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A study is reported of the statistical and spectral properties of the electromagnetic field emitted by a 
two-level system in a traveling-wave cavity. It is assumed that the generation occurs at the atomic 
transition frequency, whereas for all the remaining modes the threshold condition is not satisfied 
(these are the subthreshold modes). The nature of the weak (subthreshold) emission depends on the 
presence or absence of the combination coupling between the subthreshold modes and on the direction 
of observation. A detailed analysis is given of the role of the combination coupling. All the required 
spectral characteristics are derived, including the shape of the spectral profiles, their position, the 
integrated power in the subthreshold mode, and so on. 

INTRODUCTION 

FLUCTUATIONS in laser radiation have been investi­
gated by a number of workers (see, for example, [1-3 J). 
However, no account has been taken of the effect of dif­
ferent modes on one another. It is known, [4J however, 
that a strong field in one mode has an important effect 
on the interaction between the resonance medium and 
other modes.[4J In this paper we consider generation 
in one mode and fluctuations in all other modes. The 
fluctuation problem will be solved in the linear approxi­
mation (such modes will be called subthreshold modes). 
Under certain definite conditions the main factor in the 
interaction between subthreshold modes is the combina­
tion coupling. The importance of this type of interaction 
between the modes in a laser was first pOinted out by 
Lamb[;J (Malakhov and Sandler[sJ have considered a 
similar problem but without taking into account the 
combination coupling). It will be shown below that com­
bination coupling leads to a modification in the spectrum 
and in the statistical properties of fluctuations in the 
subthreshold modes. 

Consider a ring laser in which one traveling wave is 
generated. The situation is quite different for sub­
threshold modes traveling the same direction as the 
generated wave (forward direction), and for waves 
traveling in the opposite direction (backward direction). 
Waves traveling in the backward direction are com­
pletely independent of one another even in the presence 
of a strong generation field. There is only a change in 
the probabilities of emission and absorption of a photon 
by atoms in the upper and lower working levels, respec­
tively (all other parameters are expressed in terms of 
these characteristics). In this case, our results are 
identical with thos e reported by Rautian, [7J who did not 
take into account the combination coupling between the 
modes. On the other hand, for waves traveling in the 
forward direction, and having frequencies located sym­
metrically relative to the strong- field frequency, the 
combination coupling need not be taken into account. 
In the simplest case, when the generation frequency is 
equal to the atomic transition frequency, this leads to 
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the splitting of the radiated line associated with each 
subthreshold mode into two components. (We note that 
similar splitting for a standing-wave laser is exhibited 
by the formulas derived by Kuznetsova, who investiga­
ted the stability of monochromatic generation. [4J) A 
pair of modes subject to combination coupling will thus 
give four lines (see Fig. 1), two of which (al and a2) 
can, in accordance with [8J , be associated with amplitude 
modulation of the generating wave and the other two 
(phI and ph2) with phase modulation. It is important that 
lines al and a2 and, similarly, lines phI and ph2 are 
strongly correlated with one another. Below we shall 
obtain expreSSions for the frequencies and intensities 
of these lines, and the photon statistics for them. 

The shape of the spectrum can also be obtained by 
classical analYSis of the electromagnetic field, whereas 
problems involving the intensity of the fluctuations and 
photon statistics require a quantum-mechanical ap­
proach. 

1. SEMICLASSICAL ANALYSIS 

Consider a resonant medium placed in an optical 
traveling-wave cavity, and suppose that the medium con­
sists of fixed atoms whose energy structure is as shown 
in Fig. 2. One traveling wave is generated at the fre­
quency Wo of the atomic transition. As indicated in the 
introduction, the subthreshold modes will be analyzed 
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in the linear approximation. Each of the subthreshold 
waves traveling in the backward direction and each pair 
of subthreshold waves traveling in the forward direction 
and having frequencies symmetrically located relative 
to the strong generation mode are completely indepen­
dent of all the other subthreshold modes. The entire 
analysis can therefore be performed for anyone sub­
threshold wave traveling in the backward direction and 
any pair with combination coupling. The field in the 
cavity is then of the form 

E(x, t) =~ocos[{JJo(t-xlc) 
+ <po] +E'(X, t) +E"(x, t), - (1) 

where ~o, cpo, and Wo are the amplitude, phase, and fre­
quency of the strong field. Next, 

E'(X, t) =~+/exp[-i(roo+_~)(t-xlc)l 
+'_" exp(i(roo-/l) (t-x/c))+c.c. 

is the field of the pair of waves with frequencies Wo ± ~ 
traveling in the forward direction. The quantity 
~ = 27Tcn/ L is the mode separation in the cavity 
(n = 1, 2, ... ), L is the cavity perimeter, and 

E"(x, I) = 8" exp[ -I({JJ. +a) (I +x I c)] + C.c. 

is the field in the subthreshold wave with frequency 
Wo + ~, traveling in the backward direction. 

USing existing calculations [.,7,8J of the polarizability 
of an atom in the field given by Eq. (1), we can write 
down the truncated equations for the generation fields 
and the subthreshold modes as follows: 

(2) 

(3) 

In the equations for the subthreshold modes traveling 
in the forward direction, which are given by Eq. (3), we 
use, instead of the slow field amplitudes ~~, ~~*, their 
linear combinations which are denoted by Za and Zph: 

Z. - 8 +' exp(icpo) +8_'• exp (-icpo). 

Zph= 8 +' exp (I<p.) - 8 _,. exp (-i<po)_ 
(4) 

The convenience of using these variables lies in the fact 
that instead of a set of coupled equations we obtain two 
independent equations. The quantity Za describes the 
amplitude modulation of the generation, whereas Zph 
describes the phase modulation. [8J The remaining 
desisnations are as follows: Ow-cavity line width, 
1= cf ,wVIlY'Yab-dimensionless generation power, 
N = Na - Nb-the difference between the populations of 
the working levels, Nth-threshold difference between 
the working level populations, and 

"" - I/tOro(N(f - 2131) IN th(f + I) (f - if) -f), 

APh=l/,6ro(Nth ~+/) (1~if) -1) 
A = l126ro(N(1 - PI) I Nth (1 + I) (f- if) - 1); 

1 - if/2 11 x = ~ .,,;1. 
~ = (1- if) (1 -,- iflx) + I' f = y:;' Ya' 

Equations (2) and (3) are written on the assumption 
that the field relaxation time in the cavity is much 
longer than the time 1/Yab for the atomic coherence 
decay. Moreover, it is ass umed that Ya = Y b == y, but 

Yab is not, in general, equal to Y (Yab ~ y). 
The importance of combination coupling can be 

elucidated by comparing A (which does not include com­
bination coupling) with the quantities Aa and Aph' It is 
clear that in A a the term proportional to {3I is double in 
comparison with the analogous term in A, and is absent 
altogether from Aph' . 

In the case of time-independent generation (~o = 0), 
we find from Eq. (2) that N/Nth(1 + 1) = 1. This sub­
stantially simplifies the expreSSions for Aa , Aph' and A. 

The solutions of Eq. (3) are, of course, obvious. They 
enable us to write down the field in the cavity in the fol­
lowing explicit form: 

E'(X, t) = 1/2Z.(O) exp (-r.t) (A+(x)exp[-I(roo + Q.)t) 

+ L·(x)exp[i({JJ. - Q.)t]} 
(5) 

+ 1/2Zph(O)exp( -rph/) {A+ (x)exp[ -i(roo + Qph)t) 

-A_·(x)exp[i({JJo-Qph)/]} + c.c., 

E"(x,/)= '/,E"(O)exp(-r/)exp [i({JJo+ Q,)t + I(ro. + M :] +C.c. 

where 
A", (x) = exp[ -icpo + i(wo ± a)x I c), 

Q. = Ll- 1m A .. nph=a - 1m hph' no =a - '1m'" = 1/2(n. +~ph)' 
r. = -ReA., rph= -ReA r = -Re 1._ 

(6) 
For the frequencies 0a and Oph (see Fig. 1) we have 

Qa=/l-/l Ilro x'-x(x+2)/+f 
2Ya. (x + xl - f)' +(x + 1)'1' 

Oro f 
Qph= Ll-Ll---

2y .. 1 +1' ' 
It will be shown in Sec. 2 that these frequencies are 
present in the beat spectrum. For practical purposes, 
it is convenient to have the frequency splitting 
(0 = 0a - 0ph) of the amplitude and phase modulation: 

Q-/l Ilro I 2+x(3+/)+xf (7) 
- 2Ya. 1+r'x(1+I-flx)'+f(1+x)'/x -

Figure 3 shows 0 as a function of the strong field. 
As the power increases, the splitting at first smoothly 
rises but, having reached a maximum at the point 
Imax = 10 + (~ = d)lfl, where 

f+x' 
1.= x(x+2) , 

r + I' (3+ x'+2/x) + x (2+3x) 
tl- ,;...--'--'-------:---:--=------"---'-

x(x+2) 

it decreases to a value 1m A h that is independent of I. 
The point Io is characterizeS by the fact that, for this 
value of the strong- field power, the frequency of the 

n/~W 
/.0 

0,8 
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amplitude modulation is equal to the cavity frequency of 
the subthreshold mode. The frequency of the sub­
threshold mode traveling in the backward direction is 
shown by Eqs. (5) and (6) to be equal to the mean fre­
quency of the wave doublet traveling in the forward 
direction. 

We shall now consider some numerical estimates 
for the splitting of the amplitude and phase modulation 
frequencies. For the ruby laser (K ~ 10-'7) we find from 
Eq. (7) that Q ~ fOw ~ 104 Hz for the subthreshold 
modes for which f ~ KJ. For the gas laser with homo­
geneous amplification K :S 1, and for the subthreshold 
modes for which f Rj KI Rj 1 we have Q ~ Ow ~ 108 Hz. 

In point of fact, the emission lines are not mono­
chromatic. They all have the Lorentz shape. The width 
of the lines a1 and a2 (Fig. 1) is r a' whereas that of the 
lines ph1 and ph2 is r ph' The resolution condition for 
the two lines in the doublet can be written in the form 

Ir.I+lr phl<IQI. 
This condition is satisfied for the above examples. 

The amplitude and phase modulation frequency 
splitting occurs also in the case of inhomogeneous am­
plification. In the limiting case of inhomogeneous broad­
ening y(l + 1)112 « ku when the longitudinal and trans­
verse relaxation constants are equal, Y = Yab' the 
splitting is characterized by 

Q=~ 1'1+I[(~+ __ 1_) (/l'B+a-l'B-a)-.!..-l'B+a] 
'1:1, B 1 + f IB 

+ 600 I 
2 1(1+ 1') , 

where 

B=(a'+41')'\ a=1+I-f, I=(NIN th )'-1. 

Figure 3 shows the Qinhom corresponding to the last 
formula with f = 1. 

Zeiger[9J has shown that, in the case of three-mode 
generation in a gas traveling-wave laser with symme­
tric location of the frequencies, it is possible to have 
different generation regimes, depending on the pump and 
the mode spacing. In addition to regions in which the 
amplitude or phase modulation is stable, there is also a 
region in which stable three-frequency regime does not 
exist. In our view, this fact can be explained by the co­
existence of amplitude and phase modulation regimes 
occurring at different frequencies. In the standing-wave 
laser this was recently confirmed experimentally. [10J 

2. QUANTUM-MECHANICAL ANALYSIS 

We shall now suppose that the field radiated by the 
a - b transition (working transition) is quantized. It 
will be described by the density matrix p(t). In spite of 
the fact that we are conSidering the multimode problem, 
we can use some of the results of Lamb and Scully.c1J 
For example, the time derivative of the field denSity 
matrix is 

. '{"1 (CIa) (Clcr.) 

p= ~ <N.[F" (oo,t)+F"" (oo,t)-p(t)l> 

(8) 

= E (NoV •. j F~o.':,.>.(t',t)dt' -~p(t» . 
Ct,Cl'_Cl,b t 

In these expreSSions Na and Nb are the working level 

populations in the absence of the radiated field at the 
working transition, and Ya and Yb are the decay con­
stants of the working levels (Fig. 2). The angular 
brackets represent averaging over the volume of the 
medium (and, in general, over the motion of the atoms). 
F is the density matrix for one atom and the radiation 
field in the interaction representation. The subscripts 
on this matrix represent the corresponding matrix ele­
ments between the levels a, b, c, or d (see Fig. 2), and 
the superscripts represent the initial conditions for 
which the solution of the equation 

is sought. The matrices F sand F are related by the 
unitary transformation 

(9) 

F.(t) = exp[ifi-'Ho(t - to) IF(t)exp[ -ifi-'Ho(t - to)], (10) 

where Ho is the interaction Hamiltonian for the atom 
and the field. The complete Hamiltonian is H = Ho + H1, 
where H1 is the interaction Hamiltonian 

HI = 1:,: (fig. +a. + fig.a. +) 

• 
with the coupling constant 

ak and ak are the photon creation and annihilation opera­
tors in the mode with wave vector k, and r is the re­
laxation operator, whose matrix elements are raa , 
= Y aD aa,I (I is the unity operator). 

Equation (9) is taken from the work of Scully and 
Lamb. [1J It presupposes that the transverse relaxation 
constant is related to the longitudinal relaxation con­
stant by the formula Yab = 1/2(Ya + Yb)' The necessary 
condition for a pure field equation (i.e., a closed equa­
tion for the field densitr matrix p) is the same as for 
the one-mode problem, 1J i.e., the change in the field 
must be slow in comparison with the change in the state 
of the atom. This condition is consistent with the re­
quirements of Sec. 1. 

The formal solution of Eq. (9) can be written in the 
form 

F.(t) = U(t, to)F(to)U+(t, to) 

= U(t, to)p(to)U+(t, to), 
(11) 

where the operator describing the development of the 
system is 

U(t, to) = exp[-ifi-'H(t - t.) - IM'(t - to)]. 

The fact that this is a solution can be verified by direct 
substitution. In writing down Eq. (11), we took into ac­
count the fact that the total density matrix F coincides 
with the field matrix p at the initial time. Using the 
resolvent operator 

G(x) = (x+ 1/2ir -fi-'H)-' 

we can rewrite the operator U(t, to) in the form 

1 '. 
U(t,t o)=--, J dxG(x)exp[-ix(t-t.)]. (12) 

2,-" 

As before, we shall be interested in the case where 
one traveling wave with wave vector k is strong and all 
the others are weak. Accordingly, we shall write down 
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the interaction Hamiltonian in the form of two compon­
ents H1 = nv + nV1, where nv determines the interaction 
with the strong field and nV1 with the weak field. We 
shall write the resolvent operator in the form of a 
series in powers of V1, and will restrict our attention 
to terms up to the second order: 

G = G(l) + G(t)vtG(l) + G(l)v,G(t)vtG(l), (13) 

where G (1) represents the operator 

G(l) (x) = (x + IMr - h-tH. - v) -I, 

the equation for which is 

G(t) = G(O) + G(O)vG(t), 

and G(O) represents the free motion of the field and 
atom 

G(') = (x+ IMr _ h-tHo)-t. 

(14) 

Equation (14) can readily be solved in the quasi­
resonance approximation, i.e., by taking into account 
only those processes in which the energy is conserved 
to within atomic line widths: 

where 

(t) z-E./h + iy"/2 -en + 1)00 
G ••.••• = /l... ( ) ( ) 

X-Xl :C-X2 

1 (E.+E. . ) 
Xt .' = 2"' --/i- - zy •• + (2n + 1) 01 

[ 1 ( y - 'I' )' ] 'I. ± 4 oo-OlO-~ + 1 V •• , •• +t I' . 

By determining G<l) in explicit form, we have also 
determined G as given by Eq. (13). If we then evaluate 
the integral in Eq. (12), we obtain the matrix elements 
of the operator U(t, to), which immediately enables us 
to construct the matrix elements of the density matrix 
F s in which we are interested. All that remains is to 
carry out the transformation which is the inverse of 
Eq. (10), i.e., transform from the density matrix Fs 
in the Schrodinger representation to the matrix F in the 
interaction representation, and substitute the result in 
Eq. (8). This yields the kinetic equation for the field 
density matrix p(t), which describes the electromag­
netic field radiated by the working transition. This field 
includes both strong generation and the subthreshold 
emission. If in Eq. (13) we restrict our attention to the 
first term and reject all the others (zero-order ap­
proximation ~n V1) we obtain the equation for only the 
strong generation, which is identical with the corre­
sponding equation given by Scully and Lamb. [1] 

The kinetic field equation which we have obtained has 
a complicated structure and is not very convenient for 
analysis. It is substantially simplified, however, if it 
is assumed that the generation field is classical. Form­
ally, this means that we replace the corresponding 
operators by the complex strong-field amplitudes. This 
can be done with adequate accuracy because neglecting 
fluctuations in the generation field is equivalent to 
neglecting quantities of the order of «n)f1h in com­
parison with unity, where (n) is the mean number of 
photons in the generated mode (even for a small helium­
neon laser with an output of I ~ 10-1 we have (n) 
~ 10~. 

Because of the classical nature of the strong field, 
we shall consider the kinetic equation only for the sub­
threshold radiation. Its structure is such that it is clear 
that each of the backward waves and each pair of for­
ward waves with frequencies symmetrically located 
relative to the generation field frequency are completely 
independent of all the other subthreshold modes. It is 
therefore possible to write down the equation for any 
particular chosen pair of waves. It will be of the form 

p = -At (atat+p - at+pat + pa,a,+ - a,+pa,) 
- (A,+ 1/200) (pa,+a, - atpa,+ + a,+a,p - a,pa,+) 

+ A.(a,a,p - a,pa, +pa,+a,+ - a,+pat+) 
+ A.(pa,a, - a,pa, + a,+a,+p - a,+pa,+) + h.c. 

(15) 

In these expressions, the subscript 1 represents the 
mode with frequency W1 = W - ~ and subscript 2 corre­
sponds to the frequency W2 = W +~. The coefficients Ai> 
A2, Al , and A4 for waves traveling in the forward direc­
tion are given by 

A,=~~+A A,= /looo ~+A" 
2 1 - if" 2 1 - if 

A /lOlo P (2 2) ( 1 .= 16 (i-if)' 1-ij'-7 (1-ij)'+1 

A /lOl, 1(1+1/2) (2 1)( 1 .= 8 (1-tf)2 T=i/+T+I12 (1-if)'+1 

1) , 
1), (16) 

These coefficients are obtained on the assumption that 
the strong-field frequency W is equal to the atomic 
transition frequency Wo, that pumping occurs only to the 
upper working level, and that all the relaxation con­
stants are identical, i.e., Ya = Yb = Yab:= y. 

For the backward traveling waves, one simply sets 
the coefficients Al and A4 equal to zero and leaves A1 
and A2 as they stand. 

The notation used in Eq. (16) was introduced in Sec. 
1. In contrast to Sec. 1, the cavity width <5w for the 
subthreshold emission is not, in general, equal to the 
cavity width <5wo for the strong field. This enables us to 
use the results when we are concerned not with the gen­
eration field but with an external Signal. In this situa­
tion, we need only replace <5 W in accordance with the 
formula 

21gl'N 1 
--'1+1 =/loo" 

V. 

(17) 

where N is the population of the upper working level. 
Equation (15) is the quantum-mechanical analog of 

the truncated semiclassical equations. The latter can be 
obtained from Eq. (15) by the following procedure: 
multiply the equation by the operator a1 and take the 
trace over both modes; then multiply the equation again 
by the operator ~ and take the trace over both modes. 
The result is a set of two equations with two unknowns 
(both of which will, of course, depend on the strong-field 
amplitude which has its own equation). 

There is one further point which we must note. In 
the derivation of Eq. (15) we have to take an average over 
the volume of the medium [see Eq. (8)]. We assume that 
the medium occupies the entire volume of the cavity 
Since, otherwise, the equation would contain terms 
responsible for the so-called linear coupling and des­
cribing scattering by the boundaries of the medium from 
one mode into another. 

It will now be convenient to transform to the diagonal 
representation of the density matrix. In accordance with 
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Eq. (10), the density matrix p(t) can be associated with 
the quantity P(Ql1Q12t) such thatCH] 

(18) 

where d2Q11 = dQlidQli, Qli = Re Qli' Qli = 1m Qli' i = 1, 2. 
In these expressions Qli and IQli) are the eigenvalue and 
eigenvector of the photon annihilation operator in the 
i-th mode, i.e., we have QlilQli) = QliIQli)' The vector 
IQl1(12) represents the product IQl1)IQl2). A description 
of the transformation from the equation for p to the 
equation for P can be found, for example, in Gordon's 
paper. [12J 

The equation for the density matrix in the diagonal 
representation P(Ql1Q12t), written in terms of the varia­
bles 

Z. = 1/2 (a. + a,') exp [i(~ - Q.)tl, 

Zph= l!2(a .. - a,) exp [-i(~ - Qph)tl, 

permits the separation of variables in the form 

P(a.a,t) = P.(z.t)Pph(Zpht). 

(19) 

(20) 

For each of the functions Pk(Zkt) (k = QI, ph) the equa­
tion has the same form, L e. , 

~= r._a_(Z P)+ r.CI, a'p, + c (21) 
at 2 az. •• 2 az. az; .c . 

These two equations are completely analogous to the 
semiclassical equations given by Eq. (3) but, of course, 
have a more general character. 

The constants r a , r ph and Qa' Qph are defined in 

Sec. 1 [Eq. (6)]. They are given by 

r. = 11m - 1/2 Re(A. - A. - A, + A.); rph= 600 - 1/2 Re(A. 
-A. +A. - A.), 

,Q. = l\ - 1/2 Im(A. - A. - A. + A.); 'Qph = ~ - 1/2 Im(A, 
-A.+A, -A.). 

The constants U a and uph are new and appear only in 
the quantum-mechanical theory. The fact that they are 
not zero is governed by the presence in Eq. (21) of 
terms involving the second derivative with respect to z. 
They in fact determine the correlation properties of the 
subthreshold radiation. They are given by the folloWing 
formulas: 

Re(A, +A.) 
Oa= (1+ 1)(1+ /') / 2 {~[ (1+ 1-/,)' + 4/'l 

11000 r. 
-(1+1) (1-I+/,) l 

(1+ '/,I) /2 [ ~:o (1+ /,)-1]. (22) 

As in Sec. 1, the quantities Za and Zph describe, res­
pectively, the amplitude and phase modulation of the 
strong signal. It will be seen from the ensuing formulas 
[it is, of course, also clear from Eq. (21) which is well 
known in the theory of Markov processes] that U a and 
uph determine the mean values of 1Zal2 and IZph l2 (Le., 

they determine the amplitude and phase modulation 
power) and their dispersion. 

The quantities ra and rph' which form the denomina­
tors of the expressions for ua and uph' represent the 
difference between the cavity width and the gain (see 
Sec. 1). When the denominators of Eqs. (22) and (23) 
vanish, this corresponds to the instability boundary of 

FIG. 4 

the single-mode generation for the growth of the ampli­
tude or phase modulation.[S,13,14] 

The solutions of Eq. (21) for arbitrary initial condi­
tions but subject to normalizability are[15,16] 

P.(Z.,t)= 1 d"ZP(Z,O)K(Z,OIZ,t), 

i (IZ. - Zp.'Ii I' ) (23) K(Z,toIZ.t)=--exp - ; 
2nq.cr. q.CI. 

Q. = 1- po, p. = exp[ -r.(t - to) l. 

In principle, these equations contain all the information 
about the subthreshold radiation. From the experimen­
tal standpoint, the most interesting are the Fourier 
transforms of correlators (o(t)0'+(t - T) and 
(o(t),nt)0'(t- T)$+(t- T). The first of these deter­
mines the radiated frequency spectrum and the second 
determines the beat spectrum. c!f(t) is the positive­
frequency electric-field operator in the Heisenberg 
representation. 

It is possible to construct the above correlators and 
any other correlators directly with the aid of the den­
sity matrix in the interaction representation, Le., in 
our case, with the aid of Eq. (13). For example, in the 
case of the frequency spectrum, this yields 

/(00)= S <~(t)~+(t-'t»t~~ej·'d't=~o·ll(oo-ooo) 

Therefore, each of the two modes with combination 
coupling is the sum of two Lorentz profiles, one of 
which is centered on Wo ± Qa and has an integrated 
power 81T2nwua and the other is centered on Wo ± Qph 
and has an integrated power 81T2l1wuph (see Fig. 1). We 
shall not write out explicitly the shape of the beat spec­
trum. Figure 4 illustrates it in a general form. It is 
clear that 'not all the possible beats are present. For 
example, there are no beats at the frequency of Qph' 

This is a consequence of the fact that the lines phI and 
ph2 in Fig. 1 form the phase modulation of the strong 
signal. In this case, beats between the central line and 
ph1, and between the central line and ph2, occur in anti­
phase and, therefore, cancel one another. For the same 
reason, there are no beats at the frequency Qa - Qph' 

The beats between al and ph1 are in antiphase with the 
beats between a2 and ph2. Although beats at the differ­
ence frequency Q '" Qa - Qph are absent from the spec-

trum, nevertheless, this frequency can be determined by 
measuring the separation between the lines 2Qa and 
2Q h' This method of measuring the splitting of Q is 
nop, however, very convenient. The point is that the in-
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tensities of these lines are low (beats between two low­
power signals). A more promising approach would seem 
to be an experiment in which the receiver intercepts only 
a portion of the radiation. For example, suppose that, in 
some way, the lines a2 and ph2 are excluded, i.e., the 
receiver intercepts only the weak signals a1 and ph1 and 
the strong signal at the center of the amplification line. 
In this experiment the beat spectrum will contain lines at 
frequencies Qa' Qph, and Qa - Qph. The lines at the fre-
quencies Qa and Qph are strong since they are propor­

tional to the generation power. They would appear to be 
the most convenient for analysis. 

Let us now consider the time-independent solution 
(t - 00) for our problem. Using Eqs. (20) and (23), we 
obtain the following expression for two subthreshold 
modes with combination coupling: 

1 (la, +a,·I' P(a,a,)=---exp -..:.-...,......-:... 
4,,'0'.0' ph 40'. 

(24) 

From this we obtain (0!1) = (O!z) = 0 while (O!lO!Z) is not 
zero but is proportional to the difference ua - uph. In 
the absence of combination coupling (and only in this 
case) the quantities ua and uph are equal and, there­
fore, there is no correlation between O! 1 and 0!2, i.e., 
«O!lO!Z) = 0). 

We require to determine the statistics of photons in 
the subthreshold modes in the presence of the strong 
field. This means that we must evaluate the quantity 

pn,n, = .E Pnlftt,tI,nt" .. 
It is readily seen that 

p •••• = S P(a,) <n,la,> (a,ln,> cPa .. 

P(a,)= SP(a,a,)cPa,. 

Thus, to establish the statistics of photons in one mode 
we must integrate Eq. (24) with respect to the variable 
of one of the modes. As a result of this operation we 
obtain 

P(a,)= 1 exp(-~). 
" (0'. + O'ph) 0'. + O'ph 

It is well known that the Gaussian function for the 
diagonal representation of the denSity matrix corre­
sponds to the Bose-Einstein statistics. This is conven­
iently characterized by a temperature T which, in our 
case, is given by 

1 / (0'. + (Jph) = exp (11m / kT) - 1. 

It is clear that the strong field at the atomic transition 

frequencies does not lead to a change in the photon 
statistics. It merely changes the temperature of the 
equilibrium photon gas. Moreover, this chang~ is dif­
ferent for the forward and backward subthreshold radia­
tion. 

The authors are greatly indebted to V. I. Perel' for 
valuable suggestions in the course of this work and for 
advice in connection with its presentation. 
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