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Temperature and energy relaxation of the directed motion of particles in a two- temperature plasma 
with directed electron motion is investigated in the presence and absence of an external magnetic 
field. It is shown that the rate of variation of the particle energy in such a plasma may strongly differ 
from that for the particle energy in a plasma without directed electron motion. 

1. Temperature relaxation in a plasma consisting of 
hot electrons and cold ions has been studied in sufficient 
detail both in the absence and in the presence of an ex­
ternal magnetic field (Spitzer[lJ, Ramazashvili, 
Rukhadze and SHin [2J , Ichimaru and Rosenbluth [3J ). 

The literature that we are acquainted with fails, how­
ever, to throw any light on the question of temperature 
relaxation in such a plasma in the presence of directed 
electron motion. Meanwhile, the plasmas that we often 
have to deal with in the laboratory are precisely those 
whose electrons are in motion relative to the ions. The 
study of the effect of directed electron motion on tem­
perature relaxation in a two-temperature plasma is the 
object of this paper. 

We determine the variation (per unit time) of the 
total energy of the electron and ion components of the 
plasma iffa (a = ~, i) and of the energy of the directed 
electron motion 0D both in the absence and in the pres­
ence of an external magnetic field. It is shown that even 
when the velocity of the electron current u is small the 
quantities iff ex. can differ greatly from the corresponding 
quantities calculated for u = O. The parameter that 
characterizes the effect of directed electron motion on 
the rate of energy transfer is wit:. T, where w is the en­
ergy of directed electron motion and t:. T is the differ­
ence between the electron and ion temperatures. 

If we know the quantities iffa and gD' we can estimate 
the temperature relaxation time and the slowing-down 
time of the directed particle motion in the case of a 
closed system (an example of such a system is a torus 
in which directed electron motion is produced along the 
axis at some instant of time). Analogously, in the case 
of a system in which the energy and directed velocity of 
the particles are maintained constant at one boundary, 
knowledge of these quantities makes it possible to es­
timate the "relaxation length," which is the distance 
from the boundary at which the relaxation occurs (an 
example of such a system is a long cylinder with a cur­
rent of hot electrons injected through one of the bases). 

2. We consider a plasma in which the electrons move 
relative to the ions with a mean velocity u directed along 
the constant homogeneous magnetic field Bo. We start 
with the equations of motion 

dv ea ea dr 
-=-E(r,t)+-. -[vB,], -=v, 
dt ma maC dt 

(1) 

where E is the fluctuating electric field, and ea and ma 
are the charge and mass of the particle of type a 
(a = e or i for electrons or ions, respectively). By 

solving these equations and averaging over the fluctua­
tions we can obtain the Fokker- Planck coefficients that 
enter in the kinetic equations for the particles, namely 
the diffusion coefficient Dij and the friction coefficient 

F. Omitting the cumbersome general expressions for 
the coefficients Dij and F, we confine ourselves to the 

most interesting cases, those of weak (wa « na) and 
strong (wa »na ) magnetic fields (wa = lea I Eo!mac is 
the gyrofrequency and na = (41Te~ nm~)d2 is the plasma 
frequency of the particles type a; n is the particle den­
sity). For wa « na we have 

Dij = (2n~:m,. ~ dSk dw k~~j <E')'w6 (co - kv). (2) 

F = 8n~~ .. ~ d"kdw k [in :w <E')kw + :7 1m + ] 6 (w - kv). (3) 

where (E2)kw is the Fourier component of the electric­
field correlator, E = 1 + 41T(Ke = K i) and K a is the plasma 
longitudinal dielectric constant and the longitudinal elec­
tric susceptibility of the a- th plasma component (e is 
the electron charge; ei = - e). For wa »% the 
Fokker- Planck coefficients are defined by formulas (2) 
and (3), in which one should make the substitutions 
6(W - k· v) - 6(w - k11v ll ) and regard K and E as the 
longitudinal components of the corresponding tensors in 
the magnetic field, for example K = k-2kikj Kij (kll and VII 

are the components of the vectors k and v along Eo). 
Since we are interested in the case of a plasma with 

a MaXWellian particle velocity distribution (character­
ized by the temperatures T and the directed electron 
velocity u), we can use the ?ollowing well-known expres­
sion for the electric field correlator (see, for exam­
ple[4J ): 

16n [T, T'] <E') .. = -- ---1m x, + - 1m Xi • (4) 
lEI' co - ku co 

If we know the Fokker- Planck coefficients IS and F, it is 
easy to determine the va:riation (per unit time) of the 
energy of the type- a particles: 

2 S Imxi Imx, 
8,=-8,=-- d'kdco I 1'( ) [co(T,-T,)+kuT,J. (5) 

n'n e w -ku 

In the case of directed electron motion it is natural to 
represent the quantity ° e in the form 

where 0T and 0D are the energies of the random and 
directed electron motions. We then obtain for the quan­
tity iffD 
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. 2 S 1m x, 1m x. ku 
/SD=-- d'kdw [w(T.-T,)+kuT.]. (6) 

n'n I el'(w - ku) w 

3. When expressions (5) and (6) are integrated with 
respect to wand k the main contribution comes from 
the region k > a-l (aa = T~ (41Teanrlt2 is the Debye 
radius for type-a particles). The upper limit of integra­
tion with respect to k must be chosen equal to ritin' 
where r~in is the minimal impact parameter or the 
de Broglie wavelength (see, for example,[sJ). 

In thE! case o! a weak magnetic field (we « ne) we 
get for {fj a and {fjD 

. 4nne'A [ (,/-;;) ,/---;;; ] 
/SD=--- <I> V - -2 V_e-W/ T' , 

m.u T, nT, 

(8) 

where w = (1/2)meu2 is the energy of the directed elec­
tron motion and A is the Coulomb logarithm (4)(x) is the 
error integral). These formulas are valid all the way 
to W ~ T e' At large values of w the plasma ceases to 
be stable as a result of the buildup of electron Langmuir 
oscillations; in this case expression (4) in formulas (2) 
and (3) should be replaced by expressions for the corre­
lator (E2)kw in which allowance is made for turbulent 
fluctuations. In this paper we shall not deal with the 
variation of particle energy in a turbulent plasma. 

In the case of low directed electron velocities 
(w « Te) expressions (7) and (8) take the form 

. . - ne' ,/ m, [6T W ( 3T')] 
{fj,=-/S,=-4Y2n-V-A --- 1--- , 

m, T, T, 3T T, 

. 8 -ne',/m. w 
{fJD=--Y2n- V -A-, 

3 me T. T. 

where ~T = Te - Ti' 

(9) 

(10) 

Of course, if u = 0 formulas (9) and (10) reduce to 
the well-known expressions for the rate of change of 
particle energy in the absence of directed electron mo­
tion (see[l,sJ). It is, however, important that the rela­
tive contribution of the directed electron motion to the 
quantities 8 is proportional to w/~ T (and not to wIT a)' 
Th~refore, lven when the directed electron velocities 
are low, as in the case of an almost isothermal plasma, 
this term can be significant. In particular, if 0 < ~ T 
< ~To, where ~To = (1/3)miu2, the energy of the random 
electron motion does not decrease (as in the case of 
u = 0), but increases. The energy of directed electron 
motion always decreases, and, in order of magnitude 

~D--~~min 1'- . m· {W } 
me 1 'AT 

In the case w ~ T e the contrib~tion of the directed 
electron motion to the quantities {fj is significant for 
any ratio of electron and ion tempe~atures. Values of 
the ratio R = 8al8ao (/Sao == {fja (w = 0)) at w = Te are 
shown below: 

1.1 
4,1 

2 41000 
1.14 0.89 0.79 0.75 

Note that when w ~ T e the energy of the random elec­
tron motion always increases. 

4. In the ca~e of a !?trong magnetic field (Wi »ni) 
the quantities /S a and /SD are of the form 

, , - ne' ,/;;: [T' ( W)] {fJ.=-/S,=-2Y2n- V_Ae-W/ T , 1-- 1-- , 
m, T, T, T. (11) 
-ne' ,/m, W 

~D = -4Y2n- V _A_e-w/ T ,. (12). 
me Te Te 

When w « Te we obtain from (11) and (12) 

. . -ne',/m, [6T W ( 3T,)] 
{fj,=-/S,=-2Y2n-V -A --- 1-- , 

m, T, T, T. T. 
(13) 

. - ne',/m. W (14) 
/SD=-4Y2n-V -A-. 

me Te Te 

Expressions (11) to (14) have the same structure and the 
same order of magnitude as expreSSions (7) to (10) 
which describe the rate of change of particle energy in 
the absence of a magnetic field. The same conclusions 
about the relative contribution of the directed electron 
motion and about the direction of energy transfer are 
therefore valid in the case of a strong magnetic field as 
in the absence of a field. The energy of random electron 
motion increases (rather than decreases as in the case 
of u = 0) when 0 < ~T <. ~To, where ~To = IlIjU2. 

The values R = /5 I g at w = Te in the case of the 
strong magnetic fielff, fo~odifferent values of Te/Tb 
are: 

Te/ T ;: 
R: 

1.1 
4.1 

2 4 10 00 

0.74 0.49 0,41 0.37 

We conSider, finally, the case of intermediate mag­
netic fields when the electrons are strongly magnetized 
and the ions are weakly magnetized (We» n e , Wi « nil. 
From (5) and (6) we get 

miTt! . . - ne' ,/ m. [T' ( 2W)] {fJ,=-{fJ,=-2Y2n--V-Ae-W/ T , 1-- 1-- L, L=ln--
meTi ,.. mi Te Te Te 

(15) 

(16) 

We call attention to the fact that in this case (as also in 
the absence of directed electron motion[sJ) another 
large parameter L enters the expressions for i5 Q along 
with the Coulomb logarithm. Thus the losses of the 
energy of directed electron motion prove to be rela­
tively less than in the cases of a weak or strong mag­
netic field. 

When w « T e the quantity i5D is determined by the 
same formula {14) as in the strong-field case. As to 
the quantities g ,the corresponding expressions are 
obtained from (13) with the substitution A - II.L. The 
temperature difference ~ T at which the energy of ran­
dom electron motion begins to increase is in this case 
less than in the cases studied above, To = miu2L-l .. 

5. As already pointed out, when the quantities {fJ and . a 
{fJD are calculated from the general expressions (5) and 
(6), the main contribution comes from the region 
k > ail. Physically, the contribution of this region 
corresponds to energy transfer by close (pair) colli­
sions of particles. When calculating the rate of energy 
transfer through distant collisions one must take into 
account the contribution of the poles of the integrands in 
formulas (5) and (6) (corresponding to the energy trans­
fer when collective plasma oscillations are excited and 
absorbed). The largest term turns out here to be the 
one that describes the interaction of particles with the 
ion (or magnetic) sound. 
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As shown in[2] , in a plasma with electrons at rest 
the contribution of the ion sound to ls is, in general, . a 
insignificant. This contribution increases with increas-
ing Te/Ti' but even when Te/Ti ~ 100 it amounts to 
only a few per cent. It is easily shown that an analogous 
situation holds in the case of a plasma with directed 
electron motion. 

The authors thank A. I. Akhiezer for his helpful com­
ments. 
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