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Collective spontaneous emission by two excited atoms located at an arbitrary distance from each 
other is investigated. The frequency and angular dependences of the radiation and its integral in
tensity as a function of time are obtained. Special attention is paid to interference effects. The 
effect of energy splitting and Coulomb interaction on the collective features of the emission spec
trum is discussed. 

1. INTRODUCTION 

COLLECTIVE effects in spontaneous emission of 
identical atoms were first considered by Dicke [1], who 
used the emission of atoms in a volume whose linear 
dimensions were much smaller than the wavelength. He 
determined such characteristic features of the collec
tive radiation of atoms as the onset of metastable 
states and the change of the decay constants. A general
ization of Dicke's problem to the case of an arbitrary 
distance between atoms is made difficult because of 
the nonconservation of the total energy spin of the sys
tem (see, for example, [2]). Therefore, for arbitrary 
distances, the problem could be solved only for two 
atoms. For an initial condition with one excited atom, 
the spectrum of the collective spontaneous emission 
and the lifetime of the excitation were considered 
in[3-5]. It is pOinted out in[3] that the role of the 
Coulomb interaction is appreciable when the distance 
between the atoms is less than or of the order of the 
wavelength. The collective emission of atoms with 
degenerate upper level was considered in[4], and col
lective effects in the emission of unlike atoms (differ
ent frequencies and radiative constants) were investi
gated in [5]. The related problem of the spontaneous 
decay of an almost degenerate state was considered 
in[6] 

Collective spontaneous emission of two excited un
like atoms was considered first in a recent paper by 
Varfolomeev[7], who used the Heitler-Ma method to 
obtain a two-photon amplitude from which the form of 
the spontaneous-emission spectrum can be calculated. 
By way of example, he presented the spectra for sev
eral concrete (not very realistic, Y = w/20) values of 
the parameters of the two-atom system. The general 
expression for the spectrum turns out to be two com
plicated and is not given in [7]. Varfolomeev calculated 
also the time dependence of the probability of finding 
only one of the atoms excited, with allowance for the 
Coulomb interaction and the differences between the 
frequencies and the radiative constants of the atoms. 

In the present paper we investigated in detail the 
frequency and angular dependences of the spontaneous
emission spectrum of two excited atoms as a function 
of the ratio of the radiative widths Y, the resonance 
defect a, and the Coulomb interaction V. In particu
lar, for the case of identical atoms we obtain an ex-

plicit expression for the form of the spectrum (19) and 
calculate the integrated intensity of the cross section 
as a function of the time (27). 

The diagram method used by us for the density 
matrix[B] gives a clear idea of the elementary pro
cesses that were taken into account. This analysis may 
turn out to be useful for the investigation of collective 
effects in extended polyatomic systems. 

2. GRAPHIC REPRESENTATION OF THE DENSITY 
MATRIX 

We consider two-level atoms with resonant trans
ition frequencies Wa and wb; the atoms are separated 
by a distance R. The operator of the interaction of 
the atoms with the elctromagnetic field, for a Coulomb 
gauge of the vector potential A, is taken in the form 

H, = - 1:, A(R,)p, + iT = 1:, L,V. exp(iqR,)~.~/ + h.c.}+ v, (1) 

( 2rt ) 'f, 010 

f. = - i -;- '17) de" (2) 

where q = I q I and 2wo = wa + wb. Here V is the op
erator of the Coulomb interaction of the atoms, aq is 
~he annihilation operator of a photon of mode q, and 
at is the creation operator for the excitation of the 
i-th atom. The symbol q includes the wave vector and 
the polarization of the photon. The unit vector for the 
po larization of the photon q is deSignated by eq . The 
matrix elements of the dipole-moment operator be
tween the ground and the excited states of each atom 
are assumed to be identical for both atoms and equal 
to d. 

Assume that both atoms are excited at the initial 
instant. If we know the density matrix p of the system, 
we can calculate the emission spectrum 

<~.> = lim Sp (~.;; (t». (3 ) 
t_~ 

Expression (3) can be set in corres pondence with the 
following diagrams: 

'I 

o 

+ + +c.c. 
(4) 

'1 II 'I ill 'I 
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Here I a) (I b ») is a state in which only one atom a 
(b) is excited; I 0) is the ground state of the atomic 
system and I ab) is the fully excited state. 

We formulate briefly the rules for setting the dia
grams in correspondence with analytic expressions. 
The upper straight line corresponds to the propagators 
Gab abet) and Gi jet) of the atomic system. The ver
tex bn the upper iine corresponds to the factor -ifq; 
the lower line corresponds to analogous complex-con
jugate expressions. Summation is over all the inter
mediate-state indices, and the nonresonant transitions 
are disregarded. The internal photon line corresponds 
to pairing of the creation and annihilation operators 
and to summation over all the radiation oscillators. 
The approximation in which the internal photon lines 
are vertical corresponds to discarding terms of order 
y/wo, where Y is the radiative constant of the atom. 
Consecutive integration with respect to the times is 
carried out. 

The state populations in the time dependence for the 
atomic subsystem can be set in correspondence with 
the diagrams 

Db o'i aotiO 

.. ffl-D· "{D 4"-C1J] 
aD aD k j a6 k '0 

They yield in obvious fashion the average number of 
photons as a function of the time 

n(t) =Sp (np(t» =N.(t) +N,(t) +2N.(t). 

The normalization condition is 

N.+N. + N,+ Nab = 1. 

To calculate the diagrams it is necessary to know 
the atomic propagators. From relations such as 
Dyson's equations it follows that the Laplace trans
forms of the propagators satisfy the system 

G."ab = G.':"ab + G.~,ab (~ .. + ~ .. )Gab.ab' 

(5) 

(6) 

(7) 

G.,. = G.~. + G:'. ~.,.G •.• + G.~. (~., - iV) G"., (8) 

G". = G:,~ .. G". + G,~, (~,. - iV) G.,., 

where, for ~xample, G~ a ( p) is the free propagator of 
the state I a), V is the 'matrix element of the Coulomb 
interaction, and E(p) is the self-energy part; 

(9 ) 

As usual, we neglect the dependence of Eij(P) on the 
Laplace variable p, putting p = -iwo - E, E - O. The 
radiative-decay constant of an individual atom is equal 
to y/2 = -Re Eaa = -Re Ebb. Neglecting the Lamb 
shift, we put 1m Eaa = 0, 1m Ebb = 0 (see[9J). For the 
off-diagonal self-energy parts we introduce the nota
tion 

~'.b = ~b. = '/,'1 + iu. (10) 

The real part (10) as a function of R and of the angle 
8 between R and d is (see, for example, [10J) 

3 {" 9 sin qR + (2 • 9 .• 9) (Sin qR cos qR) 1 (11) Y=-v sm -- cos -sm -----
2 qR (qR)' (qR)' . 

The imaginary part of (10) describes interaction via a 
transverse electromagnetic field and can be included 
in V, as can be seen from the structure of Eqs. (8). 
The solution of the system (8) is 

G.b, .. (p) = (p + 2i<.l, + 2y)-', 

G.,.(p)= (P+iOOb + Y/2, G".(p) -(y/2 + iV) , 
p - p,) (p - p,) (p - P.) (p - p,) 

(12) 

where 

p.,' = -iooo - '/,y ± [('/,'1 + iV)' - 1'1']"', 21'1 = OOa - w,. (13) 

At 16.1 » Y, V the poles of the propagators corre
spond to non-interacting atoms, and there are no col
lecH ve effects. However, if the Coulomb interaction is 
large, I V I ~> I 6. I, then the radiative constant in (13) 
are equal to y ± Y independently of the ratio of the 
quantities 6. and y. The reason is that in this case the 
damping matrix (Yaa = Ybb = Y, Yab = Yba = y) and 
the energy matrix are simultaneously diagonalized. 

3. FORM OF THE EMISSION SPECTRUM 

It can be assumed that a characteristic relation for 
real systems is 16. I > Y (the inhomogeneity is larger 
than the radiative width). Therefore the collective ef
fects will come into play, according to (13), only under 
the condition I V I > 16. I, and the frequency detuning 
can be neglected when I V I » I 6. I. We consider first 
the spectrum of the spontaneous emission of identical 
atoms (wa = Wb), and discuss the results pertaining 
to the general case later on. The most natural for the 
case of identical atoms is a representation using the 
symmetrized basis 

18>= la>+lb> IA = la>-Ib> (14) 
i2' > 1'2' 

in which both the damping matrix and the energy 
matrix reduce to diagonal form. The atomic propagators 
in this basis are also diagonal 

Gs,s=(p-p,)-', GA,A=(P-P')-', GA,S=GS,A=O; (15) 

pl,2 = -ioo, - '/,y ± ('M + iV). (16) 

It is now necessary to sum in the diagrams of (4) over 
i, j, k, l = S, A. Since the propagators are diagonal and 
some of the interconnections vanish, the intermediate 
indices S and A do not appear simultaneously in any 
one of the diagrams of (4), so that the spectrum is a 
sum of two groups of terms, one of which corresponds 
to decay via the "symmetrical" channel and the other 
via the "antisymmetrical" one. 

We calculate diagram I of expression (4) for the 
intermediate state S: 

GO 13 t, 

<n.>(Il = (y + y) (1 + cos qR) 1/.1' S dt, S dt, S dt. ' 

, exp (-2yt. + iq (t, - t,» Gss (t, - t,) Gss' (t; - t,) + c.c . 

It is convenient to regard this expression as the 
Laplace transform as p - 0; using (15), we obtain 

(17) 

<n.>(I) = (y + 'I) (1 + cos qR) 1/.I'[2y(y + '1){i(q - UJ, + V) (18) 
+ '/,(y -+ V)} ]-' + c.c. 

The remaining diagrams are calculated analogously. 
After simple transformations we obtain the spectrum 

<n.> = ny-'I/.I'{(1 + cos qR)[ (1 - a)LY(3+6l/'(V + V) 

+ (1 + a)LY('Hl/'(V- V) + ~(X'('+6l/2(V + V) - X,(Wl/'(V - V»] 
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:+ (1- cosqR) [(1- a')Ly(3_')/'(v- V) + (1 + a')LY(l_&l/'(v + V) la,b >, Zf 

-~'(XV(H)/Z(V - V) - X'(H)/'(V + V)) Jl. (19) 

We have introduced here the following notation: 
rv 

Ly(w)= n(v'+w') ' 

2v(1 + 6) 
~= 1 +4v' ' 

1-6 
a' = 1 +4v' ' 

W 

Xy(W) = n(,,' + w') ., 

~'= 2v(1..,..6) (20) 
1 +4v' ' 

Ii{ V 
6=-, v=-, v=q-wo. 

V V 
To interpret the spectrum, we consider the level 
scheme of the system (see Fig. 1). The terms with the 
factor (1 + cos q. R) in (19) corresponds to the decay 
of the system via the symmetrical channel, with 
transitions 1 and 2 of Fig. 1 corresponding to Lorent
zians with widths 1'(3 + 0)/2 and 1'(1 + 0)/2, respec
ti vely. The positions and the widths of the Lorentzians 
are determined by the splitting and the widths of the 
corresponding levels. The quantum-mechanical inter
ference of the transitions, connected with the equidis
tant character of the system, is described by the dia
gram III of (4) and leads to an increase of the weight of 
the narrow Lorentzian, to a decrease of the weight of 
the broad Lorentzian, and to the appearance of inter
ference terms X, which bring the lines closer together 
and disturb their symmetry. We note that as V - 0 
the contribution of the interference terms X tends to 
zero, and in this case the role of the interference re
duces to a redistribution of the weights of the Lorent
zians. A similar interference narrowing in Dicke's 
problem was considered in [2J. Our result agrees in 
this limit with the corresponding formula of[21• The 
terms in the spectrum with the factor (1 - cos q . R) 
corresponds to decay via the "antisymmetrical" 
channel. The positions and widths of the lines corre
spond to transitions 3 and 4 (see Fig. 1). The inter
ference of the transitions in the "antisymmetrical" 
channel plays a role analogous to the interference in 
the "symmetrical" channel. 

The angular dependence of the spectrum (19) is also 
easy to interpret. The photons interacting most effec
tively with the symmetrical intermediate state are 
those for which the phase difference q . R is equal to 
0, ±21T, ••• In the case of the antisymmetrical inter
mediate state, these are the photons for which q. R 
= ± 1T, ± 31T • • , • The spectrum observed in an arbitrary 
direction is a sum of two independent spectra with 
weights given by (19). In the limit as qR « 1 (the 
Dicke problem), the decay from a symmetrical doubly
excited state is possible only via the symmetrical 
channel, since the interaction HI becomes symmetrical 
with respect to the atoms. The characteristic form of 
the spectrum (19), averaged over the radiation direc
tion at I vi» I' and 0 ~ 1, is shown in Fig. 2. 

In the more general case (wa ~ wb) the emission 
spectrum is also characterized by the presence of four 
Lorentz curves, two each at two frequencies corre
sponding to the imaginary part of the poles (13). Each 
Lorentz curve is accompanied by an interference in
crement X. The coefficients of the spectral compon
ents are quite cumbersome in the general case, and 
we therefore discuss here limiting cases that provide, 
together with (19), a sufficiently full picture of the 
spectrum. When the atoms are separated by a small 

FIG. 1. Possible transitions in a 
system of two atoms. 

, 

t-

J 

---r-' 

Z ¥ 

18>,r1 

IA),,-f 

I 0 ~ 

FIG. 2. Components of emission spectrum averaged over the direc
tions at V/'y = 5 and li = 0.9. The dashed lines represent the contribu
tion of the "antisymmetrical" channel. 

distance (qR« 1), so that y = I' and I V I » Y, the 
difference between the frequencies of the atoms leads 
to insignificant changes in the form of the spectrum in 
comparison with (19). If the condition I V I » I a.1 is 
satisfied, then the positions and widths of the spectral 
components, and also the coefficients of the latter, 
differ from the spectrum (19) only starting with the 
second order of smallness in the parameter I a./V I 
« 1. The only significant difference between the spec
trum in this case and the spectrum (19) is the presence 
of an additional narrow component, which in second 
order in a./V is given by 

It (I:J.' 1 I:J. ' yl/.II' v) LV(A/Vl·,,[V+V(1+ T (v))]· (21) 

Although the system decays at qR « 1 only via the 
"symmetrical" channel, the difference between the 
frequencies of the atoms leads to quantum oscillations 
between the states I A) and IS). Since the state I A) 
is stationary with respect to the radiative decay, the 
relaxation of the excitation in the system slows down, 
and this leads to addition of a narrow component to the 
spectrum. 

We consider now the spectrum for medium distances 
between the atoms (qR ~ 1). We set V equal to zero, 
since the Coulomb interaction between the atoms de
creases with distance more rapidly than Y (for Y, as 
seen from (11), there is a characteristic decrease like 
(qRt1 ). The spectrum averaged over the directions 
takes the following form at V = 0 and I a. I :> y/2: 

where 

(n.}g = nv-' <I I. I '}g{a, (L,/,(y + Qo) + L'I'(v - Qo)) 
- a,(L,,/.(v +:Qo) + L,,/,(v - Q,)) + .~,(X,/,(v +Q.) (22) 

-XV/,(v - Qo)) + ~,(X,,/,(v +Qo) - X,./,(v- no))}, 

IQ,=YL'i'- (ry/2)', 
6'(1-6') 

a, = 2 + -'1"-+-:---:-41."""':-

1.= Qo/V, 
6'(1-6') 

a,=· 1 +41.' ' 
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6' 1- 6' ~1=-(2+-) 2'- 1 +4'-' ' 
6' . 6'+4'-' ~'=-(1+ ) 2'- 1+4'-" (23 ) 

As follows from (22), the Lorentz curves are shifted in 
this case towards each other relative to the atomic 
frequencies. The broad Lorentzians, which enter with 
a negative weight, ensure a faster decrease of the lines 
on the wings. The interference terms X lead to a 
mutual approach and distortion of the lines. When the 
inequality I tl.1 » y is satisfied, the spectrum (22) 
goes over into the emission spectrum of independent 
atoms. 

4. DYNAMICS OF THE EMISSION 

We now obtain the time and angle dependences of the 
number of emitted photons. We consider identical 
atoms (wa = Wb) with allowance for the Coulomb inter
action. It is obvious that the angular dependence for a 
decay via the "symmetrical" and "antisymmetrical" 
channels is the same as for the spectrum (19). There-

fore, if nS(A)(t) is the average number of photons in 
the field as a result of decay via the "symmetrical" 
("antisymmetrical") channe 1, then 

WB(A) (g, t) = nS(A) (t) (1 ± cos q,R) (de,) , (24) 
< (1 ± cosq,R) (de,)'). 

is the respective number of photons emitted by the in
stant t into a unit solid angle. Here qo is the vector 
of the given direction; I qo I = Woo The averaging over 
the directions is designated by the angle brackets. The 

quantities nS(A)(t) are determined from the relations 

nS(t)=Ns(t)+ 2N,(S) (t), n A (t)_N .. (t)+2N,(AI (t), (25) 

where NS(t) is the probability of finding the system in 

the intermediate state Is>, and N~S) (t) is the proba
bility of decay to the ground state via the "symmetri
cal" channel. 

For Ni(t) (see (5» at i = S we obtain 
t 

N s(t) = (y +'Y) ~ dtlraY/'1 Ce. s (t - t,) II = ! ~ ~ tr"" (elY-v)! - 1). (26) 
o 

Calculating analogously the expressions for NA(t), 

N~S)(t), N~A)(t) and using (25), we get 

nB(t) = (1 + 6) {1 - (1 - 6)-te-"'(e(,-'V)I - 6)}, 

nA(t) = (1 - 6) {1 - (1 + 6) -te-'''(e(· ... l + 6)}. 
(27) 

from the obtained relations it follows that the dynamics 
of the decay is independent of the Coulomb interaction 
at wa = Wb. If qR « 1, then the "antisymmetrical" 
channel is "closed" and the total number of the photons 
emitted by the instant of time t is then given by 

n(t) = 2{1- e-'yt(1 + yt)}, (28) 

which agrees with the corresponding result of[21• At 
qR» 1, Le., as 0 - 0, we obtain the decay of inde
pendent atoms. 

5. CONCL USION 

Collective effects in the emission of two atoms can 
come into play when the distances between them are 
smaller than or comparable with the radiation wave
length. At distances greatly exceeding the wavelength, 
the off-diagonal damping-matrix elements tend to zero, 
and the atoms emit independently. The collective effect 
depends then on the mutual orientation of the polariza
tions of the excitations. It is maximal when the polari
zations are parallel and is zero for perpendicular 
polarizations. If the Coulomb interaction between the 
atoms is small, as is the case for relatively large 
distances, then the collective effect depends on the 
degree of resonance, namely, the difference between 
the frequencies of the atoms must not exceed the 
natural width of the level. This condition is too 
stringent for real systems, owing to the inhomogeneous 
broadening. If, however, the Coulomb interaction is 
larger than the inhomogeneity, then the energy eigen
states will coincide with the collective radiative states. 
This case is apparently the most realistic for the 
manifestation of collective radiative states. 

The spectrum of the spontaneous emission of two 
identical excited atoms consists of two lines, the posi
tions of which are determined by the magnitude of the 
interaction (see Fig. 1). Each of the lines is a super
position of two Lorentzians with widths 3y + Y, y - Y, 
3y - Y, y + y (0 ::s y::s y). The interference of the 
corresponding transitions distorts somewhat the shapes 
of the Lorentzians. If the Coulomb interaction exceeds 
the natural width, this distortion is small. However, 
in the absence of interaction (the Dicke problem), the 
interference causes the spectrum to contain only one 
line with characteristic width 2y. This quantity deter
mines also the law governing the decay of the excitation. 

The authors thank V. I. Perel', A. S. Troshin, and 
V. L. Shekhtman for a discussion of the work. 

lR. H. Dicke, Phys. Rev., 93, 99 (1954). 
2A. A. Belavin, B. Va. Zel'dovich, A. M. Perelomov, 

and V. S. Popov, Zh. Eksp. Teor. Fiz. 56, 264 (1968) 
[Sov. Phys.-JETP 29, 145 (1968)]. 

3 M. J. Stephen, J. Chern. Phys., 40,669 (1964). 
4D. A Hutchinson and H. F. Hameke, J. Chern. 

Phys., 41, 2006, 1964. 
5 A. A. Varfolomeev, Zh. Eksp. Teor. Fiz. 59,1702 

(1970) [SOV. Phys.-JETP 32, 926 (1971)]. 
6E. D. Trifonov and V. L. Shekhtman, Vetnik LGU, 

ser. fiz., No.4, 36 (1968). 
7 A. A. Varfolomeev, Zh. Eksp. Teor. Fiz. 62, 111 

(1972) [SOV. Phys.-JETP 35, 59 (1972)]. 
80. V. Konstantinov and V. I. Perel', ibid. 39, 197 

(1960) [12, 142 (1961)]. 
9 W. Heitler, The Quantum Theory of Radiation, 

Oxford, 1954. 
lOY. Ernst and P. Stehle, Phys. Rev., 176, 1456, 1968. 

Translated by J. G. Adashko 
228 


