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The effect of Coulomb interaction between electrons near the threshold is estimated. A gapless 
semiconductor with a linear isotropic dispersion law is conSidered. It is demonstrated that at small 
distances ahead of the threshold, motion in a plane perpendicular to the external momentum is 
quantized. Bound states arise which are similar to Landau levels. 

1. INTRODUCTION 

ABillKOSOVand Beneslavskil [11 advanced the hy­
pothesis that gapless semiconductors exist, and inves­
tigated their properties. They have shown that in 
crystals with cubic symmetry and with symmetry cor­
responding to the groups Dn the electron spectrum is 
isotropic: 

w = ± vq. (1 ) 

The Green's function for the non-interacting electrons 
iS P ] 

G~ = [w - voq + it. sign W)-I, t. -+ +0. (2) 

The Coulomb interaction between the electrons alters 
the Green 's funct~on little, and the resulting correc­
tions are ~e2 In (kmax/k), where kmax is of the 
order of the period of the reciprocal lattice, and are 
significant only in the region of exponentially small 
momenta. For the polarization operator that charac­
terizes the interaction of the crystal with the external 
field, however, the Coulomb interaction is more sig­
nificant. We shall show that these corrections are 
most appreciable near the two-electron threshold. In 
this region, the Coulomb interaction leads not to 
logarithmic but to power-law corrections of the type 
e2/';vq - w. Summing the principal diagrams, we can 
find the character of the singularity of the polarization 
operator. It turns out here that at small distances 
there appear ahead of the threshold certain peculiar 
bound states in which the motion is quantized in a plane 
perpendicular to the momentum, in analogy with the 
Landau levels. 

2. FIRST PERTURBATION-THEORY CORRECTIONS 

In the absence of Coulomb interaction, the polariza­
tion operator (the diagram in Fig. 1a) is equal to 

(0) __ • S S - ( . _ ) - ( . k) dw, d3k II - l P Go W-(,lt, q k Go WI, (2n)" 
(3 ) 

Substituting the Green's function (2), we obtain 

II(O) _ S \k\\q-k\+k(q-k) \k\+lq-k\ d'k 
- 2\k\lq-kll w'-.v'(lkl+lq-k\)' (2n)' (4) 

=-~ln qm= 
12n'v ~ q' - w'lv' ' 

where qmax is an integration limit of the order of the 
period of the reciprocal lattice. 
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Near the threshold (w = qv), this expression be­
comes infinite. In the integral (4), the following region 
of momenta is significant: 

0< k, < q, k.J. - qyr;, (5 ) 

where I) = (qv - w)/ qv is the distance to the threshold, 
and the z axis is directed along q. The large contribu­
tion is due to the relatively broad region with respect 
to kz . 

We now take into account the Coulomb interaction. 
The first correction is determined by the diagram of 
Fig.1b: 

II(t) = -iSp S G(WI; k,)G(w,; k,) 

x G(w - w,; q - k,)G(w - WI; q - k.) 

XD(k _k)dw, d3k,dw,d3k,. 
I , (2n)'(2n)' 

(6) 

Just as in (4), the largest contribution to (6) is made 
by the region where k 1,2 satisfied the inequality (5). In 
this region, the expression for the Green's function of 
the electron can be simplified: 

G(k)=_1 __ ~ \kl+k 1 
. w-vk 21kl w-vlkl (7) 

+ Ikl-k "" 1+<1, 
21kl w + vlkl 2 -w---v"-Ik""·I 

k"'" ok, 

+ 1- <1, 
2 -~)-:-+-v7:1 k-:-'I ' 

k = (p, ~), pllz, 
I k I = p + .x' / 2p. 

ox..l.. z, 
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The trace in (6) can now be taken in elementary 
fashion. Integrating with respect to the frequencies, 
we obtain 

II't) = _ .-!._1_ [f. e' d'kl _ 
4 (211)' 'Eo(k,-k,)'w-v<!k,I)+lq-kd) 

d'k, e' d'k, 

X r~ _ v( Ik,J + Iq - k,l) S Eo(k, - k,)' -w - v(Jkd +Iq - kd) 

d'k (8) 
x -w - v (;I k,l ~ I q - k, I) l 

The second term is negligible near the threshold. 
Further, we can integrate in (8) with respect to the 
difference PI - 1>2, and only the Coulomb potential takes 
part in the integral. In the remaining factors, we can 
put p. = 1>2:' p, since the integral 

e' J d(p, - p,) e' (9) 
Eo (p,-p,)'+(x,-x,)' Eo Ix,-x,1 

converges in the region I PI - 1>21 ~ I KI - It:! I ~ q 15. 
As the result we obtain 

II(') = _.-!._1 __ 1_J dp d'x, d'x, e' 
4 (211)' q'v' 0 a(x,)a(x,) Eolx,-x,l' 

a(x) = -I'> + x' / 2p(q - p). 

Near the threshold, the expression (10) has a 
stronger singularity than (4): 

II't) -+- const· e'I'>-"'. 

(10) 

(11) 

Thus, the Coulomb interaction becomes appreciable 
at a distance 0 ~ e4 to the threshold. 

To find the polarization operator in the region 
6 ;S e 4 , it is necessary to sum corrections of higher 
order. 

3. EQUATION FOR THE POLARIZATION OPERATOR 

We separate the diagrams that make the largest 
contribution to the threshold region. It is natural to 
expect them to be the diagrams containing the largest 
number of intermediate two-electron states at a given 
power of e2 • 

For example, the diagrams in Figs. 2a and 2b, which 
describe the production of several pairs, make a con­
tribution ~(e2 In of, e 46-l/2 In 6, whereas the diagram 
of Fig. lc 

II") = -iSp S G(w,; k,)i']"(wz; k,)G(w,; k,)G(w - w,; q-k,) 
.. ~ d'k,d'k,d'k, 

x G(w - w,; q-k,)G(w - w,; q- k,)D(k, -k,)D(k, - k,) (211)'(211)'(2n)" 

(12) 
makes a contribution ~ ( e2/ 15) 2. 

As a result we are left only with the diagrams 1T(n) 
of the form in Fig. Id, describing the Coulomb interac­
tion of one electron-hole pair. 

FIG. 2 

For the sum of such diagrams (Fig. Ie) we can 
write the equation 
~ S ~ ~ dw,d'k 

II= ,,:;-II,n)=,-iSp G(w,;k)G(w-w,;q-k)r(w;q;k) (211)' ' (13) 

where the vertex part r satisfies the equation 

(14) 

In explicit form 
r(w;q,k)=1 

+_1_ S e' 1 . r(w;q,k,) dw,d'k: _ . (15) 
(211)' Eo(k-k,)' w,-vk, w-w,-v(q-k,) 

It is easily seen that r does not depend on the elec­
tron frequency. We can therefore integrate with re­
spect to WI in (15): 

e' 
r(oo;q,k)=1+ S 8o(k_k,),A,r(oo;q,k,) (16) 

1 d'k, S ' ·A. . + (oo .... -oo)dk, 
00- v(jkd+lq-kd) (211)' 

The term with the substitution W - - W in (16) is 
negligible near the threshold, and for the remaining 
term in (16), an important role will be played by the 
momentum region in which the projection operators 
A I and A2 can be replaced by (1 + az)/2, and I k 1= p 
+ K2/2p. 

Further simplification results from the fact that the 
region p - PI ~ q 15 is important in (16) (p and PI 
are the longitudinal components of k and k l ). There­
fore only the Coulomb potential takes part in the inte­
gration, and in the remaining factors we can put 
p = Pl. As a result we get 

1 1 e' 
r(oo;q,k)=1+--(2 )' S I I qv 11 80 x-x, 

[ 1 + 11, (. k) 1 + 11,] d'x, x --roo,q, ,-- -(-i' 
2 2 a x, 

(17) 

Similar simplifications in (13) yield 

II=_1 ___ 1_Sdp d'x S [1+11, r 1+11, ] (18) 
qv (211)' a(x) p 2 2' 

These integral equations are solved in the next section. 

4. SOLUTION OF THE EQUATION FOR II 

It is convenient to introduce a quantity F( r 1), which 
is connected with r in the following manner: 

Then 

F( ) = (' \"r.1 rPx S [1 +11'r 1 +11, ] (19) 
r .1 ~ e a (x) p 2 2' 

1 1 • II=---S F(O)dp. 
qv (211)' 0 

(20) 

Substituting (19) in (17), we obtain after transforma­
tions the following differential equation for F( r 1): 

(-I'> !1 r) , 1 1 e' (21) 
( ) F(r.L)=(211) <'I(r.L)+-, --F(r.L)' 

2p q - P 811 qV80 r.L 

This is the equation for the Green's function of a 
two-particle with energy 0 and mass p( q - p), mov-
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ing in a potential field e2/r1. Equation (21) is solved 
in the Appendix with the aid of the Laplace transforma­
tion. The answer is expressed in terms of the con­
fluent hypergeometric function >It: 

where 

F(rJ.) = 4Jtp (q - p)e-'~f(-y)'l'(-y, 1,2rJ.~), 

fI' = -6p(q - p), y =al'y(1- y) - 'I"~ 

p 
y=­

q 

1 l'2 e' 
a=--=----. 

l' 6 16n' VE, 

At r 1 - 0 we have 
F(rJ ,} = -4np(q - p) [In r + In l'6 +'l'( -V) + constj, 

d 
'P (x) = 'dx'ln f(x). 

(22) 

(23) 

The term p( q - p) In r leads to a term q2 In r in IT; 
this reduces to a renormalization of the dialectic 
constant E and is insignificant near the threshold. 

The singular part of IT is equal to 

II.=L_1_ k (11 qv l'2~) (24) 
v 2n' f qv - w 8n' VE, ' 

where the universal function K(a) is given by 

, 1 
K(a)= - J y(1- y) [-lna+'Il( T-al'y(1- y) )] dy (25) , 

=~lna+ ~{_1_[_c_~_~c' 
6 ~ 2a 4 2 

n=-=O 

e' (n 1)] 1 1 } 
+ l'c'-1 2+arcsin~ -"6 n+ 1 ' 

c = (2n + 1) / a. 

The imaginary part of K(a) for real Q (Le., at w < qv) 
has the simple form 

["-;1] 
It ~ (2n+ 1)" (26) 

ImK(a) = 4a" f; ya"-(2n+ 1)" 

A plot of 1m K(a) is shown in Fig. 3. 
Notice should be taken of an interesting phenomenon, 

namely infinite peaks at 
1 

qv-w= (2n+1)' (27) 

[ l'2 e']' 
X qv 16n' -;;;: . 

At these energy values, the electrons and holes form 
bound states in which the motion in a plane perpendicu­
lar to the total momentum is quantized, and the motion 
in the direction along the momentum is continuous, in 
analogy with the Landau levels. 

1mK 

", 

FIG. 3 
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In conclUSion, we thank S. D. Beneslavskil for valu­
able discussions and A. A. Migdal for directing the 
work. 

APPENDIX 

We rewrite (2l) in the form 

[ _6_ L'1, ~]F(r ... )=6(r.l)(2n)2, (A.l) 
2p(q - p) r ... 

where 
1 1 e' 

~=---
8:1' qv Eo ' 

L'1,=~~(r~). 
r dr dr 

Since o( r 1) = o( 1 r11 )/1 r 11, we can rewrite (A.l) in 
the form 

{ -1 d (r~)-(6r+S)}F(r ... )=2n6(lrJ.l>. (A.2) 
2p(q - p) dr dr 

We apply to (A.2) the Laplace transformation 

1(8)= Je-·'F(t)dt. (A.3) 

We obtain 

where 
W=-2p(q-p)6, ~.=2p(q-p)s. /=4np(q-p)/.· 

We seek the solution in the form 
I.=A'IJ, (A.5) 

where l/J is a solution of the homogeneous equation 

~=(:~~)Vk~I)' Y=+(~-l). (A.6) 

Substituting (A.6) in (A.5) and in (A.4), we obtain 

( k - B ) v 1 J' dp (P + ,J ) v 
1.= k+ji k-~ 0 p_p p-B' (A.7) 

After the substitution 

(p + M / (p - ~) = t(k - ~) / (k + ~) (A.8) 
we get 

1 t-y - f 

1 -J dt ,- k(1-t)+~(1+t) . (A.9) 
, 

To find F( r 1), we must take the inverse Laplace 
transform 

1 "+;~ , t-'-' dt 
F(r )=4np(q-p)- J e·'J.dkJ (A 10) 

... 2ni. k(l-t)+I;(l+t)" 
1')-too 0 

Integrating in (A.l 0) with res pect to k, we obtain 
1 t-v- I 

F(rJ.)=4np(q-p) J--e-'~'I+tl/"-f)dt. 
1-t , 

(A.ll) 

By means of the substitution (1 + t)1 (1 - t) = 1 + 2y 
we reduce (A.ll) to the more standard form . 

F(rJ.) = 4np(q - p)e-'~ J y-v-t(1 + y)' e-'~" dy 

= 4np(q - p)e-'~f(-y)'l'(-y, 1, 2r~), 

where >It is a confluent hypergeometric function. 

(A.12) 

1 A. A. Abrikosov and S. D. Beneslavskii, Zh. Eksp. 
Teor. Fiz. 59, 1280 (1970) [Sov. Phys.-JETP 32, 699 
(1971)). 
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