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An investigation is made of the four-particle correlation function which describes the behavior of a 
simple liquid with a central pair interaction near its critical point and which refers to a configuration 
of particles when two pairs of closely located particles are separated from each other by a large dis­
tance. The explicit form is determined of the terms responsible for contributions to this function which 
fall off slowly at large distances, the behavior of the specific heat is analyzed and the results are com­
pared with the theory of critical indices. 

1. INTRODUCTION 

IN the paper of one of the authors(1) exact estimates 
were obtained for all the contributions which fall off 
slowly with distance to the three-particle distribution 
function for a classical liquid near its critical point ex­
pressed in terms of the two-particle distribution func­
tion. In the present paper the same problem is posed 
for the more interesting four-particle distribution func­
tion. As inC1J , we consider the equilibrium claSSical 
system with the Hamiltonian function: 

( 1) 

where <I>(r) falls off rapidly with increasing r, and we 
assume as known the two-particle distribution function 
for an unbounded system F2(r1, r2) '" g( Ir1 - r21) normal­
ized by the condition g( 00) '" 1. At the same time F 1(r1) 
'" 1. We shall often refer to the known expressions for 
the pressure, the average energy density and the iso­
thermal compressibility in such a system [2J : 

n' 
p = nkT -- (J I r<D' (r)g(r)dr, 

3 n' 
e=-nkT+-I <D(r)g(r)dr, 

2 2 

kl(!!:) =1+nI(g(r)-1)dr, 
ap T 

(2) 

(3) 

(4) 

where all the notation is standard, and to the expressions 
for the derivatives with respect to density 

( ap ) n'I ag(r) n - =2p-nkT-- r<D'(r)--dr, 
an , 6 an 

( ae) 3 n'I ag(r) n - =2e--nkT+- <D(r)--dr, 
an T 2 2 an 

and also 

(5) 

(6) 

n' (~) = 4n (!J:) - 6p + 2nkT - ~I r<D' (r) a'g(r) dr (7) 
an- T an T 6 an" 

( a'e ) ( ae) n' a'g(r) n' -, =4n - -6e+3nkT+-I<D(r)--dr. 
an T an T 2 an' 

(8) 

At the critical point the integral in (4) diverges, the ex­
pressions (5) and (7) vanish, and the expressions (6) 
and (8) remain finite. In connection with this we assume 
everywhere in the following that g(r), ag(r)/an and 
a2g(r)/an2 regarded as functions ofr are continuous at 
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small distances and integrable in all the states of the 
system including the critical point. 

Below we shall also require the estimates obtained 
in (1) for the three-particle distribution function near 
the critical point. With F3 represented in the form 

F, (r, R) = g(r) + .E A,(r, R)P,(cos i}), 
I 

(9) 

where r '" Ir2 - rll, R '" Ir3 - rll, ". is the angle between 
(- r) and R, for the case R »r we have obtained 

and further 

Ao(r,R) = 0J(r) (g(R) -1) +Qo(r,R), 

w (r) = 2g(r) + nag(r) / an, 

I Qo(r,R)dR=ag(r)18n 

A,(r,R) ='/,rw(r)g'(R) +3Q,(r,R), 

A2(r, R) = '/8r'0)(r) (g" (R) - g' (R) / R) + 5Q2(r, R), 

A,(r,R) = (2l+1)Q,(r,R), l;;;.3. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

It was shown that all the functions Ql(r, R) fall off with 
increasing R faster than R-3. 

In the present paper we restrict ourselves to the in­
vestigation of the most interesting configuration of four 
particles when the latter constitute two pairs far re­
moved from each other. The distance between the par­
ticles in each pair is of the order of the range of the 
intermolecular interaction, while the distance between 
pairs is great, but smaller than the correlation radius 
of critical fluctuations. We use the notation rl - r2 '" r, 
r4 - r3 '" p, ra - r2 '" R and we assume that R ~ r, p. 
As R - 00 the function F4(r, p, R) tends to g(r)g(p). Our 
problem is to determine the asymptotic behavior of the 
correlation function 

F,(r, p, R) - g(r)g(p) (16) 

as R - 00 in the immediate neighborhood of the critical 
point of the system. 

The function F4(r, p, R) must be invariant with 
respect to all possible rotations and reflections of the 
system of the four points and with respect to permuta­
tions of pairs of particles compatible with the conditions 
r, p «R. Therefore it depends on six scalar arguments 
which define the relative position of the four pOints in 
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space and satisfies additional symmetry conditions. We 
choose as independent arguments the lengths r, p, R, 
the angles", ,,' between the vectors (- r), R and corre­
spondingly p, R and the difference cp of the azimuthal 
angles of the vector rand p measured with respect to 
the axis R. The symmetry with respect to reflection in 
planes containing R leads to the even dependence of F4 
on cp, and a general expression for the correlation func­
tion (16) will turn out to be the double series in spher­
ical harmonics of the form 

F, (r, p, R)- g(r)g(p)= .L".L,BIl':' (r~ p, R)pr(cos tt)p"m(cos tr)cos m'l'. 

1,1' m (17) 

It is obvious that BU,(r, p, R) = B~(P' r, R), and for 
Z' = Z the functions !1T,(r, p, R) are symmetric with 
respect to r and p. As a result of the symmetry condi­
tions the functions BzT,(r, p, R) are not independent of 
one another. 

Our problem reduces to the determination of the 
asymptotic properties of the functions BzT,(r, p, R) as 
R - 00 near the critical point of the system and to 
specifying all the relationships significant for R »r 
between the functions !3zT,. It will be shown that this 
problem is to a significant extent soluble, and the long­
range contributions to the correlation of the fluctuations 
of different physical quantities will be determined. 

2. THE ASYMPTOTIC BEHAVIOR OF THE FUNCTION 
~o(r, p, R) 

Of the greatest interest is the function ago with which 
we begin our analysis. Let E(X) be the true energy 
density at the point x which corresponds to the Hamil­
tonian function (1) 

I p' 1 } e(x)=.E 2~+2.E<D(lri-rjl) <'5(x-rj), 
J i:#oj 

(18) 

and let D.E(X) = E(X) - E, where E is defined by (3). From 
(18) and from the definition of the distribution function 
F s follows the general expression for the correlations 
of the fluctuations of the energy density at two points of 
the system: 

{ 15 3 S <M(x) L'le(x + R» = Tn(kT)' + Tn'kT <D(r)g(r)dr 

+n~ S<D'(r)g(r)dr+ n: SS<D(r)<D({l)F,(r,p)drdp}6(R) 

3 n' n' 
+ - n'kT<D (R) giRl +- <D'(R) g(R) +-S <D (r) <D (IR-rl )F, (r, R-r) dr 
244 

+ ~<D(R) S <D(r)F,(r, R)dr + l.... n'kT S <D(r)[F,(r, R) - girl Jdr 
2 2 

9 n'ss + 't;(nkT)'(g(R) -1)+ T <D(r)<D(p)[F,(r, p, R)- g(r)g(p) Jdrdp. 

(19) 

In this expression only the last three terms are sensi­
tive to the critical point. We integrate (19) with respect 
to x and R twice within the limits of a certain large vol­
ume V within the system and we divide the result by V. 
All the terms except for the last one are integrated and 
an estimate of their value is made with the aid of ex­
pressions (3), (4), (6) and the identity[1,3]: 

2g(r)+n f[F,(r,R)-g(r)JdR=kT (:; )TCJl(r) (20) 

with w(r) from (11). The last term in (19) after integra­
tion over R taking (17) into account leads to the corre­
sponding triple integral in which the expression in 
square brackets is replaced by Bgo(r, p, R). We intro­
duce in place of Bgo a new unknown function W by means 
of the relation 

BooO(r, p, R) =CJl(r)CJl(p) (g(R) - 1) + W(r, p, R). (21) 

The substitution of this expression into the remaining 
integral after computing the contributions of the first 
term in (21) and after summing all the contributions 
from the right hand side of (19) leads an exact estimate 
of the quadratic fluctuations of the energy in the volume 
V in the form 

..!...«t;E)')=~n(kT)' _ n [(~) _l.... kT]' + nkT (!!...)' (!!!...) 
V 2 on T 2 on T op T 

n' 
+-f <D'(r)g(r)dr+n' fS <D(r)<1>(p)F,(r, p)drd, 

2 

+ :' SSS <1>(r)<1>(p) W(r,p,R)drdpdR. (22) 

The expression obtained above should be compared with 
the general result for a grand canonical ensemble: 

1 (oe)'(on) -«L'lE)')= nkT'cv+nkT - - , 
V on T op T 

(23) 

where Cv. is the specific heat for constant N and V 
evaluateCi per particle. Comparing (22) and (23) we find 
that 

Cv = ~ k - k [k1T( ::) T - ~ r + ;~2fS <D(r)<D(p)F,(r, p)drdp 

n n' (24) 
+ 2kT,f <1>' (r) girl dr + 4kT' Sf f <1> (r) <1> (p) W (r, p, R)dr dp dR. 

We note that the substitution of (21) guaranteed the exact 
cancellation in Cv of terms proportional to the iso­
thermal compressibility. 

On the right hand side of (24) all the terms except 
for the last one are insensitive to the critical point. 
Therefore, the unbounded increase in the specific heat 
cv as the critical point is approached, which is known 
both experimentally and from the solution of model 
problems, can be associated, according to (24), only 
with the divergence of the integrals of W over R at large 
distances. Therefore we separate out from W(r, p, R) 
the part which asymptotically falls off slowly with in­
creasing R by setting 

W(r, p,R) =)(r)x(p)h(R) +Qoo(r, p,R). (25) 

where in the first term the required symmetry with 
respect to rand p has been taken into account. Here 
X(p) and h(R) are certain functions which are as yet un­
known. Near the critical point h(R) must fall off slowly 
with increasing R, and with respect to ~o we assume 
that 

In f Qo:(r, p,R)dRI < + 00. (26) 

Substituting (25) into (24) we obtain for the specific heat 

3 [ 1 ( oe ) 3 ]' n f cv=-k-k - - -- +- <1>'(r)g(r)dr 
2 kT On T 2 2kT' 

n' n' ff .1 kT'fS <1>(r)<1>(p)F,(r,p)drdp+ 4kT,f <D(r)<1>(p)Qo:(r,p,R)drdpdR 
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+ k [2~TS <D(rlx(r)dr), n S h(R)dR. 

If (26) holds, then the divergence of the integral over R 
in the last term of (27) is the only possible cause for 
the anomaly of the specific heat cy at the critical point. 

We do not have the means for a strictly analytic proof 
of relation (26) in contrast, for example, to the rigorous 
proof in[lJ of relation (12) in the corresponding three­
particle problem. The assumption that W(r, p, R) has 
only one contribution falling off slowly as R - 00 in ac­
cordance with (25) and (26) is apparently justified by all 
the consequences from it which will be obtained below. 

Thus, the function ~o(r, p, R) in accordance with (21) 
and (25) has near the critical point two different contri­
butions falling off slowly as R - 00 

Boo'(r, p, R) = w(r).w(p) (g(R) -1) + x(rlx(p)h(R) + QooO(r, p, R). 
.10- _ ..... _. _ _ _ 

(28) 
These same functions g(R) - 1 and h(R) define in ac­
cordance with (19) and the estimates following it all fur­
ther contributions to the correlation function energy 
density-energy density: 

<,.le(x)~e(x+R»-( n ::r (g(R)~ 1)~ (~S <D(r)x(r)dr)" h(R). 
T 2 (29) 

A comparison of (4) and (27) with the well-known ex­
perimental fact that the isothermal compressibility has 
near the critical point a stronger singularity than the 
specific heat Cy leads to the conclusion that the func­
tion h(R) must fall off with increaSing R faster than 
g(R) - 1. 

Additional information concerning the function X (r) 
can be obtained in the following manner. Directly from 
the definition of the distribution function F s in a grand 
canonical ensemble follows the identity[3J 

~' IS p<D'(p)[F,(r,p,R)~g(r)g(p)]dpdR=~kTrg'(r) 

+ 3nkT S [F, (r.,R) ~ g (r) jdR ~ 2n f p<D' (p)F,(p, r) dp ~ r<D' (r) g (r), 

(30) 
which is equivalent to the identity (0 g(r)/oYh ,11 = O. 

Substituting into (30) the series (17) and utilizing (20), 
(28) and the expressions (2), (4) we obtain 

:' )(r) SP<D'(fJlx(P)dPSh(R)dR=3n(2kT~(!!...) ) ag(r) 
~ an T an 

~kTrg'(r)+6( kT~( :~) T )g(r)~2n fp(D'(r)F,(r,p)dp 

n' 
~ r<D' (r)g(r) ~ 2 IS p<D' (p)QooO(r, p, R)dp dR. (31) 

At the critical point of the system all the terms of the 
right hand side of (31) remain finite under the assump­
tion (26) made above, while the left hand side' contains 
a divergent integral of h(R). It is therefore necessary 
that at the critical point the following condition be satis­
fied 

n S r<D' (rlx (r) dr = 0, 

which to a certain extent makes more precise the 
properties of the function X (r) from (28). Below we 
shall see that this condition is sufficient for making 
almost all the required estimates. 

(32) 

Comparing (32) with (7) and taking into account the 

fact that at the critical point (02p/on2)T = 0, we see that 
a possible solution of equation (32) is the function 

D' Dg(r) iJ'g(r) (33) 
)(r)=-(n'g(r»= 2g(r)+4n--+ n'--, 

a~ an iJ~ 

or, what is the same thing, 

)(r) =w(r) + n iJw(r) / iJn. (34) 

This is the only solution of (32) which depends only on 
g(r) and which is linear with respect to g(r) and its 
derivatives with respect to the density. In this case for 
further contributions to the correlations of the fluctua­
tions of the energy density and the anomalous part of 
the specific heat we obtain from (29) and (27) with the 
aid of (8) 

( De )' ( D'e ' <~e(x)~e(x+R»- n- (g(R)~ 1)+ n'-. -, ) h(R) 
an T Un:" T ' 

( n (D'e ) )' Cv - k - - n Sh(R)dR 
kT an' T • 

Unfortunately we can not prove the necessity of the 
choice of this particular solution of equation (32) 
although it appears to be quite plausible. 

(35) 

(36) 

3. RELATION TO THE DERIVATIVES WITH RESPECT 
TO TEMPERATURE 

The four-particle distribution function F 4(r, p, R) is 
closely related to the derivative with respect to the 
temperature of the two-particle distribution function 
g(r). Directly from the definition of the functions F s in 
a grand canonical ensemble the general expression fol­
lows: 

ag(r) S 
kT'-----;;;r = g(r)<D (r) + n [<D (p) + <D (Ir ~ pi) jF,(r, p)dp 

+ ;' SJ <D(p)[F,(r, p,R)~g(r)g(p)jdp 

[ n' 
~ w(r) n S <D(p)g(p)dp +"2 IS <D(p)[F,(p, R) ~ g(p) jdp dR] . (37) 

On the left hand side we have the derivative at constant 
density, the last term on the right hand side corresponds 
to a recalculation from (0 g( r)/o T) /J. ,y in a grand canon­
ical ensemble to (0 g(r)/o T)n in a canonical ensemble[3J . 
With the aid of expressions (17), (20), (28) and (3), (6) 
we can Significantly simplify (37) and obtain near the 
critical point 

kT' iJg(r) =<D(r)g(r)+(2kT~(!!...) )0l(r)+2nS<D(p)F,(r,p)dp 
aT 2 an T 

+ ~' IS <D(p)QooO(r, p, R)dp dR + )(r) (~' S <D(plx(p)dp )S h(R)dR. 

(38) 

Because of the last term the derivative (og(r)/oT)n in­
creases without limit as the system approaches the 
critical point. 

Thus, the short range two- particle correlations near 
the critical point are "anomalous" in the sense that the 
derivative with respect to the temperature (og(r)/o T)n 
increases without limit, but at the same time the func­
tions g(r), (og(r)/o n)T and (02g(r)/on2)T remain bounded 
and continuous. An analogous result for the ISing model 
was obtained in [4 J . Expressions (30) and (38) explain 
the seeming contradiction between the bounded nature of 
(op/oT)n and the unbounded nature of (0 do T)n at the 
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critical point which follows from the result of a direct 
differentiation of (2) and (3): 

( ~) = nk - ~ S r(JJ' (r) ag(r) dr, 
aT " 6 aT 

(39) 

( ~) =~nk+~S<D(r) ag(r) dr. 
aT n 2 2 aT 

(40) 

As a result of (30) the divergent contribution to ag(r)/aT 
according to (38) disappears when the integral in (39) is 
calculated, but remains in the case of (40). 

If we multiply (38) term by term by ~ n2q;(r) and 
integrate over all r then after simple manipulations we 
again obtain the expression (27) for Cy. Multiplication 
by-n2rcp'(r)/6 and integration over all r leads to the 
identity for a canonical ensemble: 

e-n (~) = T(!.L) -po an T aT n 

(41) 

Both results confirm the consistency of our estimates 
(26), (28) and (32). 

In conclusion we carry out a comparative estimate 
of the functions g(R) - 1 and h(R) utilizing considerations 
of the theory of Similarity of critical fluctuations[5J. 
We set 

(42) 

substitute into (4) and (27) and carry out the integration 
over R indicated there within the limits of a sphere of 
radius equal to the critical correlation radius R c' 
Setting Rc ~ T-/J., T = (T - T c)/Tc ' we obtain the 
anomalous contributions to the isothermal compressi­
bility and the specific heat Cy on the critical isochore 
which are respectively proportional to T-(2- a)/J. and 
T- b/J.. Equating this to the critical indices in standard 
notation (a is the critical index for the specific heat, 
2 - a - 2{3 is the critical index for the compressibility, 
/J. = (2 - a)/3) we obtain 

6~ 
1+a=2_a' 

3a 
b=--, 

2-a 

3-b i-a 

1+a ~ 
(43) 

With the estimates a ~ 0.1-0.2, {3 ~ 0.3-0.4 we obtain 
b ~ 0.2-0.3, a ~ 0.0-0.3 and (3 - b)/(1 + a) ~ 2. Thus 
the two long- range terms in (28) differ appreciably in 
the rate of falling off with increasing R and the function 
h(R) at large values of R is close to (g(R) - 1)2. The 
same considerations of the Similarity of critical fluc­
tuations together with the estimates given above for 
ag(r)/aT lead to the estimate of the temperature depen­
dence of the function g(r) for small values of r on the 
critical isochor: 

. g(r,1:) = g,(r, 1:) +A1:'-'x(r) + ... , (44) 

where go(r, T) is a regular function of T, A is a constant 
and X(r) is the same function as introduced above in 
(28) with the possible value (34). 

4. RELATIONS BETWEEN THE FUNCTIONS Bzry, 
In order to determine the asymptotic properties of 

the leading functions BU' from (17) it is necessary be­
forehand to establish tfie relations existing between 
them due to the symmetry requirements on the function 
F4(r, p, R). This can be done rigorously analytically by 
a method analogous to the one utilized for the same pur­
pose in [lJ. Since we are interested only in a small 

H, 

H ". 
J 

The relative position of four particles. The segments AB and Be lie 
on the intersections of the planes 1-2-3, 2-3-4 with the plane perpendic­
ular to the axis R; the segments A'B' and B' C' lie on the intersections of 
the planes 1-5-6, 5-6-4 with the plane perpendicular to the axis Ro. 

number of functions B~, with small indices we can 
proceed in a Simpler and more graphic manner. We 
introduce in addition to the relative coordinates of the 
particles r, p, R, J., J', cp into (17) the symmetric co­
ordinates r, p, Ro, J.o, J.~, cpo, where Ro is the distance 
between the midpoints of the segments rand p, while 
the angles J.o, J.~, cpo are analogous to the angles J, J.', cp, 
but are measured with reference to Ro in place of R 
(cf., diagram). We have 

R,=R+'/,(p-r), rp=inv, (45) 

from where one can easily obtain the formulas for the 
transition from one set of coordinates to the other. It 
is obvious geometrically that all the symmetry require­
ments reduce in terms of the new coordinates to the in­
variance of F4(r, p, Ro, Jo, J~, CPo) with respect to the 
replacements r - - r, p - - p, carried out separately 
and together, reflections in planes passing through Ro 
and reflections in the plane normal to Ro and passing 
through the midpoint of the segment Ro. All these con­
ditions are satisfied by the double series 

F, (r, p, R" it" ito', CPo) - g(r) g(p) 

=.E .EC,~,,.(r, p,Ro)p,r(cosit,)P,';: (cosito')cosmcp" (46) 
1,1' m 

which contains in each term only even lower indices and 
in which CmZ Z,(r, p, Ro) = CmZ' Z(r, p, Ra). All the co-

2 ,2 2 ,2 

efficients C![,2Z' with Z ~ Z' must be regarded as being 
independent of one another. 

The series (17) is obtained from the series (46) by a 
term by term transition to the old coordinates, by an 
expansion in terms of spherical harmonics in terms of 
the old coordinates and by a regrouping of terms. For 
R »r, p all the calculations are carried out in an 
elementary manner but turn out to be awkward. As a 
result all the functions BU' turn out to be expressed in 
terms of the functions C~, 2Z" Since there are many 
more functions of the former kind than of the latter 
kind, then, by eliminating CmZ Z" we obtain the com-

2 ,2 

plete set of relations between the functions BIr,. In the 

course of elimination of CmZ Z' it is found automatically 
2 ,2 

that each of these functions in terms of the new argu­
ments can be expressed in terms of the combinations of 
the functions BIr, (and of their derivatives) with only 
even lower indices, for example: 

r' + p2 a'Boo' 2 &Boo') 
Coo'(r, p, R) = Boo' (r, p,R)- --u--( all' + R---atl 
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etc. On the right hand side in each line we have not 
shown terms of higher orders of smallness with respect 
to r/R and p/R. Substitution into the remaining equa­
tions for the case R » r, p leads to an explicit expres­
sion for all the B[1\ (with at least one odd lower index) 
in terms of BU' with two even lower indices, including 
zero. For example, we have 

B"o=-- B"o---t..Booo +- --"-+-B20 ' 
r D { r' + p' } r { DB 0 3 } 
2 DR 60 5 DR R 

° rp D'Booo (48) 
B" = 4-----aH' + ... 

etc. Here toR is the Laplacian operator in the space of 
R, and terms of higher orders of smallness have again 
been omitted. More complete formulas in somewhat 
different form will be given below. Thus, in the series 
(17) we should regard only the coefficients of the form 
B!f,2I' as independent, while all the remaining ones can 
be expressed in terms of them. 

In connection with the result obtained above concern­
ing the long- range contributions to the function ~o near 
the critical point it is useful to separate from the 
earlier functions B~, terms which are directly connec­
ted to the function g(R), h(R) and to their lower order 
derivatives. From (47) and (48) it can be seen that such 
contributions from Bgo appear in the case of BU' inde­
pendently of the parity of the lower indices. Together 
with ~o there are in all seven such functions containing 
g(R), g'(R), g"(R) and h(R) , h'(R) or terms of the type 
g(R)/R etc. which are equivalent to them in order of 
smallness. Such functions with an explicit indication of 
the terms separated out are 

Booo =Ul(r)w(p) (g(R) -1) + x(r)x(p)h(R) + Qooo, 
Blo' = 'j,r{Ul(r)Ul(p)g'(R) + x(r)x(p)h'(R)} + 3Q,,0, 

B"O(r, p, R) =B"O(p, r, R), B"o = Ij,rpw(r)w(p)g"(R) + 9Qllo, 
Bit' = -rp{t)(r)w(p)g'(R) j 4R + 'j,QII', 

B,o' = 'jl2r'w (r) (j}(p) (g"(R) - g'(R) j R) + 'SQ,,', 
B"O(r, p,R) =B,o'(p,r,R). (49) 

These expreSSions are analogous to expressions (10), 
(13), (14) in the three-particle problem. In order to 
make the notation for all the remaining functions B[1\ 
uniform we set 

B,';'. = (21 +1) (21' + 1) (1- m)! (l' - m)! Q';, 1 l' > 2 (50) 
(I+m)!(t'+m)! ' , 

and regard all the QTz, as new unknown functions instead 
of BU" Here we have Q~,(r, p, R) = Q(I(P, r, R). Sub­
stitution of (49), (50) into the complete set of equations 
of the type (48) leads to an explicit expression for the 
asymptotic values for R - 00 of the functions Qy!, with 
odd lower indices in terms of the asymptotic values of 
the "even" functions QU" For the lower functions Qy!, 
we obtain in this way the relations required later 

° r { DQooo r' + p' , (DQ,o' 3 ) } 
Q" =6 aR"-~w(r)w(p)(t.Rg(R» +2 aR+R"Q20o + ... 

Ql20 = ~ { D;;,o + 2~ Q,,' +2 (Da~,o + ~ Q,,' )+ ... }, 

Q ,,. = r {_ ~ Q ° + ~ Q ° + ~ ( aQ2,' + ~ Q I) + 1 Q' } 
1- R 02 5R 22 12 ull H 22 24R" + ... 

(51) 
etc. (The expressions for Q~1 and Qt1 are omitted be­
cause of their awkward form). One should add to this 

the expressions analogous to (51) for Qg1, ~1' Q~1 which 
differ from those written out above by permutations of 
the lower indices and the letters rand p. In (51) in the 
function Q~o we have retained as an example the term 
with the third derivative of g(R). Analogous terms with 
higher order derivatives of g(R) and h(R) occur in (51) 
and in all the subsequent functions. Moreover, we have 
not written out the terms with derivatives of higher 
orders than indicated of the different "even" functions. 

5. ASYMPTOTIC BEHAVIOR OF THE FUNCTIONS ~7' 
For all the functions QW, with 1 = 1 or I' = 1, m = 0,1, 

one can obtain explicit asymptotic estimates for R - 00 

if one utilizes the equation from the chain of 
Bogolyubov[6) equations relating the distribution func­
tions F3 and F4 : 

DF,(r"r"r,) +F ( ) I)U,(r"r"r,) 
kT , r l , r2, r, (52) 

a~ ()~ 

J ()<D(lrl-r,l) + n F,(rl, r" r" r,)dr, = 0, 
arl 

where 

U,(rl, r" r,) =<D(lrl-r,l) +<D(lrl- r,1) + <D(lr, - r,I). 

In terms of the coordinates r, p, R, J, J', cp the projec­
tions of the vector equation (52) along the direction of R 
and on the plane normal to R yield 

n J <D' (p) F, (r, p, R) cos {}' dp = kT aF, (r, R) 
aR 

+F,(r,R) (1ll'(R)+ :R <D(IR-rl»), 

J ' , sin {} 
n <D (p)F.(r,p,R)sin{) cos<pdp=--R-

X {kT aF,(r, R) + F,(r, R) alll(IR - rl) } . (53) 
D(costl) a (eos{}) 

Substituting into this the series (9) and (17) we obtain 
the equations 

\"1{ n J aA, (r, R) 
~ 3 <D'(p)B"O(r,p,R)dp-kT aR <D'(R) (g(r) Ii 01 

, 
} alll(IR-rl) 

+A,(r,R» P,(costl)= fJll F,(r,R), 

1: { ~ J <D' (p)B"I(I:, p, U)dp +~A,(r,R)} P,'(cos tI) 
, 3 R 

sin{} a<D(IR- rl) 
= --if fJ(eos{}) F,(r,R). (54) 

ExpanSion of the right hand sides in series in terms of 
PI (cos J) and pi (cos J) leads to two infinite systems of 

equations for Bl1 and Bi1' 
In order to obtain asymptotic estimates for R - 00 

one can neglect in (54) all terms containing the factors 
<I>(R), <I>(IR- rl) and their derivatives. We then obtain 
the simple relations: 

nf <D' (p)B"O(r, p, R)dp = 3kT aA,(r,R) + 
aR "., 

n f <D' (p)BIII(r, p, R)dp = _ 3;T A,(r,R)+ .... 
(55) 

For 1 = 0 and I = 1 with the aid of (4), (5), (10), (12), 
(14), (32), (49) we obtain after some manipulations the 
integral estimates 

;' JJ <D' (p)RQot°(r, p, R)dp dR 

\ 
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=-~(kT-(!!.-)) w(r)_~nkTiJg(r) + 
2 an, 2 r)n ... , 

n' . 
T SJ Ill' (p)H'Q,,'(r, p, R)dp dR 

= (kT - (:~) ,) rw(r)- 2nkT SRQ,(r,R)dR+ ... , 

n' 
? SS <D'(p)R'Q"l(r, p,R)dpdR 

= (kT- (~~) J rw(r)- ~ nkT S RQ1(r,R)dR+.... (56) 

According to estimates from[l] the function Ql(r, R) 
falls off with increasing R faster than R-4 • Therefore 
the right hand sides of (56) remain finite at the critical 
point, and we conclude that the pair of functions Qgl and 
Q~o falls off with increasing R faster than R-4 , while the 
pair of functions Q~l and Qtl falls off faster than R-5 • 

For I = 2 we obtain in an analogous manner the integral 
estimates: 

n' 
2 Sf <D' (p)RQ,.'(r, p,R)dp dR 

9 Sg(R)-l 3 S 
=- 80 nkTr'w(r) R' dR-TnkT Q,(r,H)dR+ ... , 

n' 
2 SS <D'(p)RQ,.'(r, p,R)dpdR 

9 Sg(R)-l S 
= - 20 nkTr'w(r) R' dR - 6nkT Q,(r, R)dR + .... (57) 

In accordance with ll] the function Q2(r, R) falls off with 
increasing R faster than R- 3 • If, moreover, in (42) 
a > 0, then the right hand sides of (57) remain finite at 
the critical point, and we conclude that the four functions 
($1, Q~2' ~l and Qt2 fall off with increasing R faster than 
R-4. But if in (42) a = 0 and g(R) - 1 ~ l/R, then these 
functions fall off at the critical point like R-4 • 

Formulas (31), (32) give an exact integral estimate 
for Qgo from which it follows that at the critical point 
this function falls off with increasing R faster than R-3 • 

Finally from (50) and (55) for I > 2 one can obtain the 
estimates 

n~ Sf <D' (p)RQ,,'(r, p, R)dp dR = - : nkT S Q,(r, R)dR + ... , I> 2, 

n' 
2 Sf <D'(p)RQ"I(r,p,R)dpdR= -1(1+ l)nkT S Q,(r,R)dR+ ... , 1>2. 

(58) 
In accordance with the estimates for Ql from [lJ it fol­
lows from here that at the critical point all the functions 
QZ1' Q~, QZl' ~l with I > 2 fall off with increasing R not 
slower than R- . 

Although we do not have at our disposal exact integ­
ral equations for the next coefficients in the expansion 
(17) we can obtain some information concerning the 
functions ($0, Q&, Qg2, Q~2' and Q~2 from the following 
considerations. If in expressions (51) and analogous 
ones for the coefficients Q~l and Qtl we restrict our­
selves to contributions of the second order in r/R and 
p/R we obtain a closed system of five differential equa­
tions with respect to the functions indicated above. Since 
the order of smallness of the right hand side and the 
left hand side of the equations must cOincide, the order 
of each of these functions must be lower by not more 

than unity than in the case of Qgl and ~l estimates for 
which are given in (57); in other wordS, the functions 
indicated above fall off with increasing R faster than 
R-3 • 

6. DISCUSSION OF RESULTS 

We have carried out all the possible estimates for 
the first several coefficients of the series (17) in which 
we have taken into account distant and moderately dis­
tant contributions to the four-point distribution function 
for a classical liquid near its critical point. It is diffi­
cult to obtain estimates for the remaining coefficients. 
However, if one assumes that in a homogeneous and 
isotropic liquid there are no dominant angular correla­
tions for two pairs of particles as the separation of the 
pairs from one another is made infinite, then, appar­
ently, all the essential singularities of the function F4 
at the critical point have been taken into account in this 
paper. 

The estimates obtained in Sec. 5 for the remainders 
of the functions BzIf' are directly applicable to the study 
of the cor relators energy denSity-stress tensor and 
stress tensor-stress tensor. ConSidering individually 
the correlators containing a diagonal part and a deviator 
of the stress tensor one can easily verify that none of 
them contain near the critical point contributions falling 
off slowly with distance. 

We note that contributions responsible for the behav­
ior of the function F4 in the critical region are obtained 
from exact integral equations and in their form differ 
appreciably from many approximations frequently util­
ized for this function, among them Kirkwood's super­
pOSition approximation. If in the series (17) we restrict 
ourselves to the principal terms which do not contain 
any angular dependence, the function F 4 satisfies the 
hypothesis of conformal invariance C7J and the hypothe­
sis concerning the "coalescence of correlations" 
(cf.,[BJ). 
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