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A microscopic theory of low-frequency (w« EF/ll, EF is the metal Fermi energy) surface excitons 
in a dielectric adjacent to a metal is developed. The electrostatic image forces fundamentally affect 
the spectrum of these states, the conditions for their formation and the nature of the spectrum being 
essentially different for vibrational and electron excitations. Penetration into the metal of an elec­
tric field produced on propagation of waves in the dielectric leads to "metallic" quenching of exci­
tons. The intensity of this quenching for surface excitons and also for "localized" excitons as a 
function of their distance from the metal-die lectric boundary is calculated. 

1. INTRODUCTION 

NUMEROUS experimental investigations of supercon­
ductivity of metallic films in contact with dielectrics 
call urgently for a discussion of the peculiarities of 
low-frequency (w «EF/ll, EF is the Fermi energy) 
surface excitons and optical phonons in a dielectric in 
contact with a metal. An examination of these states is 
of interest also in connection with their possible influ­
ence on the mechanism of the experimentally ob­
served[l) surface annihilation of excitons, due to trans­
fer of the exciton energy to the free electrons of the 
metal ("metallic" quenching of excitons (see[2,3)). 

The presence of a contact between the dielectric 
and the metal affects radically the spectrum of both 
the long-wave and short-wave surface excitons. In the 
case of long-wave excitons, their singularities, as 
shown in[4), can be investigated within the framework 
of macroscopic electrodynamics with allowance for 
spatial dispersion. On the other hand, a study of short­
wave surface excitons calls for the use of microscopic 
theory and a consistent allowance for the penetration, 
into the metal, of the electric field produced when 
waves are excited in the dielectric. 

The mechanism whereby the metallic contact influ­
ences the spectrum of the surface excitons can be 
easily understood qualitatively by using as an example 
a model in which the dielectric contains at the lattice 
sites dipole oscillators whose frequency is low in com­
parison with the plasma-oscillation frequency of the 
metal. In first order of approximation the metal elec­
trons can be assumed to follow adiabatically the dis­
tribution of the charges in the dielectric and the quasi­
static approximation can be used. If Pn is the dipole 
moment of an oscillator located at site n of the die­
lectric at a distance z from the boundary with the 
metal, then the electrostatic image forces will lower 
the oscillator energy by an amount -ap~/(2z)3, where 
a is a positive factor that depends on the orientation of 
the dipole. This lowering of the potential energy leads 
to a decrease of the natural frequency of the oscillator. 

In quantum language, we can say that the image 
forces produce for the exciton at the boundary with the 
metal a potential well U(z) = _A/z 3, A;> 0, in which, 

generally speaking, surface-exciton states can be pro­
duced. 

For the electronic excitations of the dielectric, the 
foregoing conclUSion that their energy is decreased by 
the image forces is not always valid (see Sec. 3 below). 
Moreover, the energy of the electronic excitations can 
in some cases even increase, leading to the occurrence 
of surface states in an energy region located above the 
volume-exciton energy band. 

In the next sections we develop the theory of small­
radius surface excitons in a dielectric with allowance 
for the penetration of the field into the metal. Within 
the framework of the theory we consider also "metallic" 
quenching of "localized" and surface excitons. Since 
we are interested principally in short-wave excitations 
of the dielectric, we shall use for the description, in 
accordance with the foregoing, the microscopic theory. 
At the same time, the description of the field in the 
metal will be carried out within the framework of the 
phenomenological Maxwell's equations. Such an ap­
proach is justified since the wavelengths of the con­
sidered excitons greatly exceed the average distance 
between the conduction electrons of the metal. 

2. DERIVATION OF FUNDAMENTAL RELATIONS 

The total Hamiltonian of the metal + dielectric sys­
tem considered by us can be represented in the form 

". .... .... .... (0 ..... (2) 

H=H, +H,+H'nt + Hin" (1) 

where HI is the Hamiltonian of the metal, H2 is the 
Hamiltonian of the system of non-interacting molecules, 
felt is the Hamiltonian of the interaction of the mole-In 
cules with the metal, and ftIrit is the Hamiltonian of the 
intermolecular interaction. If cp(r) is the potential of the 
electric field produced at the point r of the dielectric 
(z;> O)by a metal filling the half-space z < 0, then the 
Hamiltonian of the interaction of the metal with the 
dielectric is 

~ (t) ~J Hin, = ~ cp(r)Pn(r)dr, (2) 

where Pn( r) is the charge-density operator of the 
molecule located in the n-th site of the crystal lattice. 
At the same time, the operator H~ 2lt can be expressed 

In 
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in the following manner: 

A (2) 1 ~ W 
Hint = 2 ~ n,m, n_ (3 ) 

where Wn m is the operator of the interaction of mole­
cules located in sites n and m. We shall henceforth be 
interested in excited states of the system, with ener­
gies close to the energy of one of the excited states of 
the isolated molecule. Since the intermolecular inter­
action, as well as the interaction of the molecules with 
the metal, is weak in comparison with the intramolecu­
lar interaction, the operators Hirit and H~ 2)t can be 

, ill 
taken into account within the framework of perturbation 
theory, as is usually done with respect to H~ 2~ in the 
theory of small-radius excitons. ill 

The peculiarity of the considered situation lies in 
the fact that in the presence of a metal there occurs, 
in addition to the usual intermolecular interaction (3), 
also an intermolecular interaction due to exchange of 
virtual excitations of the metal. It is precisely this type 
of interaction, as is well known (see, for examplep1) 
which leads to the occurrence of van der Waals forces 
on the boundary of two media; at the temperature 
T = 0 these forces are determined principally by the 
renormalization of the ground state of the system. In 
our case, on the other hand, the change of the energy 
and of the excited state of the dielectric also becomes 
important. In addition, as already noted, the interaction 
of the molecules with the metal leads to "metallic" 
quenching of the excitons. 

In the excited state, the wave function of the dielec­
tric can be represented in the form 

(4) 

where X; is the wave function of the system of non­
interacting molecules, in which a molecule located at 
the site n is in the f-th excited state, and all the re­
maining molecules are in the ground state. The state f 
will be assumed, for simplicity, to be nondegenerate. 
The coefficients Us satisfy in the first order of pertur­
bation theory in Hint and in the second in H~rit the 
following system of equations: 

where Fi.wfo is the energy of the f-th excitation in the 
isolated molecule, 

(5) 

M nm = w:~· + }{K(r', r, - W'I) + K(r, r',{J).,) }p~' (r') p':: (r)dr dr', n * m, 

, 
~ (0 

Mnn= tl...JM"n, 
i=:1 

where 

(6) 

(7 ) 

M (I)= ~'(WffOO_WOOOO) 
nn ~ nm nm, M~~= E' S lK(r',r,O)+K(r,r',O)}· 

m m 

. [pn (r ) - p. r)] Pm r r r, .n = r, r , p. r pn r If, 00 (' o. ( ) d d' M(') S K ( '0) [ ff ( ') ff ( ) 

.. 00, 'M(') n S K( , ) IP( ') >f( )d d' -po (r)pr. (r)]drdr, nn= ~ r,r,-wpi P. r pn r r r 
p"" 

-E S K(r',r,-wp.)p:p(r')p:'(r)drdr'. 
p,.O 

In these relations, the matrix elements are 

W!~""'" = <"'.""'m"IWnml"'/'·"'m';>, 

p~" (r)= <",.'I;;.(r) I",.">, 
(8) 

where iJI~ is the wave function of the n-th molecule in 
the f-th state. 

The correlation function K in (6) and (7) is deter­
mined by the relation 

K(r,r',w)= -is <rp(r,t)qJ(r',O» ei·'dt, . 
and the averaging of the operator under the integral 

(9 ) 

sign is over the ground state of the metal. A A 

The matrix elements of the operators Wnm and Pn 
can be regarded as known, if one knows the wave func­
tions of the isolated molecule. These matrix elements 
are essentially different for the vibrational and elec­
tronic transitions in the molecule, so that the matrices 
Mnm are also different (see (6), (7». As to the corre­
lation function K, it can be expressed in the pheno­
menological description of the metal in terms of its 
dielectric constant. 

Let us assume that outside the metal, Le., at z > 0, 
there is an extraneous charge of density p( r, t). In the 
linear approximation, the average value of the potential 
induced by this charge at the point r is given by (see[5]) 

, 
<rpind(r,t»=iS dt'S dr' p(r',t')(qJ(r',t')qJ(r,t)-rp(r,t)rp(r',t'», 

which in the Fourier representation with respect to 
time can be written in the form 

(rpind(r,w»=-S dr' p(r',w).®(r,r',w). (10) 

In relation (10), the quantity D(r, r', w)is the Fourier 
transform of the retarded Green's function 

.®(l', r', t) =-i8(t)<qJ(r', O)<p(r, t) -o:p(r, t)<p(r', 0». (11) 

The quantity .®(r, r', w), which is equal to the poten­
tial induced at the point r by a o-like source situated 
at the point r' (see (10», can be obtained from Max­
well's equations. Indeed, according to[61, the electric 
field intensity in the metal, if retardation is taken into 
account, can be represented in the form 

, i Sdk kp.(r',k.Lw) ik' 

E(r,r ,w)= (2Jt)' k' e,(w,k) e, k.LE!(k.,k.), (12) 

€z(w, k) is the "longitudinal" dielectric constant of the 
metal, and ps(r', klW) is the Fourier component of the 
density of the induced surface charges on the interface. 
The field outside the metal is determined by the poten­
tial 

rp(r, r', w) =qJSO(r, r', w) +q>.ind'(r, r', w), (13) 

where 
e e S dk 'k( .) rpSO(r w)=--""- -e' ,-, , 

, Ir - r' I 2n' k' 

whereas the potential due to the presence of induced 
surface charges, occurring under the influence of the 
o-like source at the point r', can be expressed in the 
form 
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The function c(r', kl.w) and the surface-charge density 
ps(r', kl.w) can be obtained, using (12) and (13), from 
the boundary conditions for the tangential and normal 
components of the vectors of the field E and of the 
induction D: 

Et(+O) = Et(-O), E.(+O) = D.(-O). 

On the other hand, knowledge of the function c(r', kl.w) 
makes it possible to determine, in accordance with 
(10), also the value of q)(r', r, w). Simple manipula­
tions lead to the following relation: 

1SdkJ.(1-/(w,kJ.») { 'II '} q)(r',r,0l)==2 -k- 1+/( k) exp ikJ.(r-r)- kJ. (z+z) , 
I' . .I. W, .I. (14) 

where 
+~ 

( k kJ. Sdk, 
/ w, .I.) = - k' ( k)· "'_00 8, (0, 

(15a) 

It can be shown that relation (14) retains its form 
also when retardation is taken into account. However, 
the more general relation l ) 

/(w,kJ.)=-i~Z(w,kJ.) (15b) 
ckJ. 

is then satisfied in place of (15a), where Z(w, kl.) is 
the surface impedance of the metal when retardation is 
taken into account (see [7]): 

iw +~ dk, [kJ.' k"] Z(w,kJ.)=-S- . . + . (15c) 
nc _00 k' (w'/c') e, (w,k) (w'/c') Et(W, k) - k' 

This relation contains besides the "longitudinal" die­
lectric constant €Z(w, k) also the ''transverse'' die­
lectric sonstant of the metal q( w, k). 

Using the spectral expansions for the functions K 
and q), we can easily show that the sought correlation 
function K( r, r', w) can be expressed in terms of the 
imaginary part of the function q)( r, r', w): 

K( , )=~Soo 1m q)(r,r',Ol:) d ' 
r, r, IJ) f. W, 

no w-w +!Il 
1l>0, (16) 

with 

R ""( , )~ 1 +f~ Imq)(r,r',w') , 
e::v f,r ,0) -- f den. 

n: _00 W - (i) 

If it is recognized that the frequencies of the surface 
plasmons in a metal satisfy the relation (see[6]) 

1 + f( W, kJ.) = 0, (17) 

then it follows from the expression for the function 
q)( r, r', w) (see (14» that 1m q)( r, r', w) has a sharp 
maximum at the surface-plasmon frequencies. There­
fore, if the frequency w is small in comparison with 
the plasma frequency, then we can neglect in first order 
(see (16» the dependence of K(r, r', w) on w, putting 
w = o. Such an approximation is not suitable, however, 
for the estimate of 1m K, which, as follows from (16), 
is described by the relation 

I K( , )={ -Imq)(r,r',w), 0l>0, 
m r, r ,(j) 0, w ..; O. 

(18) 

1) As before, we do not take retardation in the dielectric into account; 
this is valid if kl > c/w. In a metal, on the other hand, neglect of the 
retardation leads to neglect of the damping due to excitation of the 
transverse waves excited in the metal (see Sec. 3 below, formula (41 b)). 

As to Re K, in the indicated case of low frequencies we 
have 

ReK(r, r/, w) "'ReK(r, r/, 0) =-t/,Req)(r, r/, 0). (19) 

Since the functions K(r, r', w) (see (6) and (7» 
which determine the effective intermolecular interac­
tion are complex, the exciton states in a dielectric turn 
out to be damped. Generally speaking, however, this 
damping is weak at small wand can be disregarded in 
first order when the excited states of the dielectric are 
determined. However, even in the next higher order, 
we get from (5) that E - E + ir, with 

where the quantities un satisfy the system (5) when 
damping is not taken into account. 

(20) 

It follows from (6), (7), and (18) that the quantity 
r(E) is determined entirely by the values of the imag­
inary part of the Green's function m(r, r', w), which 
can be represented at frequencies w « E F In (see 
(14); in this case I f(w, kl.)1 «1) in the following 
manner: 

I "'" ( , ) 1 S { e," ('w, k) k.' E," (w, k) } m::u r,r ,(0 =- + 
n' le,(Ol,k)I' kJ.' IE,(w,k)-c'k'/w'I' 

xexp{ikJ.(r-r')-lk.Ll(z+z')} ~~ 

Although relations (5)-(8), (14)-(16), and 20, which 
determine the effect of the metallic contact on the 
properties of both the volume and the surface small­
radius excitons, were obtained using the molecular­
crystal model, their range of applicability is actually 
much larger. These relations can be used, in particu­
lar, also to investigate the influence of a metallic con­
tact in dielectrics on the spectrum of the high-frequency 
optical phonons, for which the width of the energy band 

. is small in comparison with their energy. 
Before we proceed to a direct solution of the system 

(5) for the spectral region corresponding to vibrational 
excitations of the molecule, we make a few remarks 
concerning the spectrum of the long-wave surface 
states. The spectrum of these states, disregarding the 
penetration of the field into the metal, was discussed 
in[4]. To obtain a dispersion equation for the surface 
states with allowance for the penetration of the field 
into the metal, we use an expression of type (12) for 
the electric field intensity not only in a metal, but also 
in a dielectric (for simplicity, we disregard the aniso­
tropy of the dielectric). We can then obtain easily with 
the aid of the boundary conditions for the fields the 
following equation: 

(.f __ O) 
(z-++O) 

where €d( w, k) is the "longitudinal" dielectric con­
stant of ihe dielectric, which determines the relation 
w = w(kl.) for the frequencies of the surface states. 

If the dielectric borders on a vacuum (in this case 
€Z( w, k) -1), then the left-hand side of (21) becomes 
equal to minus unity, so that if spatial dispersion is 
disregarded the equation for the surface-wave frequen­
cies takes on the known form 
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(21a) 

On the other hand, if the dielectric borders on a metal 
then, since the metal has at low frequencies (w 
« E F /fi) a dielectric constant EZ( w, k) Ri 1 + kg/k2, 
where ko is the reciprocal of the Debye screening 
radius in the metal, the integral in the left-hand side 
of (2) turns out to equal kl/(kg + kDl./2 Ri k1/ko. In 
this case we obtain in place of (21a) 

ed(Ol) = -k,ik.L' (22) 

Since ko/kl» 1 for macroscopic states, it follows 
from (22) that the frequencies of the long-wave surface 
states are quite close to the frequencies of the volume 
transverse waves (for which Ed( w) = ± 00), so that, 
strictly speaking, in the study of the surface wave one 
must take into account the spatial dispersion not only 
in the metal but also in the dielectric. In addition, it 
follows from the foregoing that at low w the onset of 
surface wave is hindered also by the presence of damp­
ing processes. 

We can consider analogously the surface-state spec­
trum of anisotropic dielectrics. It is easy to verify that 
in this case the conditions for the onset of surface 
states, as inCidentally also in the case of contact with 
vacuum (see[8]), become even more favorable. We note 
also that unlike the "macroscopic" surface waves, the 
short-wave surface excitations should be quite sensi-
ti ve to violations of the "ideal" structure of the sur­
face layer. We shall henceforth, however, disregard 
the "defects" of the surface, since it follows from[9] 
that at sufficiently low temperatures appreciable sec­
tions of a crystal surface can be quite close to ideal. 

3. SURFACE STATES IN THE REGION OF INTER­
MOLECULAR-TRANSITION FREQUENCIES 

When excited states of a dielectric are considered 
in the region of the spectrum of the electronic and 
vibrational transitions, it must be recognized that an 
appreciable contribution to the exciton energy is made 
generally speaking, not only by the dipole-dipole inter­
actions but also by intermolecular interactions of 
higher multipolarity. Therefore, to simplify the dis­
cussion that follows, we assume the dielectric mole­
cules to have an inversion center. For such molecule, 
the dipole moment operator can only off-diago~l non­
zero matrix elements, so that the quantities Wn~' 
W~C: and p~O(r), pff(r) turn out to depend only on the 

n 
mean values of the quadrupole moment and on the 
higher-multipolarity moments of a molecule that is in 
the ground or excited state. By virtue of the foregOing, 
the quantities W~:;C; and W~~oo decrease rapidly with 
increasing In - m I, so that to calculate their contri­
bution to the exciton energy it suffices to take into ac­
count the nearest-neighbor interaction. In this approx­
imation, the first term in (7) does not depend on n3 
provided that n32: 2. As to the second term in (7), it 
should not be included at all in the nearest-neighbor 
approximation. For molecules with n3 = 1, the first 
term in (7) differs from its "volume" value by an 
amount equal to the energy of interaction with one 
missing nearest neighbor. In place of this interaction, 
Eq. (7) contains a third term due to the change occur-

ring in the energy of interaction of the molecule with 
its electrostatic image in the metal as 0 - f. 

We note also that in the considered case of planar 
geometry, the quantities un contained in (5) are con­
veniently sought in the form 

(23) 

where kl is the wave vector with k3 = 0, and n3 = 1, 
2, . .. For simplicity, we assume here that the crystal 
occupying the half-space z > 0 has a primitive cubic 
lattice (lattice constant a) with one molecule per unit 
cell, with the z axis directed along an edge of the cube. 
Therefore, taking the foregOing into account, we can 
represent the system (5) in the form 

[E -1i00/6 -D(') - r • .L (O)-D(t)6. n.lu(n,)-E 'r • .L (n, - m,)u(m,) 
m, 

- Ei\.L(n,+m3 )u(m,)=A(n,)u(n.). (24) 
m, 

Here D(O) is the value of the first term in (7) for an 
unbounded crystal, while 

D(I) = S VnOO(r)pnOO(r')-~/'(r)p."(r') drdr' 

Ir-r'l 

+ S pnOO(r)- pn"(r) OO( ')d d' 
Ir _ r' I pm r r r, 

where n = (nln21), m == (nln20), r' = (x', y', -z'). 

(25) 

~ Unlike D(O) and D(l), the quantities A(n3), rkl, and 
rkl are expressed in terms of the off-diagonal matrix 
element of the charge-density operator Pn( r) and do 
not vanish even in the dipole approximation. Confining 
ourselves to this approximation and recognizing that 
pW (r) = _pff'Vo(r - n), where pff' is the dipole mo­
ment of the f - f' tranSition, we obtain for the indi­
cated quantities 

A (n,) = M~~ - S !lJ (r, r', OlIO) pn" (r) pn" (r') dr dr', 

r ( ) \"1 .. ,011' i' (m-n) 
It...l.. ma - n3 = £...J VV 11m e...l.. , 

fk.L (n,+m,)= ES !lJ(r', r, Olot)p/'(r') Pm'f(r)eik.L,m-n) drdr'. 

m.L 

(26) 

The last two expressions, as shown for example in [4], 

can be represented also in the form 

r. (m,-n,)=r. '(n,-m,)= 2n\"1 ~",g.L +k.L)+ip,lg.L +k.L1]' 
.L .L a'~ Ig.L + k.L1 

'.L 
xexp {-lg.L + k.LI·1 m, - n,la}, m, > n (27) 

r (n +m)=_2n\"1 [(p",g.L+k.L)'+(p,")'lg.L+k.LI'] 
'.L' 3 a'~ IgJ. +k.L1 

".L 

1- f(g.L + k.L' (0,,) ( ) 
x 1 f( +k ) exp{-lg.L +k.LI[(n,+m,)a+2(d-a)]}. 28 

+ g.L ,.L, (0/0 

The summation in (27) and (28) is over all the possible 
projections of the reciprocal-lattice vectors on the 
(x, y) plane, and d is equal to the distance from the 
plane n3 = 1 to the surface of the metal. The minimal 
value of d in the case of good contact between the die­
lectric and the metal can probably be assumed equal to 
d Ri a/2. 

The quantity rkl (m3 - n3) (see (27» is equal to the 
interaction energy of a dipole pOf located at site n 
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with a plane grid of dipoles pof exp (ikl . m) located at 
the lattice si~s with constant m3. At the same time, 
the quantity rkl (n3 + ms) with ms;o' ns is equal to the 
interaction energy of the same dipole with the image 
of the dipole grid ms = const, obtained with allowance 
for the penetration of the field into the metal. If ms 
= ns, then (28) does not account for the entire interac­
tion energy of the moment of transition in the molecule 
n with the mirror image of the dipole grid, but only 
part of this energy. The reason is that the interaction 
energy of the transition dipole with its own image (the 
quantity M~L see (7), which is determined by the en­
tire aggregate of the excited states of the molecule, 
differs generally speaking from the energy of interac­
tion with a foreign image (the second term in the right­
hand side of (6», even if we put in this term m = n. 
This is precisely the reason why the equations in (24) 
contain a term with A(na), which takes into account the 
part of the interaction energy not inc luded in rkl. (ns 
+ m3). It follows from (26) that the quantity A(naJ de­
creases with increasing ns like A( n3) ~ (2znf3, where 
zn = naa + d - a (see also below). 

Proceeding to solve the system (24), we consider 
first the surface states in a dielectric in the region of 
the fundamental-tone frequency (f = 1) of the dipole­
active nondegenerate intramolecular vibration. For 
excitations of this kind, the matrix elements pW(r) 
differ from zero only if f' = f + 1, with 

p:+!.f (r)=p:,f+ 1 (r)= -'1/+ l(p"VIl(r-n», (29) 

Taking (19) and (26) into account, we find that the 
quantity 

A (n,) = S K(r', r, 0) t~>nIP(r')p?1 (r) 
p,.1 

-l: PnOP(r')PnPO(r)- 2pnO\(r') pn \O(r) }drdr' 
P"O 

vanishes identically if (29) is taken into account. The 
vanishing of A( na) which is a characteristic of the 
oscillator spectrum, makes the system (24) equivalent 
to the system (28Lof[41. The only difference is that in 
(24) the ?uantity rkl (na + rna) differs somewhat from 
that in [4 , owing to the allowance for the penetration of 
the field into the metal (this difference vanishes if 
€(w, k) - co; in this case f(kl, w) - 0). 

It follows from (27) and (28) that at kl = 0 and also 
at 1 kl 1 : 1T/a, the quantities rkl(z) and rk~(Z) de­
crease exponentially with increasing z. Therefore, 
when considering the system (24) with kl = 0 and with 
kl ~ 1T/a, we can use the nearest-neighbor approxima­
tion. In this approximation we have for the correspond­
ing surface states 

(30) 

According to (27) and (28), the quantities rk1 and f'kl 
depend on the direction of the dipole pof. The surface 
states of this type are therefore possible only at mole­
cule orientations for which 1 e- K 1 < 1. Since at the 
same values of kl the energy for the volume states is 

E(kJ., k,) = /tWfO + D(O) + r. J. (0) + 2r. J. (1)eos k,a, 

it follows that the depth of the surface levels is 

~ =[D(t) + i\ J. (2)- r.J. (1) ]'I\D(t) +i\ J..(2) I. (31) 

In those cases when Re K « 1, the surface states 
with kl = 0 are macroscopiC. As shown in[41, these 
states can be obtained also in the framework of the 
phenomenological Maxwell equations with allowance 
for spatial dispersion, and it turns out that it is neces­
sary to introduce additional boundary conditions. 

We note in addition that at small 1 D( 1) 1 the total 
width of the energy band of the volume states (i.e., of 
the energies at arbitrary k) can be larger than A. In 
this case the surface-exciton states obtained above lie 
below the energy band of all the volume states only at 
such dipole orientations at which the absolute minimum 
of the energies of the volume excitons corresponds to 
kl = 0, or else 1 kll ~ 1T/a. 

We proceed now to consider the surface states in 
the region of the frequencies of the intramolecular 
electronic transitions. In this case relations (29) no 
longer hold, and A(na) does not vanish in general. To 
estimate A(na) we consider the dependence of the func­
tions K and q) on the frequency w. 

Inasmuch as in this case aka> 1, the main contribu­
tion to the integral (14) at z' ~ a is made by small kl. 
Therefore 

q)(r', r, w) "'" F(w)/lr ---;'1, 

where r' == (x', y', -z'), 

F(w)= l-j(w,kJ.) I ' 
l+j(w,kJ.) '2.~0 

so that 

[(rr' w)=~ 
" Ir -r'l ' 

1 00 ImF(w') 
QJ(w)=--S ' dw'. 

now - w' + i6 

(32) 

(33) 

Using now the relations (26), (7), (32), and (33), we find 
that 

[ I OJI' + ( Of)'] 
ImA(n,)=- p p, ImF(wlo), 

8z n ' 

(34) 

The sign of Re A(na) depends Significantly on the struc­
ture of the spectrum of the electronic excitations of the 
molecule. If we take into account only the two molecu­
lar states 0 and f, then Re A( n3) > O. Allowance for 
the other molecular excitations, on the other hand, can 
lead also to Re A( na) < O. 

If 1 Rf 1 « 1 pof 12, then the term with A( na) in the 
system (24) can be omitted. In this case we arrive at 
the situation considered earlier for the vibrational 
surface excitons. 

The most interesting features of the spectrum of the 
electronic surface states occur if 

IRti ~ Ipoll', 

when the depth of the potential well (or the height of the 
potential hump if Re A( ng) > 0) is large in comparison 
with the width of the energy band of the volume exci­
tons. In this case, at small n3 and at ~y rate for kl 
= 0 or kl ~ l1/a (in which case rand rare exponen-
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tially small, see (27) and (28», the following inequali­
ties hold: 

IR€A(n,) I > Ifk..L(n,-m,) I, 11\..L(n,+m,)I. 

Therefore, at the indicated values of n3, the terms of 
order rkl and fk can be left out from the system 
(24) in the first-ortIer approximation. On the other 
hand, the presence of the term with A(na) leads to 
surface states with energy values 

E.,(k.L) = nwlO + D(" + 6.,!D(!) + Re A (n,) (35a) 

and wave functions 

(35b) 

Each such state extends in practice over only one 
crystal plane na = const. Their number, however, is 
small and does not exceed two (na!S 2) even at 1 Rf I 
= 101 pof 12. We note that in addition to the considered 
surface states of type (35), "macroscopic" surface 
states are also possible, subtending over a large num­
ber of near-surface planes of molecules. Since, how­
ever, A( na) ~ zna, the number of such states is also 
finite, and the& are similar in their properties to those 
considered in 4] within the framework of the phenom­
enological approach. 

In conclusion, we shall touch upon again on the ob­
served appreciable difference between the spectra of 
the surface states of a dielectric, which correspond to 
electronic and vibrational intramolecular excitations. 
As was already emphasized, these surface states are 
due to interaction between an intramolecular excitation 
and the surface of the metal. Naturally, the energy of 
this interaction, which is equal to the difference be­
tween the shifts of the terms of the ground and excited 
states of the molecule, depends on the spectrum of the 
molecule spectrum and on the wave functions of the 
stationary states, as is indeed reflected in relations 
(6) and (7). At the same time, the surface states 
considered above lie in the energy region of the lowest 
molecular excitations, where the quantum features are 
most strongly pronounced. It is therefore not surpris­
ing that if the spectra of the intramolecular excitations 
differ in character, the structures of the corresponding 
surface states are also different. 

4. "METALLIC" QUENCHING OF "LOCALIZED" 
AND SURFACE EXCITONS 

We now proceed to estimate the damping of the ex­
citon states, due to the presence of the metallic con­
tact. 

For an excitation localized at the site n ("localized" 
Frenkel exciton; this is precisely the case investigated 
in various experiments, and also in[3]), it follows from 
(20) (see (18» that 

f. = ImM •• = ImM~'~ = f.' + f.', 

f ,- 1 Sdk e,"(w,k) I olKI' _2k , 

'--n' kzle,(w,k)I' p e .L', 

f (') - 1 Sdk k,' \ et" (00, k) I olKI' _" , 
• - n' kz k.L' le,(co,k)-k'c'lw'I' p e.L., 

where K == (kl, ik) and Zn is the distance from the 
molecule n to the metal-dielectric interface. The 

(36) 

(36a) 

(36b) 

quantities r~ and r~ are due to the excitation in the 
metal of longitudinal and transverse induced oscilla­
tions, respectively, with r~ - 0 as c - 00. We con­
sider first the expression for rho Since the value of 
€l (w, k) at small w gives the Debye screening of the 
interaction, and since the function k varies appreciably 
in the interval of the values k ~ ko, we can replace the 
function €i'l €l12 under the integral sign in (36a), when 
zn » l/ko, by its value at kl = O. In this approximation 
we have 

(37) 

where 

f, =~[ Ipo'I' + (p,'I)'J +s~e," (00, k" k.L = O)dk, . 
8n _~k,'le,(w,k"k.L=O)I' 

For example, in the dense electron gas approximation 

e',(,w, k,) = 1 + ko' / k,', e",«I), k;) = e'ko'hw /2k,'Ep' 

if k < 2ko and nw < k( 2ko - k) E F /kg (in the remaining 
cases, E" = 0; see[lOl), and we obtain for rZ the esti­
mate 

'"' e'hw I 011' In Ep . 
f, 30E/ p It;; 

Thus, if EF = 10 eV and I ~of I = e~, then at zn = 5A 
and llw = 2 eV we obtain r n ", 1 cm \ whereas at Zn 

= 100 A we have already rh ,.. lQ-scm-1 • 

For the estimate of rft we shall disregard the depend­
ence of E on k (as in the normal skin effect). In this ap­
proximation 

6' "( ) ~ x(x-l'x'+ 1)' , 
f.<= e, 00 [lpO'I'+(p,OI)'lS ' e-'x '.dx, (38) 

,. 2Ie,(w)I" ° (x' + 1)" 

where 0 == (w/ c) y' I Et( w) I is the wave vector of the 
light wave in the metal at the frequency W. It follows 
from (38) that at Zn « 1/0 the value of r~ is prac­
tically independent of Zn: 

f ''"' I)'"," (00) [lpOIl' +(p 0')']+ O(z 6). 
• . 6Ie,(w) I' ' • 

On the other hand, if Zn » 1/0 (and, as before, Zn 
< c/w), then 

f ''"'' I)'e," (00) [lpO/I' +(p 01)'] (z 6)-'. 
n . 818,(00) I' 'n 

Since Et' = 2nK and I Et 12 = (n2 + K2)2, where nand K 

are the refractive index and the extinction coefficient 
of the light in the metal, for example at n = 5, K = 1, 
I pofl = eA, and A = 21TC/W = 5 X lOa A we obtain for 
r~ at Zn ,$ 1/0 the value r~ = 10-4 cm -1. 

Comparing the estimates of rh and rt, we arrive 
at the conclusion that at small zn < 1/0 the main con­
tribution to the damping of the "localized" electrons 
is made by the term rh ~ Z~4. On the other hand, the 
contribution of rt can be appreciable only if zn ~ 1/0. 
Thus, at small zn the exciton damping, as seen from 
(37), is determined only by the" longitudinal" dielec­
tric constant and therefore, unlike rt, it cannot be 
expressed in terms of the optical constant of the metal 
in the case of normal incident of light, in contradiction 
to the statement made inCa]. 

It frllows also from the foregoing comparison of rh 
and r n that those terms of the surface impedance Z 
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(see (15c» which depend on €t(w, k) can be omitted in 
the analysis of the damping of surface states having in 
the dielectri<;. a penetration depth smaller than the skin­
layer depth. In particular, for the states (35) the use of 
(20) yields in this approximation (neglect of retardation) 
a damping constant 

r(k n)=.i, '('IS e/' (w, k., k.1 + g.1) Ip"K(g.1) I' 
.1" . a' £....J [k,' + (g.1 + k.1)']le,(w, k" k.1 + g.L) I' 

".I. 

where K( gl) == (kl + gl, i I kl + gl I). Thus, unlike the 
case of "localized" excitons, the value of r for sur­
face states decreases exponentially with increasing ns, 
which may be of importance in the experimental study 
of the luminescence from these states. 

We note in conclusion that the surface states (35) 
obtained in this paper make the decisive contribution to 
the energy of electron-electron interactions in a metal; 
this energy is due to exchange of virtual excitons of the 
dielectric. This circumstance should be taken into ac­
count when considering the influence of dielectric coat­
ings on the temperature of the superconducting tranSi­
tions of metallic films, both in the case of the usual 
''bulk'' superconductivity, and, in particular, in the 
case of "surface" superconductivity. [11]. In addition, 
the aforementioned surface states, and also the strong 
dependence of their spectrum on the width of the gap d 
between the metal and the dielectric, exerts at small d 
a noticeable influence on the adhesion forces acting on 
the metal-dielectric boundary. These questions, how­
ever, lie outside the scope of the present article and 
will be considered separately. 

We note that the influence of the electrostatic image 
forces on the spectrum of large-radius exciton on a 
semiconductor-metal interface is also worthy of 
special attention. 
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