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The process of emission of radiation from a mOving relativistic electron in a periodic external elec­
tromagnetic field is considered. The polarization, spectral, and angular characteristics of the radi­
ation are obtained. The region in which quantum effects are important is considered. It is shown 
that the quasiclassical operation method suggested earlier by the authors is applicable also to 
strongly inhomogeneous fields. Possible experiments are discussed. 

1. INTRODUCTION 

T HE possible applications of magnetic bremsstrahlung 
radiation have stimulated interest in the radiation 
emitted from relativistic particles in periodic electro­
magnetic structures which are frequently called undu­
lators. The properties of the radiation emitted in such 
structures are basically the same as those of the radi­
ation of relativistic particles in the field of a plane 
electromagnetic wave, which may be regarded as a 
special type of undulator. 

High-energy particles [y = 1/(1 - V2)l/2 » It emit 
, mainly forward into a small angle ~ l/y, and the char­

acteristics of the radiation depend strongly on the re­
lationship between the angle of deflection (rotation) l/! 
of the particle in the field and the angle l/y. In case I, 
defined by l/!» 1/y, the radiation is formed in the 
coherence length lm, defined by 2) 

l,.""~=..!!:.= t,7·tO' cm 
V eH H[Oe] , 

and is of universal nature (see, for example, [1,2]) with 
the maximum of the spectral distribution of the radia­
tion intensity located in the region w ~ I v I y 3. In this 
case, the radiation is formed within each element of 
the periodicity of an undulator and the total intensity of 
the radiation is the incoherent sum of the intensities in 
each element. In the opposite case II, defined by 
l/! « l/y, the radiation depends strongly on the details 
of the structure of the external field. However, even in 
this case the properties of the radiation formed in 
periodic structures are basically universal, a consid­
erable coherence is exhibited by the radiation emitted 
from different parts of the structure, and the maximum 
of the spectral distribution of the intenSity is shifted 
(in a given field) by a factor lm/l in the direction of 
higher frequencies (l is the length of the undulator 
period). In this situation only one or several of the 
lowest harmonics are emitted at the frequency of the 
periodic structure. This makes case II particularly in­
teresting. 

Some aspects of the use of periodic electromagnetic 

l)We shall use the system of units with c = I and the metric ab = 
aobo-a·b. 

2)The coherence length is a function of the frequency; here, it is 
taken at the frequency of the maximum in the spectral distribution. 

structures (undulators) have been discussed many 
times in the literature: they include microwave genera­
tion,[3] scattering of light on light,f4] and measure­
ments of the energy of relativistic particles (see, for 
example,[S] and the literature cited there). 

We shall determine the polarization and spectral 
characteristics of the radiation emitted by relativistic 
particles in an arbitrary undulator3) in case II (when 
l/! « l/y, Le., when the length of the period is much 
less than the coherence length in the appropriate field). 
We shall discuss the classical problem of the emission 
of radiation in the case when the quantum corrections 
are small as well as the emission in the quantum 
region where experimental realization is easier than 
in case I. 

2. RADIATION IN THE CLASSICAL REGION 

We shall consider the radiation emitted from an 
infinite undulator in which motion is quasiperiodic (we 
shall understand this to be the motion which is 
periodic in the system in which the average displace­
ment of the particle is zero, as shown in Fig. 1). The 
problem can be analyzed conveniently using the 
Fourier component of the velocity 4) 

00 ooT 00 

v;; = ~. v (t) ei (",l-kr) dt = L, ~ v (t) eikxei.,ndt = v~ L, ein •• , (1) 
-00 n=-<Xl 0 

where cp 0 = wT - k ·1 = wT( 1 - n . v) = wT, v is the 
average velocity of a particle, 1 = vT is the length of 
the period of the structure, w = w (1 - n . v). Bearing 
in mind that 

~ ~ 

1: e'n •• = 211: 1: Il(<p, - 211:k) , (2) 
A==_oo 

we find that 
00 

v;; = 2nvf L, II (CPo - 2nk); 
k=-oo 

(3) 

the transition from (1) to (3) corresponds to the transi­
tion from the Fourier integral to the Fourier series. 

We have already mentioned that the properties of 

3)When the present paper was completed we learned of the preprint 
[6) in which the spectral distribution of the intensity was found in the 
classical region for some periodic structure models in case II. 

4)The same approach is used in the quantum region. 
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FIG. 1. Dependence of the deviation of a particle from its equili­
brium position (p) on z. 

the radiation depend strongly on the relationship be­
tween the angle of deflection of the particle in one 
period and the angle 1/1" In case I, wh~n I/J = 1 vi T 
= D.v» 1/1', it follows from Eq. (1) that inainly the 
frequencies w ~ 1 V 1 1'1 (1 - n . v)' are emitted and qJ 0 

» 1. In case II, when I/J = 1 vi T = D.V « 1/y, the fre­
quencies w ~ 1/T( 1 - n . v) are mainly emitted and 
<Po~1. 

In case I, the phase CPo is large in the fundamental 
frequency region and then 

2n .E6(<po-2nk)-+ 2nS dk6(<po-2nk)= 1, (4) 
• 

so that the radiation emitted in each element of the 
periodic structure is independent and the intensity of 
the radiation along a given direction can be found by 
adding the intensities at each wavelength (see[l,2]). 
However, at frequencies w:: I' 2/T in case I, the coher­
ence length is comparable with the structure period so 
that the coherence must be allowed for in the emission 
of these frequencies. 

In case II (D.V «1/y), the radiation is formed in 
many elements of the periodic structure and the co­
herence is always observed in the fundamental fre­
quency region. In this case, it is convenient to trans­
form v J w to the form 

v::z = fv (v;;;; (kv) - vl'(kv~)), 

where kv = w = w( 1 - n . v), 

(5 ) 

(6) 

and the velocity v is regarded as constant. If we use 
Eq. (5), we find that the general expression for the in­
tensity of the radiation emitted by a relativistic parti­
cle in an infinite undulator is of the formS) 

If the vector n is fixed, Eq. (7) is a sum of harmonics. 
Summing over the polarizations of the emitted pho­

tons, we find that (ignoring terms ~ 1/1') 

e' dSk 00' 1 { [ 
(dI)n", = 4n 2nT ro' 1 v f I' 2y' 2y' + (1 - 2y) 1 + cos 2 (11- <PI) 

"" 
- 2 sin';' sin 21\ sin 2rplJ} L 6 ('1'0 - 2nk), (8) 

k=l 

where y = 1'2(1 - n·v) = y 2 wlw. The Fourier com­
ponent of the acceleration v l' is expanded along two 

w 
mutually perpendicular unit vectors h and 12 in a 
plane orthogonal to the vector v: 

';'f = I ';'fl ei8 (I, cos II + I, sin lIei~). (9) 

5)We shall use the Heaviside system of units. 

n . v = v cos J, n .11 = sin J cos cP l' After integration 
over the azimuthal angle of emergence of the photons, 
we find that 

e' 2 doo dy _. ~ (ooyT ) 
<dI •• >=----lvl'y'F(1-2y+2y') ~6 -, -2nk ,(10) 

4n T 00' y' >_, v 

where we have introduced the quantity 

F=lvfl'(;;'/4Ivl', (11) 

which depends only on the structure of the field. Equa­
tion (10) follows from a formula given in[l] for the case 
of quasiperiodic motion defined by Eq. (3). Integrating 
Eq. (10) over the frequency, we obtain the angular dis­
tribution of the radiation 

<dI)=~I';'I' '~(f-2 +2 2)~ i1 F(<po=2nk) (12) 
• 41'1 V 2y' Y Y n' ~ k' • 

1r.=1 

Finally, integrating over y, we find that the total in­
tensity is 

<I> =~~lvl'v._1_ ~ F(<po = 2nk) 
3 4n n' ~ k' 

>-1 

For any structure of the field we find that 

_1_ i1 F(<po = 2nk) 

n' ~ k' 
'-1 

1 
2' 

(13) 

(14) 

so that the total radiation intensity is given by the well­
known expression (I) = 7's I V 121' 4e 2/41T . 

Equation (7) can be used to find also the polariza­
tion characteristics of the radiation. We shall intro­
duce the unit vectors 

e, = [nyl/l [nyll, e, = [n[n"ll/i [n[nylll, (15)* 

so that the polarization properties of the radiation can 
be described by the matrix 

<dn ( ~ ) dI'~=-2- (\",+ ~~ncr .. n , 

n=1 

where an are the Pauli matrices and ~n are the 
stokes parameters: 

~n = an 1 c; n = 1. 2, 3, 

where 

a, = 2[sin 2 (ql, -II) + 2sin 21\ cos 2lpl sin' (Ip 12) ly (1- y), 
a, = 2y(1- y) sin21\sinlp 

(16) 

(17) 

a, = - [cos 2 (lpl -II> - 2sin 21\ sin 2<p,sin' (Ip 12) 1 ' 
x (1- 2y + 2y') - (1- 2y), (18) 

c = 2y' + (1- 2y)[ 1 + cos 2(Ip, - II) - 2sin 211 sin 21p, sin'(<p 12)]. 

For given nand w, the radiation is completely polar­
ized (usually elliptically), Le., the Stokes parameters 
satisfy the relationship ~ i + ~ ~ + ~ ~ = 1, which can be 
proved by simple calculations. 

The polarization properties of the radiation are also 
interesting in the case when integration is performed 
over a series of variables. After integration over the 
frequency and azimuthal angle of the emergence of pho­
tons, we obtain 

• _ 2y(1-y)S 2y-1 
6, = 0, ~,- 1 _ 2y + 2y" S3 = 1 _ 2y + 2y' ' (19) 

where Eq. (14) is taken into account and 

(20) 

*[nvl=nxv 
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FIG. 2 
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FIG. 3 

Finally, after integration over the polar angle of the 
radiation, we find the polarization properties of the 
radiation as a whole: 

s, = 0, ~, = 8/2, 63 = 1/2• (21 ) 

Thus, the radiation emitted from an undulator in case 
II is partly polarized and the degree of linear polariza­
tion (~3) is universal and independent of the structure 
of the field, whereas the degree of circular polariza­
tion depends strongly on this structure. 

By way of illustration, we shall consider two 
specific cases when the periodic structure consists of 
regions with a homogeneous magnetic field of different 
directions, the angle of rotation of a particle in a field 
of given direction is I/J = I v I T « 1/1', the z axis is 
directed along v, the x axis along 11> and the y axis 
along b. 

Case A: 
H. = H, 0 < z < 1/2, 

H,=-H,112<z<l, 

H.=H,=O. 
In this case, we have 

FA ('1'0 = 2Jlk) = 4sin' (11k / 2), 

(22) 

8=0. (23) 

Substituting FA in Eqs. (10)-(13), we obtain the spec­
trum of the emitted photons. Figure 2 shows the graph 
of the function 2(I)-1(dI)A/d~, where ~ = wlwc and 
wc = 41Ty 2/T. 

The polarization of the radiation is partial and 
linear (I ~ I = }'2), making an angle 1T14 with the direc­
tion of the acceleration [see Eq. (21)] and there is no 
circular polarization. However, the circular polariza­
tion can be obtained in a magnetic field of a more com­
plex configuration, discussed below. 

Case B: 
H. = -If, 0 < z < '/,1, '1,1 < z < 'I,l, 

H.=H, '/,l<z<'/,l, IM<z<'I,I, (24) 

H. = -H, I/.l < z < 'I,l, 'I,l < z < l, 
H.=H, '1,I<z<JM, '1,I<z<'I,I. 

In this case, we find that {3 = 1T14, cp = -CPo/4, and 

F ( . If.k. If.k 
B 'Po = 21f.k) = 32 sm'-sin'-

28' 8=-~[3G-4Gd. (25) 
11 

Here, 

G= ~ (-i)' _ _ ~ (-i)' [(2k+1)1f.] 
"- (2k + i)' - 0.916, G, - "- (2k + 1)' cos 4 = 0.753. 
~o ~_o 

If we· substitute FB in Eqs. (10)-(13), we find the 
spectrum of the emitted photons, which is plotted in 
Fig. 3 (the units are the same as in case A). The radi­
ation is now partly polarized in the elliptical sense 
[see Eq. (21)]. 

We have considered an undulator of infinite length 
but it can be shown that the expressions obtained are 
also applicable to an undulator with N periods to an 
accuracy within ~ liN. 

We shall now discuss the classical range in more 
general terms. Periodic electromagnetic structures 
(undulators) can be used to generate directed (into an 
angle ~ 1/1') intense radiation beams of wavelengths 
ranging from infrared to x rays. The intensity of such 
radiation is proportional to the square of the external 
field. Therefore, it is desirable to use strong fields if 
high intensities are needed. However in a field 

4 ' H = 10 Oe the wavelength of the radiation (the maximum 
of the spectral distribution) is ~0.2 cm. In fields of 
this kind only case I (or, at most, the intermediate case 
I/J ~ 1/1') can be realized by forming a stationary mag­
netic "lattice." However, the distinguishing character­
istics of case II-the shift of the maximum of the spec­
tral distribution toward higher energies, the high 
monochromaticity, and the generation of circularly 
polarized radiation-are pronounced only in the region 
I/J « 1/1" One way of reaching this region would be to 
employ lasers. It should then be possible to generate 
x rays with the aid of electrons of moderate energy. 
One possible scheme runs as follows. 6) Electrons of 
energy Ii: travel in a storage ring of radius R. In the 
linear part of the ring the electrons enter a laser 
resonator where a focusing region, several centimeters 
long, is established. This region acts as an undulator. 
For Ii: = 25 MeV and R = 25 cm the driving field in the 
storage ring is Hs = 3 x 103 G, so that the maximum of 
the magnetic bremsstrahlung spectrum in the ring lies 
in the infrared (tiw ~ 0.5 eV). If we use a laser emit­
ting at A = 10 JJ. (C02) we can generate photons of 
energy ~300 eV. If the field of the laser wave at the 
focus is H = 2 X 104 Oe, the energy lost as a result of 
the emission of radiation will be comparable with the 
losses due to the magnetic bremsstrahlung in the stor­
age ring. 

3. RADIATION IN THE QUANTUM REGION 

It is shown in[7,8] that the best approach to the prob­
lem of radiation emitted by a high-energy particle in 
an external electromagnetic field is the formalism 
employing the quasiclassical approximation even in the 
initial expressions. This approach is based on the fact 

6)The authors are grateful to A. N. Skrinskil for discussing this 
program. 
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that we can ignore the noncommutative nature of the 
dynamic variables (terms of the order of fiwo/ E, 
where Wo is the frequency of revolution) and only in­
clude the commutators of these variables with the field 
of the emitted photons, i.e., the radiative recoil (terms 
of the order of hW/E). The operator method developed 
in[7,B] makes it possible, after the necessary commuta­
tions and expansions of exponential functions, to go 
over to quantities describing the classical trajectory 
of a particle. The exponential functions are expanded 
on the assumption that the length of formation of the 
radiation is much shorter than the characteristic 
length of the field inhomogeneities. An analysis made 
in[2] shows that this restriction is not essential and all 
that we have to do is to postulate that the motion is 
quasiclassical, hwo/ E « 1, so that the expansion of 
the exponential functions yields (with the same pre­
cision) the following expres sion: 

e-ikx(t,) e'h(t,) = T exp { ~ j dt[aIC -liw - l' (P (t) -lik)'+ m'] }, (26) 
t, 

where~ and P are, respectively, the energy and mo­
mentum operators; T is the chronological product op­
erator. 

Expanding the right-hand side of the above equation 
in terms of (1 - nv) ~ 1/y 2 and retaining only the 
larger terms in the expansion, we obtain an expression 
which is formally identical with Eq. (16) in (7): 

r'''''(t,) e'''''(t,) = exp {-i aIC ~ Ii}kx(t,) - kx(t.)] }, (27) 

where k2 = o. 
Since the other commutators are also unrelated to 

the nature of the field, it follows that Eqs. (16)-(18) 
of(7] are valid with the quasiclassical precision in an 
arbitrary external field, provided this field is much 
smaller than the critical value (H« Ho = m2/ eh). 
Thus, these formulas also hold in the case when the 
length of the inhomogeneity of the field is much shorter 
than the characteristic length of the formation of mag­
netic bremsstrahlung. The quasiclassical criterion is 
now tm/E == 21Tu/TE, Le., the frequency of quanta in the 
external field should be much less than the electron 
energy. 

Since the energy of the emitted quanta is fiw ~ liUy2 
and the classical theory is applicable in the range 
liw « E, the quantum effects in radiation can be identi­
fied with the aid of the parameter 'T} = 2hUy 2/ E. If 
1] « 1, we are dealing with the classical case, whereas 
if 1] i!. 1 the quantum effects are important in the radi­
ation process. The intensity of the emission of photons 
with the four-momentum kf.l is [see Eqs. (9), (17), and 
(18) of[71f) 

~ ~ I ~ , 
dI=4,; (2rt)' LdtR(t)exp{~kx(t)}\ ' (28) 

where R(t) is formally identical with the matrix ele­
ment of the transition involving free particles subject 
to the laws of conservation and to the time dependence 
of the momentum p = p(t). For scalar particles we 
have 

R(t) = (e'p (t» I (e(8 - w» 'I,. (29) 

7)We shall henceforth assume that h = 1. 

For spinor particles the corresponding relationship is 
R( t) = 'PH A( t) + iaB (t)) 'P, where 

A(t) e'p(t) (y,8-oo+m + Y 8+m ) 
21'e(e-oo) 8+m e-oo+m' 

B(t)= 21' (1_ ) (Y e-:+m [e'p(t)]- y e+m [e'(p(t)-k)]). 
88 00 _ 8 m e-oo+m 

We have selected here the transverse gauge for the 
photon polarization. 

(30) 

Here, as in the classical region, we shall be inter­
ested in the case-II motion in periodic structures, 
where the length of the field inhomogeneity (structure 
period) is much less than the characteristic length of 
the magnetic bremsstrahlung and U = 21T/T » y /R 
= Hm/Ho. In this case, the intensity of the radiation 
emitted by scalar particles is obtained if Eq. (7), de­
duced in the classical theory, is multiplied by the fac­
tor (E - W)3 / E 3 and the phase cp o( w) is replaced with 
the phase cp~ = CPo(w'), where w' = WE/(E - w). For 
this reason the Stokes parameters for the radiation 
emitted by scalar particles are identical in the classi­
cal and quantum cases [see Eq. (18)]; this is true be­
fore integration over the frequency. 

In the case of spinor particles, the expression for 
the intensity, summed over the s pin of the final elec­
trons and averaged over the spin of the initial elec­
trons, has the form 

e' d3k (e - 00)' oo' {(28 - 00)' . • 
dI = 4rt 2nT -8- 00' 4e (8- oo)l(e'v;;)(l- nv) + (e'v)(nv;)" 

+ 4e(:~ 00) II V;; '" (1 - nv)' (e'e) -I (ev;;) (1 - nv) + (ev) (ny;;;) "1} .. 
x L II (<po' - 2rtk). 

If we use the same axes and notation as before [see 
Eqs. (15)-(17)], we find that the Stokes parameters of 
spinor particles are 

c + oo'y'/e(e - 00) , 
S ('J.) _ (1+oo'/2e(e-oo»a~ 
, - c+oo'y'!e(e-oo) , 

a, (32) £,<'1,) 
c'+W'y'Ie(8-U» 

Summing over the polarization of photons and integrat­
ing over the azimuthal angle of their emergence (factor 
21T), we obtain (the index 0 refers to scalar particles 
and the index 7'2 to spinor particles) 

E- e'm'n'x' du d dpo,'t.) - F ". Y Z (0 1/,,) 1 
- 16rt'y'U'(f+u),(y.I' (u)+ /,-y)6(uY-'I]k/2); (33) >-. 

here, we have used the following notation: 
00 00, 4ny 

.u = -;=:-;; 'I] =-;-=- Tm; 
U' 

1(') = 1· 1<'J.)(u)= 1 + . 
, 2(1+u) , 

lvi',,' x'=--
m' ' 

and F has been introduced earlier [see Eqs. (11). (23), 
and (25)]. 

Integration of Eq. (33) over the polar angles of the 
emergence of photons gives the spectral distribution 

- 2 2 2 

dI('.'I,) _ ~ F e m X u du (/(0 'I.) (- ) (U)' 2u ) 
- ~ rt''I]'k'(l+u)' . u +2 -;jk --;jk 9(T)k-u). 

(34) 
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The classical expressions for the intensity can be ob­
tained from Eq. (34) by the substitution (1 + U)3 - 1, 
f - 1. 

The total intensity of the radiation can be found by 
integrating first over u so as to obtain the angular 
distribution of the radiation: 

If 1) « 1, we find that the total probability of emission 
is 

(') 8 e'm'x' - 1 7 e'm'x' 
W .. =3": 1t'1!T) 1: (2k+1)3 =3~(3) It'el') , 

'_0 
(') 8 e'm'x' 

W B =---A" A,"" 0,445, 
3 It'el') 

(41 ) 

- e'm'''I' xdx 
d/(O,"') = ~F---" (f(0,'J.)(tjkx}-2x+2x'), 

~ k'It' (1 + tjkx) , .-. (35) where !;(n) is the Rieman zeta function. If 1) » 1, we 
find that 

where x = 1/2y (0 oS X oS O. 
We shall now calculate the total intensity of the 

radiation in the asymptotic cases 1) « 1 and 1) » 1. If 
1) « 1, we obviously obtain the classical expression 
for the intensity. If 1) » 1 and case A of Eq. (22) ap­
plies, we obtain (to the nearest power) 

(0) 2e'm'-x: ~ 1 It' 2e'm'x' It ( X )' 
fA =--,-,-~ (2k+ 1)' = 9'6-;;:;:;z= 48" em-;-

It !I '_0 '1 '1 

(36) 

e' (eHT) , 
= 4n"""192' 

It is evident from the above expression that the in­
tensity of the radiation is independent of the mass and 
energy of the particles involved. In case B, we obtain 

(37) 

A = ii 3-4coS(I/,k+'/,}It. 
m ~ (2k+ 1}m 

.11:=0 

For spinor particles we obtain the following expres-
sions 

1 ('10)_ / (0) (I t 5 + 96 L ) 
A' - A nr:,-- - ... 

6 It' 

L = ~ In(2k + 1} = 0.017 
A ~ (2k+1)' ' ,_0 

/(.'Io)=/(O)(ln~_~+ 384 LB) 
B B 6 It' ' 

_ ii [3 - 4 cos ('/,k + '1,}It]ln(2k + 1) 
L B= 2,= 0.094, 2m-~ (2k+1)m 

.11:=0 

In the case of scalar particles, the total intensity is 
dominated by the contribution of the range of angles 

(38) 

J ~ -f(}fi, which are large compared with 1/y. In the 
case of spinor particles, the whole integration domain 
contributes to the logarithmic term. 

In the range of high values of 1), the radiation is 
concerned more strongly in the first harmonics than 
in the classical case. It would be interesting to deter­
mine the probability of the emission of photons of 
energy comparable with the electron energy. The 
necessary expression for the intensity must next be 
multiplied by 1/ w = (1 + U)/Uf;. Then the probability of 
emission of photons of frequency w is 

dW(O,'J.) = ~F /,0,'Io)(u}+2 - -_ Il(rjk-u), • e'm'x'du ( (U)' 2U) 
~ It'el')'k'(l + u)' tjk I')k _ 

.-. " (39) 

and the angular distribution is of the form 

- e'm'x' dx 
dW(O,'I.) = ~ F (j(','h) (tjkx) - 2x + 2x'). 

~ It'k'etj (1+tjkx)' 
l-' 

(40) 

4 ' 'x'. 1 31 ' ,. W .. (·)=~ ~---=-~(5) emx 
n'etj' ~ (2k + 1)' 8 It'etj" (42) '_0 

W (·) = 4e'm'x' A 19 
B " A,"" O. 7. n:88T)s 

The probability of emission of radiation from parti­
cles with half-integral spin in the 1) » 1 case is 

(43) 

Here, 
32 ii In(2k + 1) 

() .. = 3n(5) ~ (2k + 1)' 0.005, 
>_0 

IIB= 2,1 A, ~ 0,148, 

If we substitute 0 = 0 in Eq. (43), we find that the 
expression obtained agrees, to within a numerical fac­
tor, with the probability of Compton scattering in the 
case when the incident photon is "soft". This is due 
to the fact that an undulator can be represented by a 
superposition of standing waves of definite frequencies 
and these, in turn, can be regarded as sums of plane 
wa ves "traveling" in opposite directions, the dominant 
contribution being made by that wave whose wave vec­
tor is antiparallel to the electron velocity. The "soft­
ness" of the quanta of this wave follows from the con­
dition tin « f; (this is the criterion of the quasiclassi­
cal case). 
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