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The effect of residual interaction between nucleons (quasiparticles) on shell oscillations of the 
masses of spherical nuclei is considered. The singularity of the ground state energy of the 
system in the vicinity of nucleon magic numbers is analyzed for various types of the dependence 
of residual interaction on orbital momentum of the quasiparticle. It is shown that only the per
turbation band width of the Fermi distribution due to residual interaction which is proportional to 
the square of the angular momentum vector is consistent with the character of the magic cusps. 
The coupling constants between the quasiparticles are determined on the baSis of the available 
data. The constant decreases rapidly with increase of nuclear radius. Possible consequences 
pertaining to the energy spectrum of infinite nuclear matter are discussed. 

1. INTRODUCTION 

IN a preceding paper(l] we considered the influence of 
the sharpness of the boundary of quasiparticle Fermi 
distribution on the characteristics of spherical nuclei. 
It turned out that the number N(Pf) of single-quasipar
ticle states located below the boundary Pf = kfR » 1 
(kf is the corresponding value of the wave number and 
R is the radius of the nucleus) is strictly speaking not 
an analytic function of its argument. In the P scale, the 
Singularities of the function are equidistant, with an 
interval 71/2; a qualitative idea of their character is 
gained from Fig. la. These are the magic cusp pOints 
(jumps of the first derivative); a consistent analysis 
shows that singularities of this type are possessed also 
by the energy of the ground state of the body, i.e., the 
mass of the nucleus. Figure 2 shows schematically a 
typical experimental plot of the mass in the vicinity of 
a magic nucleus l). We have in mind relatively "weak" 
singularities; they appear in the higher-order terms of 
the expansion in the reciprocal powers of Pf. We note 
that in this approximation, which is of interest in 
nuclear physics, there are no grounds whatever for 
identifying the function N(Pf) with the total number of 
true particles N(Pf). Furthermore, we can advance the 

1)We emphasize the .physically unrealistic character of the "sub
magic" nucleon numbers, which can be formally set in correspondence 
with the filling of each j-Ievel in a certain spherically-symmetrical po
tential well. No phenomenon pertaining to the nucleus as a whole is 
observed experimentally in this case; nor does a consistent theoretical 
analysis seem to predict any phenomenon. Moreover, not all the charac
teristics of the referred-to "well" admit of a clear-cut physical definition. 
The question is: what takes place at the point where the magic nucleus 
is located? Does the Fermi boundary rise because the occupation of the 
lastj-Ievel becomes filled (the most frequently advanced point of view) 
or, to the contrary, does the edge of the "well" drop jumpwise in a di
rection opposite to the Fermi boundary? This question has apparently 
no sufficiently distinct physical meaning, all the more since fue position 
of the bottom of the "well" is not a rigorous quantitative concept, owing 
to the strong damping of the deep quasi particles. These jumps of the 
chemical potential occur by far not after each filling of fue next j-1evel. 
There are no submagic phenomena in spherical nuclei at all, there are 
only true magic nuclei. Their position is given theoretically by formulas 
(19) and (3) of the preceding paper [1). 

following considerations: The roughly intuitive concept 
of the quasiparticle as moving in the average field pro
duced by practically all the particles of the body ac
counts nevertheless quite well for the main gist of the 
phenomenon. Since the dimensionless parameter Pf 
= kfR is determined, roughly speaking, from the char
acteristics of this average field, it is natural to as
sume this field to have a smooth dependence on the 
total number of partic les N, as is indeed assumed (see 
Fig. lb). It is easy in practice to make the transition 
to the physically most significant N scale, for example, 
by expanding in reciprocal powers of Pf (see(l], formu
las (3), (26), and (27) and the explanations pertaining to 
them). 

We shall now comment on the nature of the shell and 
magic oscillations in spherical nuclei from a point of 
view that reveals clearly the role of the quantum num-
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FIG. 2. Schematic diagram of the shell oscillations of the nuclear 
mass in the vicinity of the magic number N = 126. 
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FIG. 3. Roots of the Bessel 
functions with half-integer index 
on the (I. p) diagram. 

bers of the individual quasiparticles. Of particular 
importance is the conservation of the orbital angular 
momentum l; the eigenvalues p = kR can then be 
graphically represented by points on the (l, p) plane. 
It is easily seen from Fig. 3 how they are grouped in 
the region of relatively small orbital angular momenta. 
The "Regge trajectories" drawn in accordance with 
the rule 2n + l = p (n is the principal quantum number 
and p is the number of the trajectory) lie near their 
maximum. More concretely, their form is given by the 
equation 

(1 ) 

(see also Appendix 1). The vertical distance between 
the curves is equal to 11/2, corresponding precisely to 
the aforementioned interval between the neighboring 
shells in the p scale 2 ). We can now easily visualize the 

\ situation that arises if the Fermi boundary 

P =PI (2 ) 

is assumed to move, say, upward. After the levels of 
the last Regge trajectory are exhausted at the tangency 
point (see Fig. 3), the density of states dN/dp de
creases jumpwise. A more formal natural interpreta
tion is that the function N(p) has an oscillating com
ponent N l( cp), the period of which is determined by the 
distance between the trajectories in Fig. 3. 

This specific grouping of the single-quasiparticle 
levels, due to the quantum number l, is reflected also 
in the energy E of the nucleus. Its oscillating compon
ent is equal to 

where N\(Pf) is the oscillating part of the number of 
the states filled with fermions (quasiparticles). The 

(3) 

2)In connection with Fig. 3, there is a curious, simple, and experi
mentally confirmed consequence: each nuclear shell contains either one 
s or one p state, and the corresponding single-particle levels lie close in 
energy to the end of the filling of this shell. For the atom, there is no 
such theorem. The absence of any far-reaching analogy with the shell 
structure of the atom was already indicated in the preceding paper (see 
footnote 2 of [1]). Certain features of the nuclear structure, which are 
weakly pronounced in the case of the atom, were mentioned also in foot
note 1 above. 

proportionality coefficient -E is the first functional 
derivative with respect to the variation of the distribu
tion function near the Fermi boundary; in other words, 
it is the value assumed here by the energy of one 
quasiparticle. Since, on the other hand, E = -dE/dN is 
the binding energy of the nucleon in the nucleus, we 
are thus dealing with a quantity that can be directly 
determined from experiment. For case (2) of an ab
solutely sharp Fermi boundarr' the form of the func
tion ~l(Pf) was determined in II. Of particular interest 
is that decrease ~E in the binding energy of the nucleon 
which is observed in the vicinity of the magic nucleus. 
In the ideal case (2) we have 

(~8) 0 = ~ dpt' / dN, 

where € is the arithmetic mean of the values of E on 
both sides of the magic nucleus. 

(4) 

To attempt to make even clearer the correspondence 
with the level distribution with respect to the momenta, 
shown in Fig. 3, let us consider the following example, 
which incidentally is somewhat artificial: let the 
quasiparticles fill only all the vacancies that lie below 
the boundary, the equation for which is 

Then calculations similar to those inU] yield 

dpI' 1 
~e=~--

dN 1-g' 

(5) 

(6) 

Thus, as g - 1, when the curvilinear boundary (5) of 
the statistical distribution merges with the successive 
trajectories in Fig. 3 (see also Eq. (1), the oscilla
tions tend to infinity in the considered approximation. 

The example (5) illustrates only the large sensitivity 
of the oscillations to redistributions of the quasiparti
cles with respect to the quantum states; it is has, of 
course, little in common with the real situation in 
spherical nuclei. Finite nuclear dimensions mean ap
parently that it is impossible to have a canonical 
transformation to quasiparticles with respect to which 
the case (2) of an ideally abrupt "stepwise" Fermi 
distribution would be realized. This circumstance is 
frequently called in nuclear physics the "residual in
teraction" between the nucleons. It is felt intuiti vely 
that the "smearing" of the Fermi boundary, due to 
this interaction, suppresses, generally speaking, the 
oscillations. It is seen already from Fig. 3 that as the 
"smeared" Fermi boundary moves forward the Regge 
trajectories, roughly speaking, are gradually captured. 
Indeed, in the experiment the magic jumps ~E are al
ways smaller than the ideal value (.<lE)o calculated 
from formula (4). However, by far not any smearing 
of the Fermi boundary is capable of corresponding, 
even qualitatively, to the character of the experimental 
data. For example, a statistical distribution of the 
temperature type 

WT(P)= [exp{(p - PI) IT} + 1]-' (7) 

yields for N1(Pf) an expression that is everywhere dif
ferentiable an arbitrary number of times. Accordingly, 
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in this case the function N 1(Pf) is analytic and there 
are no magic singularities 3) • 

Let us touch also on the question of the most advan
tageous way of specifying and investigating the residual 
interaction. One can imagine, of course, a situation 
wherein the residual interaction between quasiparticles 
is specified in the form of a corresponding Hamiltonian; 
one such model example will be calculated in the next 
section. It is important, however, not to lose sight of 
the following circumstance: although the presence of 
the interaction causes, strictly speaking, the energy of 
the individual quasiparticle to be no longer a definite 
quantity, this does not influence the applicability of 
formula (3) in the approximation of interest to us. In
deed, let the Fermi-distribution smearing, due to the 
residual interaction have a width O€" this can be 
naturally interpreted as an uncertai~ty, of the same 
order of magnitude, in the quasiparticle energy. On the 
other hand, in the P scale (see Fig. 3, and also (1]), the 
quantity op characterizing the oscillations is of the 
order of unity. Therefore in the region of importance 
for the oscillations we have o€ ~ (d€/dp)op ~ €/Pf. 
Recognizing that Pf » 1, we have 

/)e< e, (8 ) 

Le., the first factor in the right-hand side of (3) re
mains definite with sufficient degree of accuracy. In 
other words, the redistribution of the quasipartic les 
over the states, due to the residual interaction should 
be determined in principle from the condition ~f the 
minimum of the energy of the nucleus as a whole. But 
then the oscillations can be calculated without taking 
into account the additional energy of the interaction 
between the quasi particles . This curious feature of the 
theory will be illustrated by a concrete example in the 
next section. 

A "dynamic," so to speak, treatment (meaning that 
the interaction Hamiltonian between the quasi particles 
is explicitly specified) would be highly ambiguous. 
Since, in any case, there is no canonical transformation 
that leads to an absolutely abrupt Fermi boundary(2), 
we apparently have no sufficiently reasonable criterion 
for a unique choice of the transformation to a new 
quasistatic Hamiltonian. In accordance with (8), the 
residual interaction can be more adequately described 
by directly specifying the quaSiparticle distribution 
function with respect to the states. By regarding this 
function w(p, l) in a certain sense as a primary con
cept, we can apparently hope to use successfully its 
simple single-parameter approximations. Such a 
characteristic feature of the phenomenon as the ten
dency of the residual interaction to decrease with in
creaSing dimensions of the nucleus is likewise fairly 
well accounted for in this case. We shall return to the 
pertinent questions in thll last two sections. 

3)The last statement can be regarded also as a consequence of a 
theorem of more general character. It is easy to verify that any contin
uous distribution of quasiparticles over the states, which does not depend 
on I, results in no singularities of the type of a jump in the first deriva
tive. The next two sections of this paper we obtain a relation compatible 
with the experimentally observed picture of the magic phenomena be
tween the width of the smearing of the Fermi distribution and the 
quantum number I. 

2. SIMPLEST MODEL OF RESIDUAL INTERACTION 

When choosing a model example, it is desirable to 
take into account the experimental fact that the spin 
of an even-even nucleus in the ground state is equal to 
zero, and that for odd nuclei the spin always has the 
single-particle value within the framework of the shell 
model (see, for example,(2]). This suggests the expres
sion 

Hi~t = -G j .E am'+a~m'a-mam 
m.m">O 

(9 ) 

for the interaction between quasiparticles pertaining to 
the same j-Ievel. Here ain and am are the creation 
and annihilation operators of a quasiparticle with a 
z-projection of the angular momentum equal to m. The 
Hamiltonian (9) can be diagonalized exactly (see, for 
example, (3]); the eigenvalues are given by the well
known formula of Racah and Motte Is on 

Eint = -G jbj[Qj-(bj -1)-s!l, (10) 

where 20j = 2j + 1 is the total number of vacancies, 
bj is the number of interacting pairs at the j-Ievel, 
and Sj is the number of noninteracting quasiparticles 
(seniority). 

It is clear that the smallest energy of the system 
corresponds to zero seniority, and consequently for the 
nucleus as a whole the situation reduces to a minimiza
tion of the sum 

E = .E [2eibj - G,b,(Qi - bi + 1) 1 , (11) 

over the j-Ievels (€j is the initial value of the quasi
particle energy). The redistribution of the quasiparti
cles should be visualized as occurring at a zero varia
tion of the quantity 

(12, 

This additional condition can be easily taken into ac
count by the method of indeterminate Lagrange coef
ficients. Taking also the Pauli principle into account 
(Le., the condition O:s bj ~ OJ), we get 

! 1, ei - 8, < t-._, 

_ bi _ Gi(Qi+1)-2(e,-e,) A A 
Wj--- ..... , Ll_<ej-ej< Ll+, 

Q i 2G j Qi 

0, ei- e, > t-.+, 

(13 ) 

where €j is the chemical potential and a Of = ( %) Gj (1 
Of OJ) We present also the interaction energy (10) cor
responding to the equilibrium distribution: 

E,;,~ I -GiQ j , 

G!(Qj+ i)' -4(e,- 8,)' 
, t-._ < 8, - 8, < il+, (14) 

4G i 

0, 

We note that the initial expression (10) was the result 
of simultaneous diagonalization of the Hamiltonian (9) 
and the operator of the number of quasiparticles at the 
j-Ievel; then the quantum numbers bj are naturally 
integers. However, in the subsequent derivation of the 
distribution (13) it becomes necessary to differentiate 
already with respect to variables bj. They are conse-
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quently determined with an error on the order of unity. 
This accuracy corresponds precisely to the macro
scopic character deduced in IJ for the investigated 
phenomena. We ultimately replace OJ ± 1 by OJ = j 
+ %; with the same accuracy, we can replace the total 
angular momentum j of the quasiparticle by its orbital 
momentum 1 and neglect the spin-orbit interaction4 ). 

We now change to more convenient variables, using 
a notation close to that of (1] (see also(4 J): 

Q,"'psin ~ "'P'~, .~ = arcsin (t / r), l =1+'/" 

Gj = dd8 1 gj. 

PI' 

(15) 

We have taken into account here the fact that it is the 
small {3 that are significant for the oscillations. In 
this limit, we assume a power-law dependence of the 
coupling constant on {3: 

(16) 

In terms of the variables p and 73, the distribution (13) 
takes the form 

1 
1, p'-:': PI < - '/2gP/~" 

1 P - PI g. g. 
W= ---- --p,~ <P-P/<-Pf~ 

2 gp,~' ' 2 2' 

0, P - PI > '/2gPt~·. 
(17) 

Thus, in terms of the distribution function w(p, 1), 
the model (9)-(11) turns out to be the Simplest of all 
the conceivable ones. It represents, in fact, a linear 
interpolation between regions where the occupation 
numbers of the quasi particles assume the limiting 
values zero and unity, see Fig. 4. Instead of analyzing 
the expression for the second variation, it is easier to 
verify the stability of the distribution (13), (17) directly, 
by effecting all the conceivable transfers of the pair of 
interacting quasiparticles between the states, and cal
culating the corresponding change of the energy of the 
nucleus. According to Fig. 4, four types of quasiparti
cle transfer are permissible: I ~ II, I ~ III, II ~ II, 
and II ~ III. In all cases we have for the change of the 
system energy 

i.e., the distribution of the quasipartic les over the 
states is stable. 

(18) 

To calculate the oscillating part of the nuclear en
ergy, we use the result obtained in (lJ: 

E,= ~(E'+E")' E'=He,nlv(,n+l)E(n,/)dndl, (19) 
'1=:1 I) 

where 

E(n, I) = 48,tW = -4epw sin ~ '" - 4EP,~W (20) 

is the summary energy of the quasiparticles having the 
corresponding values of the quantum numbers; the ad-

4)The latter is confirmed by an analysis of the dependence of the 
spin-orbit interaction on nuclear dimensions (see, for example, [2], i.e., 
in final analysis, on Pr = kfR. It must be stipulated, however, that this 
pertains for the time being to the calculation of the effects in the Pf 
scale. Subsequently, the spin-orbit interaction is actually taken into ac
count in a most substantial manner when the final transition is made to 
the physical N-scale; see [I]. 

w 

I III 

! 

FIG. 4 

ditional doubling is due to the spin of the individual 
quasiparticles, to which an energy value Ef = -€ is 
assigned (we shall discuss the validity of the last 
assumption at the end of the section). According to(I] 
( (4]) 
see also 2n (2n + /) '" _ 4n + 4p + 2p~', 

pdp PI 
dn dl = --cos' ~ d~ '" -dp d~. (21) 

n n 

Taking also (17) into account, substituting in (19), and 
performing the simple integration with respect to p, 
we obtain 

EV - Ep, exp {4ivpt} S~ (2' ~2} 
- 4ngy' exp 'YP, 

o 
(22) 

x(P:q) {2h'KP/n'} - cxp (-2i\,go/"'})~ • I' ~/,_,. 

To determine which values of the exponent k are com
patible with the character of the experimental data, it 
is easiest to turn to the limiting case when the converg
ence of the integral (22) is due principally to that term 
of the argument of the exponential which is propor
tional to g5). We expand exp{2iIlPfP} in a series, con
fine ourselves to the first two terms, and substitute in 
(19); this yields . 

(23) 

The Singularities of (23) are governed by trigono
metric series that can be easily investigated. A singu
larity of the type of a finite jump in the derivative 
dEI/dPf (see Figs. 2 and 1b) can be obtained only from 
an even series in t = 4 Pf - 27TP with cosines. When 
k < 2 we have 4/k > 2, and the series of the deri vati ves 
diverges uniformly in accordance with the Weierstrass 
criterion. Thus, there are no singularities of this type 
if k < 2.6) To the contrary, if k > 2 the sum of the 
series exhibits stronger singularities. To verify this, 

5)Strictly speaking, however, the coupling constant can likewise not 
be exceedingly large, for then the situation reduces to effects due to in
dividual nucleons at fue s or p levels; see Figs. 3 and 4. This would actually 
be manifest by a complete leveling of the magic numbers, and in any case 
the macroscopic theory of shell and magic phenomena developed in [I] 
and in the present paper would no longer hold. As a result we obtain the 
requirement g ~ p~'l. 

6)The case k = 0 calls for a special analysis. Although the expression 
under the summation sign becomes somewhat more complicated in this 
case, the absence of a jump in the first derivative of EI can be easily 
proved (see Appendix 2). We note that the variant k = 0 is, in a certain 
sense, of special interest, since it corresponds to a Fermi-distribution 
smearing band whose width is independent of the orbital momentum 
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we consider the derivative of the series of interest to 
us; this derivative is given by 

I:~ sin vt 
--, a<1. 

VO 
.~, 

Near the singular point t = 0 we have sin vt ~ vt up 
to a certain limiting value v = II ~ 1/1 t I. Replacing 
the summation by integration, we obtain the estimate 

r.~ sin vt r -'-a t 
--_t\'II,-aav_tv ---. 

'01=1 Va ~ It Iz- a 
(24) 

Consequently, at k> 2 we have a = 4/k - 1 < 1 and the 
derivative of the first term of (23) tends to infinity as 
t - 0 (the result (24) agrees with rigorous mathemati
cal theorems; see, for example, [5]). Thus, only 

k=2 (25) 

is comparable with the experimental data. 
To get rid of the lower bound g » 1 on the coupling 

constant, we substitute (25) in (22) and integrate; as a 
result we obtain ultimately 

E, = - ~: {j,(g)!In(PI)+ j.(g)91(PI)}, (26) 

where 
1 11+gl a 1,(g)=2g ln 1-g , 1,(g)=2g 6(g-1), (27) 

8(x) = 1 at x> 0 and 8(x) = 0 at x < O. Plots of the 
functions fl and f2 are given in Fig. 5. The trigono
metric series 

I:~ COS4vPI a' I a I ( a)' !In (PI) = ---=--2a PI--P +4 PI--P 
'II' 6 2 2' .-, 
'/2'Jt(p -1) < PI < '/2a (p + 1); 

( ) {1 sin4vPI 
!ll PI = ~-v-,-

describe shell oscillations in spherical nuclei in the 
presence of a residual interaction 7). Differentiating 
(26), we obtain the discontinuity 

(28) 

(29) 

of the nucleon binding energy in the nucleus. Accord
ing to (27), this discontinuity increases without limit 
as g - 1. The physical qualitative picture was already 
explained in the introduction and illustrated in Fig. 3. 
Now, however, unlike in (6), the oscillations tend to 
infinity much less rapidly, logarithmically. The weak
ening of the singularity is due to the presence of region 
II, which is not free of fermions (see Fig. 4); on the 
boundary between regions I and II, the occupation num-

(this case was already mentioned in the introduction; see footnote 3). 
For example, in the Cooper phenomenon, the angular momentum I of 
the quasiparticle with respect to the geometric center would not play 
any special role, and only the angular momenta of the components of 
the Cooper pair with respect to their common center of gravity would be 
of importance. We defer additional comments to the last section. 

7lGreatest interest, however, attaches nevertheless to the nearest 
vicinity of the magic nucleus, in which the function m tends to zero like 
tin Itl. At the present time it is still not quite clear whether allowance 
for the small term proportional to m is an exaggeration of the macro
scopic accuracy with which the entire developed concept holds (see also 
[']). This has no effect whatever on the subsequent results pertaining to 
the magic jump & of the nucleon binding energy. 

bers (17) do not change jumpwise in the considered 
model. 

It is quite doubtful whether such a sharply delineated 
boundary of the region of intermediate values of occupa
tion numbers actually exists, and actually the coeffic
ient of the function !In (Pf) should not become infinite 
anywhere. We note in this connection the curious pos
sibility of constructing a simple interpolation formula 
for the function f l( g). Since the transition g - 0 to 
the case (4) where there is no residual interaction 
yields fl - 1, and since in the asymptotic region 
g» 1 we have according to (27) fl ~ l/g2, the following 
interpolation comes to mind: 

/,(g) ~ 11 (1 + g'). (30) 
We then have, in particular, 

(de), 1 
00",,---1 =--1 "" g'. 

Lie I, 
(31 ) 

Thus, the characteristic w of the deviation from the 
ideal case (2) and (4), which was introduced earlier 
in[l] from intuitive and empirical considerations, turns 
out to be directly expressed in terms of the constant 
of the residual interaction between the quasi particles . 
Nevertheless, it seems more natural to start from the 
very beginning from analytic or nearly-analytic ex
pressions for the distribution function w(p, /3). One 
such likely example will be considered in the next 
section. 

The prospects for choosing the most successful 
interpolation may become clearer if we turn finally to 
the assumption (made above in connection with formula 
(20)) that each quasiparticle has a definite energy -€. 

There exists also the energy (14) of the interaction be
tween the quasiparticles. When the spectral component 
Eint of the energy of this interaction is calculated by 
means of formula (19), integration over the region I 
will certainly not yield a macroscopic contribution. 
Indeed (see formula (14) and the text immediately fol
lowing it) the only inaccuracy in the determination of 
bj corresponds precisely to the error in the interaction 
energy ~Gjnj. We therefore confine ourselves to inte
gration over the interaction region II, and simple cal
culations lead to 

, • de I PI, i {1 ( ) L 'f ( )} Eilll =-- _:-_e~!vrJ __ --7-/1 g T~2 g . 
dp I Hm v·1 1 - g-

(32 ) 

Since d€/dp ~ €/Pf, the contribution (32) to the energy 
of the nucleus is not macroscopic; according to the 
criteria analyzed in [1], it need not be taken into account.. 

This circumstance is apparently not accidental, and 
is by no way a distinguishing feature of just this model. 
From a more general and physically more lucid point 
of view, this question was already analyzed in the in
troduction above. 

tv' I 
I 
I 

, I 
t;f!!} ! 

I ! 
[J z 
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3. CASE OF ANALYTIC DISTRIBUTION FUNCTION 

The fact that the contribution of the interaction en
ergy to the oscillations is of no importance (at a speci
fied quasiparticle distribution function) enables us to 
reformulate the problem in the manner outlined in the 
introduction, namely, the oscillating part of the ground
state energy of a spherical nucleus is defined by the 
function w (which is the diagonal part of the density 
matrix relative to the basis of the quasiparticles in 
question). The form of the function w{p, /3) is by far 
not as arbitrary as it might seem at first glance. 
First, it must tend rapidly to zero and unity in the 
asymptotic regions; it is not very likely that this func
tion is non-monotonic. Further. the analysis in the 
preceding section (see in particular (25) and (26)) sug
gests that only a quadratic dependence of the width of 
the Fermi -distribution smearing band on the orbital 
angular momentum can be reconciled with the experi
mentally observed character of the magic phenomena 
at more or less arbitrary intensities of the residual 
interaction. Indeed, it is easy to show that for all dis
tributions of the type w{{p - Pf}//32) the oscillating 
part of the energy El always reduces to a linear com
bination of the expression !Dl (Pf) and !Dl (Pf). It is 
therefore natural to attempt to use a function of the 
type of the ordinary Fermi distribution (7), but with a 
modulus that depends quadratically on the angle 'if: 

w(P. ~)= (exp { P't~.P/}+ 1) -'. (33) 

We calculate the spectral component 
4 ~ 

N' = ~ pt'e"'p/ S d~ ~ exp {2ivp,~'} S w(P. ~)exp {4iv(p -PI)} dp 
o 

(34) 
of the number of states filled with quasiparticles, and 
in accord with 

(35) .-. 
we use formula (3) (taking into account the conclusions 
drawn above concerning the role of the energy of inter
action between quasi particles , this is equi valent to 
formulas (19)): 

8{Jf I:ro {e"'P f ( 1 i E,=--- -- 2 
4n'g iv' ~ '2- ng) +K.C.}. 

"=1 
(36) 

We have put here T = {1j.)gPf (the convenience of such 
a change of notation will become clear later on). 
Separating in the Riemann I; function 

the real and imaginary parts, we arrive at the trigono
metric series (28): 

BP, 
E, = - --z;{F, (g)!Dl(p,) + F,(g)91(p,)}, 

F () 1 Srosin(ulng) 
,g =-- udu 

2ng 0 sh(uI2) • 

F () __ 1 Scos(ulng) n / (1 \ ,g --- udu=- ch' -
2ng 0 sh(ul2) 2g g / . (38 ) 

z 

D 

;Zfg) 

J 

FIG. 6 
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Plots of the functions F1{g) and F 2{g) are shown in 
Fig. 6. 

Just as for the model example (17) and (25) of the 
preceding section, in the region g » 1 of the strong 
residual interaction there predominates, generally 
speaking, the function !Dl (Pf), which enters here with a 
coefficient 

F,(g) ~n/2g, g~1. (39) 

With our choice of the normalization of the coupling 
constant (see above), Eq. (39) coincides with the set 
formula of (27). Continuing this analogy, we note that 
in the non-analytic model (23), (27) there was no term 
with91{Pf) at all at g < 1. In our case, however, this 
corresponds to exponential smallness of this term if 
the coupling between the quasiparticles is weak: 

2:n: 
F.(g)!!>!-e-'I', g 4:. 1. 

g 
(40) 

From the more formal point of view, it is curious to 
note that the limiting behavior of (40) indicates the 
presence of an essential singularity at g = O. One can
not exclude the possibility that this mathematical 
property of the limiting case g - 0 of an absolutely 
sharp Fermi boundary is quite general in character. 

The magic singularities are due only to the function 
!Dl{Pf) (see also footnote 7). The formulas characteriz
ing these Singularities are 

dp 2 

lle= e d~ F,(g). 
("'e)" 1. (i)==---1=--1 
liB F,' 

(41) 

As seen from Fig. 6, the function Fl{g) has a maximum 
in the region of intermediate values of the coupling 
constant. Thus, the effect of interest to us does not 
depend monotonically on the intensity of the residual 
interaction. 8 ) 

8)This non-monotonicity is an interesting feature of the phenomenon, 
of which we were unaware during the time of writing of the preceding 
paper [1] ; nor is it revealed by rough interpolations of the type (30). The 
increase of the oscillations at intermediate values of g can be qualitatively 
understood as a sort of resonant amplification due to the similarity in the 
fonn of the lower boundary of the region of intermediate values of occu
pation numbers and the corresponding Regge trajectory on Fig. 3. In the 
non-analytic model examples (6) and (29) (see 27)) this resonance was 
extremely sharply pronounced and caused the effect to become infinite 
as g"" I. It can be assumed that in the analytic case, too, the presence of 
a maximum is not accidental, and that if the Fenni boundary is not abso
lutely sharp, g = 0, the oscillations actually reach their maximum swing. 
For the considered distribution (33), this extremum is given by g = 0.55, 
F1max = 1.20, andwmin=-0.17. 
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4. COMPARISON WITH EXPERIMENT 

For the 52 magic nuclei considered in the preceding 
article (11 , we obtained the average values pertaining to 
seven experimentally accessible kinks (four neutron 
and three proton) on the mass curve. The results of 
such a reduction are given in Table I. In accordance 
with the interpolation (38) and (31), IW is the crudest 
characteristic of the residual interaction. The reason 
why w (or IW) may turn out not to be an appropriate 
characteristtc of the phenomenon of interest to us are 
given in footnote 8. The coupling constant g' was cal
culated from formulas (27) and (29), and the quantity 
g corresponding to it in the analytic case (33) was de
termined from relations (38) and (41). 

With respect to the shell oscillations;'the dependence 
of the width of the Fermi-distribution smearing band 
on 7i extends only to the angles 

2p,~'-1, (42) 

after which the integrals describing them (see (22), 
(34», in any case, converge rapidly. According to (33), 
the corresponding characteristic width in the p scale 
is 

lip = 't~' "" '/,gp;jl' = '/,g. 

We change over to the energy scale: 

- de 1- fI' PI g il8=- 6p=---
dp 1 fl'm' 8 . 

(43) 

(44) 

Here R is the radius of the nucleus. We now assume 

R=1,2·10-U A'I. [cm] (45) 

and, as an estimate, set the effective mass m* of the 
quasiparticles equal to the mass of the free nucleon. 
The widths Of: in MeV are given in Table 1. 

For the concrete values of the orbital angular mo
mentum, the width Of: of the smearing band turns out 
to be different, since it depends on l = l + % quad
ratically. Taking the stimate (42) into account, we con
fine ourselves to not too large values of l, which are 
characteristic of the considered shells. The results 
are given in Table II. 

All the characteristics of the residual attraction 

Table 1. 

N, Z I y~ r::oTa
:

ic nr:: MeV I 
Proton magic nuclei 

p y~ I I I Te, MeV g' g 

4 28 2,4 2.7 3.3 5.2 1.8 2.2 2.6 3.9 
5 50 1.6 2.0 2.3 3.3 1.5 1.9 2.2 2.6 
6 82 1.4 1.8 2.'0 2.6 1.0 1.5 1.6 1.6 
7 126 1.1 1.6 1.7 1.9 

Table II. 

I 
p=4 I p=5 p=8 p-7 

I I I I I &aN I SaN S,Z &'N &aZ &aN SaZ &aZ 

'0 0,4 0.3 0.14 0.08 
1 1.9 1.5 '0.8 
2 10.2 7.5 3.5 2.1 
3 10.2 8.1 4.3 

Note. The values of ~ € are given in MeV. 

listed in the table, regardless of the degree of their 
accuracy and of the choice of scale, indicate consist
ently that its intensity decreases rapidly with increas
ing nuclear dimensions 9) • 

5. CONCLUSIONS AND DISCUSSION 

The most interesting result, in our opinion, is the 
dependence of the residual interaction on the orbital 
angular momentum of the quasiparticle: 

lie 00 I' ~ (l + 'I,)'. (46) 

On the one hand, this result is quite natural. Since we 
are dealing with a scalar effect, it should be expressed 
precisely through the scalar square of the angular
momentum vector. 

According to the estimate (42), the angular-momen
tum values that play an important role are relatively 
small. From this point of view, (46) can be regarded 
as the first term of a series expansion in powers of 
the ratio l/Pf. Why does the expansion have no zeroth 
term independent of I? Does this mean that in a 
nucleus of finite dimensions the residual interaction is 
due only to the additional integrals of the quasiparticle 
motion, other than the energy? Unfortunately, we see 
no possibility of giving a sufficiently clear-cut and 
definite answer to such questions. Nonetheless, we 
wish to point out the difficulties that would probably be 
encountered in attempts to reconcile the obtained 
picture with the assumption concerning the Cooper 
phenomenon in nuclear matter. It is precisely such a 
phenomenon which is characterized by a constant width 
of the transition region of the statistical distribution, 
having the same value for all the quasiparticles located 
near the Fermi boundary 10). However, the presence of 
a constant component of the width of this band would 
lead to the absence of the experimentally observed 
magic jumps of the binding energy of the nucleons (see 
Appendix 2, and also footnotes 3 and 6). The available 
experimental data therefore agree more readily with 
the Simpler and natural hypothesis concerning the 
character of the energy spectrum of unbounded nuclear 
matter as such. It seems likely that it can represent a 
"normal" Fermi liquid with an absolutely sharp Fermi 
boundary for quasi particles (71• 

9)The method of coping with the even-odd mass oscillations used in 
the reduction of the experimental data was already described earlier 
(see [1], footnote 12). We note in this connection that the change in the 
number of protons by 2 is a reflection of the Coulomb energy of the 
nucleus is reflected in the Coulomb energy of the nucleus and in its deri
vative with respect to the number of charged particles. Since in fact an 
energy of pure electrostatic origin has no singularity whatever, it is ad
visable to subtract the "fictitious" effect produced by it from the ob
served running discontinuities b.e. In connection with the introduction 
of such a correction for the Coulomb interaction, the values of w used 
in the pres,ent paper for the proton magic nuclei (see Table I) tum out 
to be somewhat higher than those previously published (see Table II and 
Fig. 4 of [1]). This correction affects little the conclusions concerning 
the course and magnitude of the residual interaction of the protons. 

10) A good illustration is the well-known problem of an almost-ideal 
Fermi gas with weak attraction. Its solution is frequently given in the 
momentum representation (see, for example, [6] ). It is difficult to visu
alize how the purely formal operation of the transition to the [-represen
tation could change the width of the transtion band of the Fermi distri
bution, and furthermore make it dependent on [ (see also footnote 6). 
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On the other hand, spherical nuclei of finite radius 
have a residual interaction of the type characterized by 
(46). One must not forget, however, that it was actually 
established only on the basis of data that pertained 
throughout to the nearest vicinity of some magic 
nucleus. The experimental data give the impression 
that the residual interaction of the considered type de
creases gradually with increasing distance from the 
magic nucleus, and becomes somehow restructured in 
final analysis. The thermodynamics of the transition 
was considered in(B]. The fact that the phase transition 
due to weakening and restructuring of the residual in
teraction causes also the nuclear,shape to become non
spherical can hardly be re~arded as surprising. It was 
already shown earlier (see 4]) that in the simplest 
scheme without interaction the sphere is absolutely 
unstable in general for any number of particles. 

We are grateful to V. D. Kirilyuk, V. P. Kubarovskil, 
and V. 1. Lisin for help with the computer calculations 
of the function Fl. We also thank 1. 1. Gurevich, L. P. 
Kudrin, 1. M. Pavlichenkov, G. A. Pik-Pichak, V. P. 
Smilga, and K. A. Ter-Martirosyan for a discussion of 
the results. 

APPENDIX 1 

In the preceding paper(l] (see also[4]) we considered 
for concreteness a scheme with a wall that is im
permeable to the quasi particles and is located at a 
distance R from the center of the nucleus. The roots 
of the wave equation of the free motion of the particle 
in the spherical region, shown in Fig. 3 above, corre
sponded to such a boundary condition. We shall show 
that this does not limit the generality of the results 
pertaining to shell oscillations of the volume energy of 
the spheric nucleus. 

The Bohr-sommerfeld quantization rule[2] used to 
determine the eigenvalues is 

R 

Sk,(r)dr = n(n +y). (A1.1) 

Here 

(Al.2) 

and the lower limit of integration is due to the centri
fugal barrier; since the nuclear matter is homogeneous, 
the wave number k is constant in the interval region. 
The additional phase y depends on the properties of 
the true structure of the transition layer on the surface 
of the nucleus. We change over to the dimensionless 
variable kr = p': 

p 

Sll!(P')dp'=n(n+y), ll!(p')""'Y 1-Y'/p". 
T 

(A1.3) 

The Regge trajectories responsible for the oscillations 
are characterized by the relation 

2n + 1 = p, P = 2, 3, 4, 5 ' , . , (AlA) 

between the quantum numbers (see the Introduction and 
Fig. 3). Therefore 

dn/dl=-'/" d'n/dl' =0. (A1.5) 

We now differentiate the entire relation (A1.3) along the 
trajectory 

(Al.6) 

Elementary integration yields 
dp l n dv 

!J!(p)-l-arccos-----+n- (A1.7) 
d P 2 dt' 

It follows therefore that the derivative dp/dl vanishes 
at 1 ~ 0 (the last term in the right-hand side, which is 
due to the differentiation of the phase increment, does 
not affect the result (see (A1.9) below). In the second 
differentiation of the Bohr-Sommerfeld formula, we 
omit the terms that are known to vanish at the extremum: 

!J!( ) d'p 1 d'v 
P "dF"+p!J!(p) = n dt' . (Al.B) 

We now take into account the fact that the phase y is 
determined by the actual details of the nuclear interac
tions in the nearest vicinity of the upper limit of inte
gration. Any characteristic that influence the results 
can depend here on the angular momentum 1 only in 
the combination (2. Therefore 

dv = !L d'v =2~-~ 
dl 2r dt" dt' dt' p" 

(A1.9) 

Consequently, at the maximum point 1 = 0 we have 

d'pldt' """ -tip, (A1.10) 

neglecting the terms ~1/p2. Thus, the form of Eq. (1) 

tip g,f - (l + 'I,)' / 2p (A1.11) 

does not depend on the details of the nuclear surface
layer structure. We determined finally the ordinates of 
the extrema of the successive trajectories. At 1 = 1 
+ Y2 = 0 we have according to (AlA) n " p/2 + Y4. Sub
stituting in (A1.3), we get 

Pm .. =n('/.p+y'), (A1.12) 

where y' " y + Y4' Replacing Pmax by kfR = Pf, we 
see that (A1.12) coincides in fact with the previously 
published (see(l], formula (19), and footnote 9) "quanti
zation rule" for the magic values of this parameter. 

APPENDIX 2 

We consider here the special case k = 0, for which 
there is no asymptotic region described by formulas of 
the type (23). The width of the band II of the smearing 
of the Fermi distribution (see Fig. 4), which does not 
depend on l, will be denoted by go. Formally, this re
quires that we put k = 0 in (17) and make the substitu
tion gPf - go. Substituting then in (34) and (35), we 
obtain after a simple integration 

N,=....E!..... ~ sin2'11gocos4vPI . 
. 4ngo"'-' 'II' .-. (A2.1) 

In the next application of formula (3), we transform 
also the trigonometric expressions under the summa
tion sign 

Here 

E,=--- e P/+- -e PI-- . P,PI {( go ) ( go )} 
2ngo 2 2 

() 1 ~ sin4'11PI 
e PI =1; "'-'--'113-' 

,,=1 

(A2.2) 

(A2.3) 
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Since the expression for !UI(pf) (see formula (28) above, 
and also(l]) is characterized by a jump of the first de
ri vati ve, only the second deri vati ve of the function 
{!(Pf) becomes discontinuous. Moreover, these singu
larities (which are located in this case at the inflection 
points of the function EI(Pf)) are now shifted by a 
distance ±go/2. The physical reason for this is seen 
directly from Fig. 4. At the very point on the Pf scale 
where the first derivative would experience a discon
tinuityat k = 2, the expression (A2.2) has an ordinary 
analytic minimum. Thus, the nucleon binding energy € 

experiences no discontinuity anywhere. 
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