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The equation of motion of a laser whose cavity possesses frequency dispersion is obtained. It is 
found that frequency dispersion can lead to pulsations of the emission of solid and gas lasers. 

RESONATORS with frequency dispersions are widely dE +iQE+ pE= __ 1_~ dP . 
used in lasers to control the emission spectrum and dt 2e. L dt 

(1.1 ) 

mode selection. Many problems solved with the aid of 
lasers lead to the important particular case of a reso­
nator with dispersion-a three-mirror resonator. At 
the same time, the influence of frequency dispersion on 
the kinetics and on the spectral characteristics of laser 
emission has not yet been investigated sufficiently well. 

A theoretical investigation of the spectrum of a laser 
with dispersion usually reduces in the literature to the 
determination of the threshold conditions and the 
natural frequencies of different concrete schemes of 
linear resonators (without allowance for the non­
linearity of the active medium). Perel' and Rogova[l) 
evaluated the saturation and the nonlinear mode inter­
action of a gas laser with a three-mirror resonator. 
The anal~sis of[l) is based on the use of Slater's 
method[2 and on an expansion of the electromagnetic 
field in terms of the modes of two weakly-coupled 
resonators with high mirror reflectivities; this im­
poses a certain limit on the applicability of the theory 
of[l). 

The influence of the spatial dispersion of the reso­
nator on the emission of solid-state lasers was inves­
tigated for the most part experimentally(3). Ratner(4) 
has indicated that allowance for spatial dispersion of 
the active medium does not account for the regimes of 
undamped radiation pulsations. The possibility of ex­
plaining such pulsations of solid-state lasers, particu­
larlyas due to the presence in the resonator of addi­
tional reflecting surfaces and their motion relative to 
the main mirrors of the resonator has been diligently 
investigated of late[5,6). The effect of such a nonsta­
tionary dispersion was reduced in the description 
simply to a time modulation of the Q of the unaltered 
modes. As we shall show, such interpretations are 
insufficient in many cases. 

In the present paper we develop the theory of a 
laser whose resonator has frequency dispersion. It is 
found that under definite conditions the stationary fre­
quency dispersion can be the cause of pulsations of the 
emission of gas in solid-state lasers. The principal 
point of our analysis is that we forego in part the mode 
expansion of the field and analyze the unsteady (tranSi­
ent) processes under conditions when the longitudinal­
mode spectrum is nearly continuous (Sec. 3). 

1. EQUATION OF MOTION OF A LASER WITH 
FREQUENCY DISPERSION 

Without allowance for the frequency dispersion, the 
equation of motion of a laser in the semiclassical 
theory is 

Here n is the natural frequency of the resonator (the 
equation is written for one mode whose index is 
omitted), E is the component of the electric field in­
tensity, P is the component of the polarization of the 
active medium, 1 is the length of the active medium, 
L is the path of the light in the resonator, and 

1 1 
p=-ln-, 

T r 
(1.2) 

where T is the time of travel of the light in the reso­
nator (in a ring resonator T= L/ c, and in the linear 
one T = 2L/ c), and r is the product of the amplitude 
reflection coefficients of the mirrors. 

In the present section we generalize (1.1) to the 
case of frequency dispersion of the resonator mirrors, 
when r depends on the frequency, r = r( w}. In particu­
lar, the dispersion can be produced by additional 
mirrors. We point out immediately that the change of 
interest to us here occurs only in the last term of the 
left-hand side of (1.1), and consists in the substitution 
p ~ R, where R is a linear iFtegral operator. 

The form of the operator R is easiest to find in the 
approximation of plane waves and weak nonlinearity of 
the active medium!). We conSider, for example, a one­
directional regime of ring-laser generation. We ex­
pand the electric field intenSity E at each point z in a 
Fourier integral 

E(z,t)~ SF(z,w)exP(-iwt)dw. (1.3) 

Writing down the cyclic condition for the individual 
frequencies with allowance for the dependence of p on 
wand summing it over the frequencies, we get 

dE ~ 1ldP 
-+iQE+RE=----. (1.4) 
dt 28. L dt 

Here 

RB = S p (w)F(O, w)exp(- iwt)dw (1.5 ) 

(in the spectral representation) or else (in the time­
domain representation) 

RE= S K(t-t')E(O,t')dt', (l.5a) 

l)More accurately, we neglect the spatial modulation of the popUla­
tion inversion in the active medium, which is valid in any case near the 
generation threshold. It was found in [7] that allowance for this facotr 
has little effect on the characteristics of laser generation even when the 
pump exceeds the threshold appreciably. The same approximation is 
valid also within the framework of the "point model" [8]. 
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where K( t) is the Fourier transform of p( w). Equa­
tion (1.4) is derived for a field at a fixed point z = 0 
corresponding to the coordinate of the boundary of the 
acti ve layer. The method for recalculating the field 
for other points under the assumed approximations is 
obvious. We note that (1.4) retains its form for a 
standing-wave laser (linear resonator) and can be 
generalized for angular modes. In the case of genera­
tion at several modes of the principal resonator, it is 
necessary to write an expression of the type (1.4) for 
each of them. 

Given the dispersion law p(w) and Eq. (1.4) supple­
mented with (1.5) and with the eq~ation connecting the 
polarization of the active medium with the field E, we 
can easily determine the characteristics of the single­
particle regimes, by putting 

F(O,ro)=~oll(ro-wo), Eo=~oexp(-irot). (1.6) 

Then (1.4) turns into a transcendental dispersion equa­
tion for the frequencies Wo and the amplitudes fG o. 
The stability of the solutions can be investigated by the 
usual method of linearizing (1.4) with respect to small 
deviations from the stationary solution. We note that 
above the threshold it is necessary, in the general 
case, to solve the equations for the field deviations AE 
and AE*. This circumstance is connected with the 
nonlinearity of the active medium (with the formation 
of combination tones). In the absence of resonator 
dispersion, it was investigated in detail by Kuznetsova 
and Rautian[lO). 

2. PULSATIONS OF SOLID-STATE LASER 

As is well known [11), according to the rate equations 
for a single-mode solid-state laser, a single-frequency 
regime is established in the course of time (we denote 
this frequency by wo). This regime is reached in an 
oscillatory fashion in a ruby laser, with a pulsation 
frequency II "" 1 MHz and a transient time ~1O-3 sec. 
At small deviations from the stationary regime, the 
field can be represented by a sum of three components 
with frequencies Wo and Wo ± jJ, and the damping of 
sideband components is small within one period of 
pulsations (211/11). This damping can be compensated 
for by frequency dispersion, if the loss in the sideband 
components is somewhat less than in the central com­
ponent. We determine below the critical value of the 
dis persion needed to maintain undamped pulsations. 
For our purposes, it suffices to describe the connection 
between the polarization of the active medium and the 
field intensity, within the framework of the rate equa­
tion (the conditions for its applicability are indicated 
in[ll)). Then 

dx - 1ro ) -+Rx=--nx 
dt 2 Q 
d . d; =V,(t}-n)-v,lxl' 

(2.1) 

Here x is the dimensionless amplitude of the field, n 
is the ratio of the population difference to the thresh­
old value, 1) is the ratio of the pump to its threshold 
value, and Yl = T~l is the relaxation rate. 

In the absence of dispersion, R = Po = (Y2)WO/Q 
determines the width of the resonator band for a mode 
of frequency wo, which we assume to COincide with the 

center of the contour, and with a figure of merit Q. In 
the stationary one-frequency regime we have here 

no = 1, Ixol'=t}-1 (2.2) 

Let us determine the influence of the dispersion on the 
stability of the stationary regime the parameters of 
the regime are obviously not altered at p( wo) = Po). To 
this end we put 

x=xo+~x, n=1+~n, xo=l't}-1>O (2.3) 

and linearize (2.1) with respect to small deviations 
Ax and An in the form 

~x = ~x, exp (-ivt + vt) + ~x_, exp (ivt + vt), 
(2.4) 

~n = ~n, exp (-ivt + vt) + ~n,' exp (ivt + vt). 

The real quantities II and yare determined from the 
characteristic equation 

I P, 0 
o P-l 

VIX o y,XO 

-XOPol 
-XoPo = POP,P-I + y,Poxo' (PI + p_,) = 0, 

Po 
(2.5) 

where 
P = -iv + y, Po = P + 'l1y" p, = P + P, - po, P-. = P + p-,' - po'. 

(2.6) 

Here P±l correspond to the values of p( w) for the 
components of the field in (2.4) with respective ampli­
tudes Ax±!. We shall assume henceforth that the dis­
persion is symmetrical, i.e., 

p. - po = p-.' - po'. (2.7) 

In particular, to satisfy (2.7) for a laser with an 
additional mirror (Sec. 4) it suffices to have WaTl = N1, 

where T 1 = 2Lj c and N 1 is an integer. Then Pl = P-l 
and we obtain for the characteristic numbers p 

p+p.-po=O, (2.8) 

p'+p('l1V,+p.-po) +2y,Poxo'+t}v,(p,-po) =0. (2.9) 

The roots of (2.8) correspond to the possible splitting 
of the frequencies of the linear resonator in the pres­
ence of noticeable dispersions. We are not interested 
in them now, assuming the dispersion to be sufficiently 
small. Equation (2.9) in the absence of dispersion 
(p 1 = Po) describes the usual damped pulsations. 
Neglecting the phase dispersion of r(w) (1m p(O) = 0), 
which is immaterial at present, we find that the critical 
dispersion at which there is no damping is determined 
from the condition 

p. - P. = -'l1Y.· (2.10) 

We put 

r(wo ± v) = r(ro.)[ 1 + e( 1- COS(VT,» 1 "" r(wo) (1 + 1/2ev'T.'), (2.11) 

where E « 1 is the "depth of modulation" of the 
losses (E > 0, i.e., the losses are maximal at the fre­
quency wa). We then get from (2.10) 

(2.12) 

Putting T "" T 1> which is typical of lasers with external 
mirrors,1) = 2, L = 1 m, II = 1 MHz, and Yl = 103 sec-\ 
we get Ecr = (1.015. This value can be exceeded in 
certain real laser schemes[5). We note that undamped 
pulsatiOns were obtained here with allowance for dis­
persion within the framework of one mode. Such a 
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cause of pulsations was apparently not discussed 
earlier[9] 2). 

3. CASE WHEN THE LONGITUDINAL-MODE SPEC­
TRUM IS CLOSE TO CONTINUOUS 

The frequency of the longitudinal mode with index N 
is determined from the condition 

(3.1) 

where <» = -7 1m p is the phase of the mirror reflec­
tion coefficient r( w). A close frequency w = WN + ~ W 

will also be a natural frequency if the additional phase 
shift ~W· 7 is offset by a change of the phase <» as a 
result of frequency dispersion 

~ro·t"+M)=O, M)=Il>(roN+~ro) -1l>(roN)· (3.2) 

From this we get the condition for the existence of a 
continuous spectrum 

dll> / dOl = -t". (3.3 ) 

If (3.3) is sufficiently accurately satisfied in the fre­
quency interval in which the principal energy of the 
field is concentrated, something that can be attained 
at a fixed dispersion by choosing the proper resonator 
length, the spectrum should be close to continuous. We 
consider below the question of the influence of small 
deviations from (3.3). 

For a gas laser, the relation between P and E can 
be regarded as algebraic. Near the generation thresh­
old 

1ldP iro,l 
----""--P=aE-~IEI'E (3.4) 

2e, L dt 2e, L ' 

were Wo is a certain central frequency, which we as­
sume to coincide with the center of the gain contour, a 
is the linear gain, and {3 is the saturation coefficient [12]. 

The slow radiation pulsations of interest to us here can 
be obtained in the following manner. We expand p ( w) 
in a Taylor series about Wo (w = Wo ". ~w): 

(3.5) 

(3.6) 

Here 71 is the characteristic delay time in the dis­
persive system. Then 

(3.7) 

where 

E(t) =~(t) exp (-iro,t). (3.8) 

If I' is the characteristic frequency of the pulsations, 
then at 1'71 « 1 we can confine ourselves in (3.7) to a 
few first terms of the series. By the same token, we 
obtain a differential equation in place of an integro­
differential equation. Such an apprOximation is valid 
only for sufficiently slow motions, Le., in a limited 

2)It was found in [5.6] that pulsations of solid-state lasers can occur 
when additional (parasitic) mirrors move relative to the principIa mir­
rors of the resonator. The results presented above demonstrate the fea­
sibility of pulsations in the presence of even immobile additional mir­
rors. 

region of initial conditiOns and generally speaking 
within a finite time interval. 

Taking (3.4) and (3.7) into account, we represent the 
equation of motion in the form 

d'~ ~ 1 - 1 d:"~ 
M--(a - p,)~+ ~~I~I'=/--- ~-1",mam--. (3.9) 

dt' dt T.l..J m! dt m 

here 
't'/ol 't', 

M=-2 a" /=-a,-1. 
T 1" 

(3.10 ) 

We assume that the dispersion is also symmetrical 
(cf. (2.7» 

p(-~ro') = p·(~ro). (3.11 ) 

Then am, like a and (3, are real. The condition (3.3) 
corresponds to f = O. For "slow" pulsations, all the 
terms of the series in (3.9) will be small. Therefore 
under the indicated conditions the right-hand side of 
(3.9) can be regarded as a small perturbation. 

The solution of the generating (unperturbed) equa­
tion 

rI'~ 
M--(a-p,)~+ ~~I~I'=O 

dt' 
(3.12) 

is obtained in the following manner. We introduce the 
real field amplitude and phase 

~(t) =A(t) exp [i1p(t)]. 

From (3.12) we get 
dq> 

A'(t)-= C = const 
dt ' 

rI'A C' a-po ~ 
------A +-A'=O 
dt' A' MM· 

(3.13 ) 

(3.14) 

(3.15) 

Equation (3.15) describes oscillations of a nonlinear 
conservative pendulum in a potential field (Fig. 1) 

C' A 
V(A)=-- a- p, A'+-'"'-A' 

2A' 2M 4M. 
(3.16) 

It is easy to obtain a general solution of (3.15) in terms 
of elliptic functions, by determining the conserved 
"energy" integral W: 

1 dA ' - (-) + veAl = W = const. 
2 dt 

(3.17 ) 

Then 
dA / l'W - VeAl = ±Y2dt. (3.18 ) 

The motion is periodic with a period T that depends on 
the initial conditions (the constants C and W) 

M)'{' T=2'/'(~ (1,-1,)-'1, 

XK[( 1,-/, )'{'] , 
1,-1, 

(3.19 ) 

where K is a complete elliptic integral and 10 ,1,2 are 

FIG. I. The dashed line corresponds 
to C =F 0 and the solid line to C = o. 

A 
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the roots of the cubic equation 

_ C' +WI+~I,--P-I3=O. 
2 2M 4M 

(3.20 ) 

We have assumed that 

M> 0, a - po > 0, 10 .;;; 0 < I, < I" W > W m;n' (3.21 ) 

The intensity 1= AZ ranges from 11 to 12, In the im­
portant particular case C = 0, we obtain for motions 
near the bottom of the "potential well" 

(3.22) 

Small oscillations about the usual value of the intenSity 
1(0) of a single-frequency regime' with a period 

T.=2nl'M/(a-po), v.=2nITo=l'(a-po)IM. (3.23) 

When the "energy" W increases (larger distance from 
the bottom of the potential well), the period of motion 
increases and the spectrum becomes richer in har­
monics having frequencies that are multiples of 
v < Vo. 

The influence of the right-hand side of (3.9) can be 
estimated for motions near the bottom of the "potential 
well," by making the substitution dZ/dt Z - _I/z in the 
sum (3.9). Allowance for terms with even indices m 
leads to a change in the "mass" M, and terms with odd 
m change the "friction coefficient" f. The presence of 
"friction" at f < 0 (dispersion less than critical) leads 
to "energy" diSSipation and to a slow (near (3.3» 
change of the amplitude and the period of the oscilla­
tions, so that the usual single-particle regime with 
frequency Wo and intensity 1(0) is established in the 
course of time. At f > 0 (dispersion larger than criti­
cal), the "energy" increases, a fact that can be at­
tributed to transition to generation at other frequencies 
that results from the frequency splitting in the pres­
ence of a definite dispersion. These premises are con­
firmed in the particular case of a three-mirror reso­
nator, which is considered in the next section. 

If (3.3) is sufficiently accurately satisfied, the spec­
trum of the laser is close to continuous and the trans­
ient times increase accordingly. These circumstances 
allow us to suggest that the cause of the "memory 
effect ,,[13] may be the presence of a definite frequency 
dispersion of the resonator. If we accept this point of 
view, we can present the following interpretation for 
the results of the experiments in r13]. During the first 
stage, the motion of the additional mirror "swings" 
the "pendulum" with a period corresponding to the 
Doppler frequency shift (proportional to the velocity of 
the mirror). As shown by the analysis of this section, 
when the spectrum is close to continuous the definite 
modulation can be appreciable even when the response 
signal from the moving mirror is of low amplitude, and 
this explains qualitatively the corresponding results [13]. 
When the modulation is turned off (the moving mirror 
is covered with an opaque screen), the "friction" can 
alter significantly the motion within times T mem 
~ 2M/ f. If (3.3) is violated because L deviates from 
the required value by tl.L = 10-8 L, then f = tl.L/L 
= 10-8 • At an upper limit of the "remembered" fre­
quencies Vo = 10 kHz and (l! - Po = 10 kHz, using (3.23), 
we get Tmem = 103 sec. 

FIG. 2. A-active medium. 
r, 

4. SPECTRUM OF LASER WITH ADDITIONAL MIRROR 

The simplest and most widely used method of intro­
ducing frequency dispersion is to use an additional 
mirror. In the present section we investigate single­
frequency regimes of a gas laser with a three-mirror 
resonator (Fig. 2). 

We indicate first the features of the spectrum of a 
laser with a three-mirror resonator within the frame­
work of the linear theory. We assume for Simplicity 
that Ll = Lo, rl> 0, and rz < r1. The dispersion equa­
tion for the determination of the frequencies reduces 
in this case to a quadratic equation with respect to 
(see [14]) 

z=exp(iCJl't.)=exP(i: L o). 

Analysis shows the existence of a critical value r~cr) 
(in[15) this value is called optimal), which depends on r1 

r, = 2r~cr)/[1 +(r~cr) )']. (4.1) 

At rz < r~cr), the resonator frequencies are the same 
as in the two-mirror resonator, W = wn (at r Z = 0), 
i.e" there is no shift or splitting of the frequencies by 
the additional mirror. At rz > r~cr), the longitudinal 
modes of the two-mirror resonator are split into two 
components that are symmetrical with respect to wn 3). 
The sign of the "friction coefficient" f introduced in 
the last section coincides with the sign of the quantity 
rz- r~cr). 

We now consider the question of the time dependence 
of small deviations of the field tl.8 = 8 -80 from the 
stationary Single-particle regime with unshifted fre­
quency Wo (the amplitude 8 0 can be regarded as real 
witho\\t loss of generality, {38 ~ = (l! - Re Po) at r z 
< r~cr} within the framework of (1.4) with a polariza­
tion (3.4) corresponding to the case of a gas laser. We 
have 

d/j,~ +(R- p.)/j,8 + ~8o'(M' + /j,8') = O. (4.2) 
dt 

We put 

M=8.eP'+/S_teP", p=-iv+'\', 

Then the characteristic number p should be deter­
mined from the equation 

(4.3 ) 

(4,4) 

[P+Pl-p.+~8o'][p+P-l·-PO·+~~"'1- [1180'1'=0. (4.5) 

3)In contrast to our statement, Perel' and Rogova ['5] admit of the 
possibility, in principle, of lasing at the unshifted frequencies Wn at 
r}Cr) < r2 < r,; the apparent reason is that in ['5] they took into account 
in this case only half of the solution of the dispersion equation. We note 
that if the length of one arm is an exact multiple of that of the other, 
L, = mLo with m an integer, there is also a splitting of the unshifted 
frequencies into two when r2 increases to r~cr), where 

r~cr) _ A _ V A' -1, A = .!. [m + 1 - (m -1) r,] . 
2 "' 

With further increase of rl, new components appear in the spectrum. 
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If the laser is exactly tuned to extremal losses we 
have 

p, - P. = p-,. - po - p, .•. 

We then get from (4.5) 

P+Pt..=o, 

p + p, .• + 2f1B.' = o. 

(4.6) 

(4.7) 

(4.8) 

Equation (4.7) coincides with (2.8), and for the same 
reason we shall not be interested in the solutions of 
(4.7) (they can be obtained from the solutions of (4.8) 
as f3 /G ~ - O). Putting K = exp (2f3 /GgT o), we represent 
(4.8) in the form 

r(l) / r(') = x exp (]1't'.) , (4.9) 

where rIO) is the reflection coefficient of the mirror 
system 1-2 at the frequency Wo and rIll is the reflec­
tion coefficient for the component of the deviation with 
an equal amplitude ~ /G 1. For simplicity we put ro = 1 
and neglect the absorption in the central mirror (with 
reflection coefficient rl). Then r( w} takes the form 

r«(j)= r,-r,exp(iCll't,) . (4.10) 
1 - r,r. exp (iCll't,) 

Taking (4.10) into account, we transform (4.9) into 

(1- B,~) / (1- B.6) = xexp (p'to) , (4.11) 

where Ii = exp( -PT l} - 1 

(4.12) 

with f = Bl - B2 - 1. Here (4.11) reduces to a quad­
ratic equation with respect to Ii, with roots 

0, .• = [(1 + xB, -B,) ± 'I'Dl/2B" (4.13) 

where 

D = (1 + xB,- B,)' - 48,(x-1). (4.14) 

Accordingly 

exp (-P, .• 't) = (1 +xB.+B,± 'I'D) /28,. (4.15) 

From the condition d = 0 we obtain the pump interval 
within which 1m Pl,2;O< 0, Le., there exist pulsations 

X'.2 -1 = ([2B, - B.(1 + B, - B,) 1 
± 1'[2B, -B.(1 + B2 - B,) l' -B,'(1 + B, - B,)'} / Ba'. (4.16) 

At 

we get 

If I =11 + B.-B./< 1,B"B. 

x,-1"" (1+B2-B,)' 
48, ' 

x,-1 "" 48, 
28 ' , 

Thus, at pumps corresponding to the condition 

x, < X<:>e, 

(4.17) 

(4.18) 

(4.19 ) 

there are emission pulsations that generally speaking 
attenuate. Let us calculate the rate of the damping of 
the pulsations under the condition (4.17) 

_ 2Rep. 't = In x(B, + 1) ""x(B 2 + 1) 1 >0. 
,B, B, 

(4.20 ) 

In the important particular case f = 0 near the genera­
tion threshold, when 

(4.21) 

we get 

x,=1, Imp·'t= 'I'!J.x/B" -2Rep·'t = &I. (4.22) 

It follows from (4.22) that the damping rate Re p is 
much less than the pulsation frequency 1m p, which is 
proportional in accordance with (3.23) to the "strong­
field" amplitude/G o. Thus, in this case the situation is 
similar to that holding in solid-state lasers (Sec. 2). 
For a similar reason, the small perturbations of the 
problem (in our case, allowance for a small detuning 
and for deviations from the relation (4.6) can transform 
the damped pulsations into undamped ones. 

We note in conclusion that the system of rate equa­
tions describing the solid-state laser is close to con­
servative, and therefore the role of the dispersion of 
the resonator in Sec. 2 reduces only to a ''buildup'' of 
the pulsations that are weakly damped in its absence. 
The necessary dispersion turns out to be relatively 
small (proportional to the damping rate). To obtain 
dispersion pulsations in a gas laser, on the other hand 
(Secs. 3 and 4), it is necessary first to make the system 
close to conservative, which calls already for a notice­
able value of the dispersion, close to that necessary to 
start a splitting of the frequencies of the modes of the 
principal resonator. 

The author thanks A. G. Ylasov and A. Y. Tulub for 
supporting the work and for useful discussions. 
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