifying the initial distributions of the 
density of matter and of its radial velocity. One can 
therefore not exclude beforehand the case in which 
singular initial distributions of the denSity and velocity 
of matter exist and generate solutions that cannot be 
obtained in the form (1.2) for any choice of the arbi­
trary functions ,\(0), j.J.IO) , and EIO) (see also[2]). The 
class of solutions presented in [1], with one physically 
arbitrary function (quasi-isotropic collapse), is not 
contained in the class of (1.2). The quasi -isotropic 
collapse must be regarded as an example of the afore­
mentioned singular solutions. 

In the present paper we present a class of singular 
solutions of the given problem, which differs from the 
quasi-isotropic collapse and contains no fewer solutions 
than the latter. It should be noted that for each of the 
solutions described in[l] there exists a four-coordinate 
transformation, with the aid of which the collapse hyper­
surface t = If' (r) can be transformed into a hypersur-
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face t = 0 without violating the synchronism conditions. 
There is no such transformation, as will be shown be­
low, for any of the solutions of the new class. In other 
words, the collapse corresponding to solutions of this 
class is inhomogeneous in any synchronous system. 

2. The gravitation equations for the given problem 
are U] 

RoO = 'I.')...' + ,/.~, + '/,'i-.. + ~ = - '/.s (3 + 4u,'e-'), 

R,o =~' _ 'I,')..."'.' + '/.~fl' = '/so,u, (1 + u,'e-')'I" 

R,' = e-' ('/.JJ.'A' - J.I" - '/,fl") + '/,'(i. + j.~ + '/,j.') = '/s6 (1 + 4u,'e-1,), 

R,' = R.' = e-~ + '/.e-' ('I,J.I'A' - J.I" - J.I") + 'I. ~ + 'I. it>.. + ~') == '1,8. 

(2.1) 
Eliminating Ul and E, we obtain two equations for A 
and j.J. 

Rii = 'i.. + 'I.')...' + ~ + 2~ + s/.~· + e-' (J.I'?: - 2.u" - ShJ.l") + 2e-~ =0, 

(2.2) 
(R,' - RoO) (R,' + 3R,') - e-' (R,O)' = - 3e-o~ + e-'-~ (1-''' + 2,1" 

- 1/.1-"1.') + e-~ (X + 1/.j.' - 3ii - 3~' - I I.'i.~)+ 1 I.e'" ('1,1-"'1." - 'I,I-"'!"A' 
+ 'I,J.I'" - A'J.I" + 2J.1"J.I") + ';. (;... + Xi.' + '/,')...4 + 2'i-..~ + 2X~' 
+ 3h~ + ~j.' + ./.j.'~2 + "I.')...,~ - 3~' - 6~~' - ')...~~ _ 3~4 
- 'i.~S) + '/.e-' (3ft'A'X + a;. ft'A'i.· -l'-'A'~ - ft'A'~' + '/21-"A'~'i. 

- 6ft"X - 3ft">'" + 2l'-"~ '+ 2ft"~2 - 5ft"j.~ - 41-"'X - 31-"''i.' + 4).l"~ 
+ 3J.1'o~, - 4~'2 + 4'i.ft'~' - ~ft'~'i = o. (2.3) 

The second and fourth equations of the system (2.1) then 
express respectively the velocity Ul and the energy 
density E in terms of the "metric" functions j.J. and ,\. 
It is easy to verify that the system (2.2) and (2.3) and 
the aforementioned two equations of (2.1) is equivalent 
to the complete system (2.1). We seek the solution of 
the system in the form of the series 

(2.4) 

where v = t o( r) - t (on the collapse hypersurface 
t = to(r) we have v = 0.) 

When (2.4) is substituted in (2.2), the terms of order 
v-2 yield A (r) = 2 In t~, while the terms of order v-4 in 
(2.3) yield nothing new. The terms of order v<n- 5 ) /3 in 
(2.2) yield 

(n + 4) (n - 1) 2 2 
9 An+l + g(n + 1) ft'An + g(n + 1) (n - 1) A,J.ln-l 

[ 1ft; 2 ] 2 J.I~-' +(n-2) -"'A,--+-(n+1)A, "n_,--(2n-1)--
3 r to' 9 r 3 to' 

[ 2 4 1 ,] ft,' 
+ 9" A, + g(n + 1) ft' +"6 J.ll An-l- t:'" ft,,-3 
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[ 2 1 2 (n-l) /.It' 
+(n-3) -(n+ 1)1.., +-/.I.A.+-/.I.A.----A,'--

9 3 3 9 to' 
2e-'" ] 

- (n-3) /.In-'+"'=O' (2.5) 

The terms of order IIm - 11) /3 of (2.3) (when multiplied 
by %) yield 

(n + 4) (n - 1) 2 2 
9 An+< + g(n + 1) /.I.An + g(n + 1) (n -1) A./.In-. 

[ (n - 5) /.10' (n + 13) (n - 5) ] 
+(n-2) -----+--.-A,----/.I.A, /.In-' 

2 4 18 6 

2 ,{o-, /.I. , [(5n - 2) 
--(2n-1)---"0_,+(n-3) ----A,".' 

3 to' to'''· 72" 

(l1n -16) A' (5n - 23) (4n - 19) A (3n - 32) 
36 ' - 9 A,/.I' - 18 /.I" 18 A. 

+ 5n-26 '+ (n-2)/.Io'. _ 1 (n'-7n+16)e--"] 
6to' /.I. 4to'· /.I, 2 (n _ 3) /.10-' 

[ 2 n' - 9n -14 n' - n -18 ] 
- g(n-4)A,+ 18 /.1,+ 72 fl" An_.+ ... =O. 

(2.6) 

Subtracting (2.5) from (2.6) and making the substitution 
n - n + 2, we obtain 

[ 2 .'Qn +14) (n +14) ,] [ 7 
(n-1) -A,+-' --/.1,+---/.1. An+.+(n-1) -(n-2)A, 

9 18 72. 18 
(4n - ~\ (5n - 7) (7n + 2) (5n + 8) 

+-~-/.I.A,+ /.I,A,+-~-A,'+---/.I,'A, 
18 9 36 72 

(n - 2) n/.lo' 5 /.It' ] 
+--2-e-"'-4t,7'/.I'-""6(n -2)t; /.10-' + ... =0. (2.7) 

The dots denote here terms containing those coefficients 
~i and Ili of the series for A and Il, which are con­
tained in (2.4) ahead of those written out in (2.6) and 
(2.7) (for example, we have omitted from (2.7) the terms 
containing An, An-I, An-2, etc .). 

Equations (2.5) and (2.7) are recurrence relations 
between An and Iln. At n < 4, direct calculations yield: 

a) n = 1, Air) is an arbitrary function; 

b) n = 2, /.I, (r) = 3/.10' / A,to' + 3A,' /2A,'to', A, (r) = -3A,' / 2to'A,. (2.8) 

c) n = 3, 112 and A4 are expressed regularly in terms 
of Il 0, Ao, and A 2, with 

7 1, 9 /.10' 15 /.It' 
--A.=-A, +4A,,,,+2,,,A3---/.I,---

2 4 .... 4 to' 2 to' 

3, 9 
+8/.1' A,+"2 e- .... 

Using these expressions, we find that the determinant 
of the system (2.7) and (2.5) is eqUal to D = -?'s4 (n 
+ 2)n (n - 1) 2A~" 0 for n 2: 4, so that An+1 and Iln+1 
are regularly expressed through the preceding terms. 
Thus, for example, the system (2.5) and (2.7) at n = 4 
determines A5 and 113 in terms of A4, A3, ... , 
Il 2, ... , Il 0, and in final analysis in terms of the arbi­
trary functions t~, Il 0, and A2. 

Thus, 

1..= 2In to' + A,v'l, + A,V + ... , /.I = 'I, In v + /.10 + /.I,V'I. + ... , (2.9) 

where III and A3 are given by (2.8). SubstitUting (2.9) 
in (2.1), we obtain 

(2.10) 

where €-4 = %A2' U~l = t~2/A2' 
The constructed solution (2.9) and (2.10) contains 

three arbitrary functions of r, namely t o( r), A2( r), 
and Ilo( r). 
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3. Let us consider an arbitrary solution from (2.9)­
(2.10). What coordinate transformations 

.=rp(t, r), R =.p(t, r) (3.0 

leave it synchronous? 

The requirement that the synchronism be preserved 
in the new coordinates T and R is expressed by the 
equations 

q,' - e-'rpl' - 1 = 0, q;p - e-'<p'.p' = 0, (3.2) 

where the derivatives are taken with respect to the old 
coordinates t and r. The system (3.2) with e-A from 
(2.9) has a solution in the form of a series in 11 1/ 3 

"t=rp(t,r) = <po(r) +<p,(r)v+ ... , R=.p(t,r) ="'o(r) +",,(r)v+ .... 

(3.3 ) 

Here cP 0 ( r) and iJio (r) are arbitrary functions, in 
terms of which the succeeding coefficients of the series 
(3.3) are expressed. Thus, 

rp3=-!-(~+~)' .p,=~~(~-~) (3.4) 
2 q>o' to" 2 cpo' <po' to' , 

etc. The solutions (2.9) and (2.10) are meaningful only 
at t~ .. 0 (because of in t~). We then have in (3.3) 

<po'*O, (3.5) 
otherwise we obtain for cP 3 in (3.4) a meaningless ex­
pression. It follows from (3.5) that To(R) 
== CPo (iJi~l (R» .. const. This means that in terms of the 
new coordinates the collapse hypersurface (described 
here, as can be readily seen, by the equation T = T o( r» 
is likewise not a hyperplane. 

To the contrary, the solutions obtained in [1] in homo­
geneous form (with a collapse hyperplane t = 0) can be 
changed by means of the synchronous coordinate trans­
formation 

'=<po(r) +t+<p,(r)t'I,+ ...... <p(t, r), 
R="'o(r) +.p,(r)t'I,+ ...... "'(t, r), (3.6) 

which does not violate the synchronism, into a form 
that is generally speaking inhomogeneous: 

A=-'/,Inv+AO(R) + ... , /.I='/,]nv+/.I(O)(R) + ... , ) 
e=e(O)(R)v·" + ... , u=u(O)(R) + ... , uo(R) ='o'(R) (3.7 

with a collapse-hypersurface equation T = CPo (iJi~l (R» 
= ~o(R). Since CPo(R) and iJio(R) are arbitrary, they 
can be chosen such that To (R) .. const. In other words, 
for the solution from (3.7), in certain synchronous sys­
tems, the collapse time at different space points is 
generally speaking different, whereas in the initial 
synchronous system in which this solution was obtained 
it has a singularity simultaneously at different space 
points. 

Thus, our solution (2.9), (2.10) is made different 
from (3.7) by the absolute, so to speak, "inhomogeneity" 
of the collapse in the synchronous coordinate systems. 
The class (2.9), (2.10) is closed with respect to the 
synchronism-conserving coordinate transformations 
(3.3). 

We note that the solutions (2.9) and (2.10) obtained 
here contain one physically arbitrary function, since we 
have at our disposal the transformations (3.3), which 
do not take us out from the given class, with two arbi­
trary functions CPo (r) and iJio (r), the choice of which 
makes it possible to impose two relations on the three 
arbitrary functions of the solutions (2.9) and (2.10). 
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We show in conclusion that the collapse hypersurface 
t = to (r) is isotropic. Indeed, the element of the inter­
val between two infinitesimally close world points on 
this hypersurface (1/ = 0) 

!is' = dt' - e'dr' - e"do' = (to'dr) , - tl'dr' - 0 = O. 

The isotropic character of the collapse hypersurface 
confirms once more that the obtained class of solutions 
is not contained in the general solution(l], where the 
collapse hypersurface is space-like. 

The authors thank Y. A. Belinskil, E. M. Lifshitz, 
I. D. No viko v , and A. Z. Patashinskii for a discussion of 
the results. 
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0In Sec. 1 we follow the notation and the assumptions of LKh. 
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