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Hyperfine interaction between optically oriented electrons captured by impurity centers and nuclei 
of the centers is considered. It is shown that this interaction decreases the stationary degree of orien­
tation of the electrons and results in polarization of the nuclei. The stationary polarization of the 
electrons and nuclei is calculated as a function of excitation light intensity and the effect of longi­
tudinal and transverse magnetic fields or of a varying field at nuclear resonance frequency on the 
polarization is considered. 

1. INTRODUCTION 

T HE spin orientation of electrons in the case of inter­
band absorption of circularly polarized light[1-5] is an 
effective means of investigating the energy spectrum 
and the spin interactions in semiconductors. Even in 
his first study, devoted to optical orientation in silicon, 
Lampel [1J observed an appreciable polarization of 29Si 
nuclei, due to their interaction with the electrons orien­
ted by the light. Ekimov and Safarov[6,7J have observed 
that the resultant polarization of the nuclei exerts in 
turn an appreciable influence on the electron orientation. 
The most convincing proof of this influence is the de­
crease of degree of orientation of electrons under con­
ditions of nuclear resonance on the nuclei Ga, Al and As, 
observed in the solid solution p- GaxA11_ xAs [7J. The 
degree of orientation of the electrons was measured by 
determining the circular polarization of the recombina­
tion radiation. Ekimov and Safarov observed[6J an 
abrupt decrease of the electron orientation in a perpen­
dicular magnetic field on the order of several Oe, 
whereas further depolarization of the electrons requires 
much stronger fields (the width of the Hanle line is of 
the order of 100 Oe). The decrease of the electron 
orientation in a weak transverse field, just as in nuclear 
resonance, is due to depolarization of the nuclei. 

In the solid solutions GaxAl1_xAs at 4°K, the degree 
of orientation of the electrons following stationary ex­
citation is of the order of several per cent. It can be 
assumed that the smallness of the orientation is due to 
the interaction of the spins of the electrons and the 
nuclei. If the nuclei are not polarized, they produce a 
random magnetic field in which the electrons become 
depolarized. Such an interpretation is confirmed by the 
strong increase of the electron orientation, observed by 
Ekimov and Safarov following application of a magnetic 
field parallel to the orienting beam. In an external mag­
netic field, the coupling between the spins of the elec­
trons and the nuclei is broken, and the depolarizing ac­
tion of the nuclei becomes weaker. This may be the 
reason for a certain increase in the degree of polariza­
tion observed by Parsons[8J in GaSb in a longitudinal 
field. 

The depolarization of the electrons in the hyper fine 
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interaction is accompanied by orientation of the nuclei, 
which in turn decreases their influence on the electron 
spin. This is precisely the reason for the decrease of 
the electron orientation when the nuclear spins become 
disordered (in nuclear resonance or in a weak perpen­
dicular magnetic field). This causes also the increase 
of the electron orientation observed in [6J in a zero field 
with increasing intensity of the exciting light. 

It is clear that the hyper fine interaction is significant 
only if the electron is localized to one degree or an­
other, for otherwise the field of the nuclei average out. 
Indeed, at 77° K the electron orientation in the solid 
solution p- GaxA11_ xAs is much higher than at 4 ° K[3J . 
Veshchunov, Dzhioev, Zakharchenya, and Flelsher[9J 
have found that in this material the degree of orientation 
is low at temperatures below 30 o K, and then increases 
sharply. This indicates that at low temperatures the 
recombination radiation proceeds from donor levels. 
The sharp increase of the polarization is due to thermal 
ionization of the donors and to the dynamic averaging of 
the nuclear magnetic field acting on the nonlocalized 
electron in the conduction band. The appreciable degree 
of orientation observed in strongly doped GaAS[10J is 
probably due to the fact that the donor states are merged 
in this case with the conduction band. 

We consider in this paper optical orientation under 
conditions when the hyperfine interaction of the elec­
trons and nuclei is Significant. It is assumed that the 
electron thrown into the conduction band by circularly 
polarized light is captured by an impurity atom whose 
nucleus has spin. As a result of the hyper fine interac­
tion, the electron orientation is decreased during the 
time of stay on the impurity center, and the nucleus be­
comes polarized. The nuclear- relaxation time is as­
sumed to be large in comparison with the time of stay 
of the electron at the center. As a result of the compe­
tition between the polarizing action of the captured elec­
trons and the nuclear relaxation, which occurs mainly 
in the intervals between the captures, a certain station­
ary polarization of the nuclei and of the electrons is es­
tablished. We calculate this stationary polarizationas a 
function of the intensity of the exciting light and consider 
the influence exerted on it by longitudinal and trans­
verse magnetic fields and of an alternating field at the 
nuclear-resonance frequency. The theory contains a 
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qualitatively correct description of all the experimental 
results listed above. 

It should be noted, however, that the theory presen­
ted here is applicable, strictly speaking, only to the 
situation when the electron localized at the center inter­
acts with only one nucleus. In the experiments of 
Ekimov and Safarov, the electrons interacted with the 
nuclei of the main lattice of the crystal. The electron at 
a shallow donor level is localized in a region that in­
cludes a large number of such nuclei. For a quantitative 
description of the experimental results of[,6,7], it is 
therefore necessary to generalize the theory to include 
the case when the electron interacts simultaneously with 
many nuclei. In addition, under the conditions of these 
experiments, an important role is probably played by 
jumps of the electron from one center to another, which 
occur during the lifetime. As shown in the present pa­
per, during the time that the electron stays on one cen­
ter, the hyperfine interaction decreases the degree of 
orientation by not more than a factor of three. The 
additional decrease is apparently due to the jumps. 

2. CHANGE OF SPIN STATE DURING THE TIME THAT 
THE ELECTRON STAYS AT THE IMPURITY 
CENTER 

We consider an electron captured by an impurity 
center at the instant t = O. We assume that at this in­
stant the electron is oriented and has an average spin 
So. The spin direction is parallel to the direction n of 
the orienting light beam. The nucleus of the impurity 
center, with angular momentum I, has a certain arbi­
trary spin state. As a result of the hyperfine interaction 
and the interaction with the external magnetic field, the 
spin states of both the electron and of the nucleus are 
altered. We are interested in these states at the instant 
t when the electron leaves the center for some reason 
(for example, by recombining with a hole). 

The spin part of the wave function of the electron 
and nucleus can be written in the form 

'V = .E Cm"(t)(fmX., (1) 

where <Pm describes the state of the electron with spin 
projection m on the direction of the external magnetic 
field (m = ± 1/2), and X describes the state of the 
nucleus (- 1::5 P. ::5 I). the dependence of the coefficient 
Cmp. on the time can be easily obtained by reexpanding 
the wave function (1) in terms of states with definite 
energy and projection M of the total angular momentum 
on the direction of the magnetic field. For a given M, 
the energy can assume two values, EM (with the excep­
tion of the case M = ± (I + 1/2), when there is only one 
value EM); the corresponding wave functions are desig­
nated 1f!M (the ± symbols correspond to the total angular 
momentum I ± 1/2 in a zero field), and 

(2) 
M 

where aM(t) = ai1:(O) exp (- iEMt). 
The wave functions 1f!M and the energy values E~ are 

obtained by diagonalizing the Hamiltonian 

:J6 = AIS + f!ogHS, 

where A is the hyper fine structure constant, Jlo is the 
Bohr magneton, g is the g-factor, and H is the magnetic 
field. The corresponding formulas are[ll] 

EM± = _1/4A ± 1/2A (I + 1/2) (1 + 4Mx/ (21 + 1) + :c')"', (3) 

where 

..pM + = aMq"I,XM-'I, + ~M(j)-'I'XM+';" 

..pM- = -I\M(jJ'I,XM-'I, + aM(jJ-'I,XM+'I" (4) 

(5) 

(6) 

Substituting (4) in (2) and comparing with (1), we can 
express the coefficients Cmg (t) in terms of aM and 
thus obtain their time dependence: 

(7) 

Here Cm)J. are the values of the coefficients CmJl (t) at 
t = 0, and the quantities uM and vM are given by 

UM = cos WMt + i(I\M' - aM')sinwMt, 

VM = -2iaMI\M sin WMt; 

4M )'1' WM=~(1+--X+X' , 
2 21+ 1 

A(I+l/,) 
Wh= Ii 

(8) 

(9) 

We note that the square root in (9), just as in the Breit­
Wigner formula (3), should be taken to mean 1- x 
(including x > 1) at M = 1- 1/2 and x > O. 

The evolution of the spin density matrix PmJl ,m'p.' 

of the electron + nucleus system can be easily obtained 
with the aid of (7): 

(10) 

It must be borne in mind here that at t = 0, i.e., at the 
instant when the electron is captured by the impurity 
center, the density matrix of the system is a product of 
the electron density matrix fmm, and the nuclear den­
sity matrix 'PJlJl" 

3. ORIENTATIONS OF ELECTRONS AND NUCLEI IN 
THE ABSENCE OF A MAGNETIC FIELD 

In the absence of a magnetic field, the quantity 2 wM 
does not depend on the index M and is equal to the total 
hyperfine splitting who We choose the quantization axis 
along the initial direction of the electron spin So. The 
projection Sn of the electron spin at the instant t on the 
initial spin direction can be calculated with the aid of 
the density matrix (10): 

S.(t) = II, .E (P'I •• ,'I •• - P-'I •• ,-'I •• ). 

We use formulas (7) and (10) to express Sn(t) in 
terms of the initial spin density matrix 'PJl Jl' of the 
nucleus: 

USing (6) and (8) with H = 0, we obtain 

(11) 

S,(t) = So + (I + 1/2)'-2 sin'(wd / 2)[ <I,> - 2So<lL'>]' (13) 

where Ii = 1(1 + 1) - I~ is the square of the projection of 
the nuclear spin on a plane perpendicular to So, and the 
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angle brackets denote averaging over the initial state of 
the nucleus. 

The polarization of the recombination radiation is 
determined by the value of the electron spin averaged 
over the time of its stay at the impurity center: 

1 N 

S.=--s e-tl'8n(t)dt. (14) 
to 

where T is the average lifetime of the electron at the 
center. From (13) and (14) we obtain 

s =8 + 1 '(Ctlht ), (/.>-2800 .c'> (15) 
• 0 2 1 +(Wht)' (I + 'I,)' 

We see that the change of the electron spin consists of 
two parts. The first part is proportional to the average 
spin of the nucleus and describes the orientation of the 
electron by the nucleus. This effect has a pure quantum 
origin and is smaller the larger the nuclear spin 1. The 
second part describes the vanishing of the electron 
orientation and is proportional to the mean-squared 
transverse component of the nuclear spin. 

This second effect admits of a simple classical in­
terpretation, in which the role of the nucleus reduces to 
the production of a magnetic field acting on the electron 
spin and equal to AI/Ilog. Indeed, if the direction of So 
does not coincide at the initial instant with the direction 
of this field, then the electron spin will precess about it 
with frequency Who At whT ~ 1, the value of Sn aver­
aged over the precession period is Sn cos2 e, where e is 
the angle between So and I (in the classical limit 
I ~ 1/2, so that the change of the nuclear spin direc­
tion can be neglected). Averaging over the initial state 
of the nuclei, we obtain 

S n = 8 0 - 8 0(IJ.') /1'. (16) 

which agrees with (15) if we neglect in the latter the 
term with (In) and assume wh T ~ 1 and I ~ 1/2. In 
the case of a random distribution of the nuclear spins, 
formula (16) yields Sn = So/3. In this case (In) = 0, 
(I~) = 21(1 + 1)/3, and from the exact formula (15) we 
get 

Sn=8 [1- (Wh't) , 21(/+1)] (17) 
o 1+(Wht)'3(1+'/,)" 

Acc~ding to (17), if WhT »1 then Sn = So/2 at 1=1/2 
and Sn - 80/3 in the classical limit I » 1. 

To find Sn in the general case it is necessary to 
know the spin state of the nuclei. This state is deter­
mined by two factors: by the action of the electrons cap­
tured by the centers, and by nuclear relaxation. Let us 
find the change of the nuclear density matrix 

d <1>"", = ~ Pmu,m.' (t) - <1> .. , 
m 

during the time when one electron stays at the center. 
During this time the nuclear relaxation, in view of its 
slowness, can be disregarded. From (10) we obtain for 
the diagonal elements 

,',<11 •• = 1/21 v.+'I, I '[ (1- 280 )<1>.+" .+, - (1 + 280 )<11",,] 

+ 1/21 V._'I, 1'[ (1 + 280 )<1>._" H - (1- 280 )<11",,]. 
(18) 

We have averaged here over the time of the stay of the 
electron at the center. This averaging is denoted by a 
superior bar, 

- 1 (Wh't') , (1+'/,)'-M' 
Iv."I'= 2 1 + (U)h't) , (1+'/,)' (19) 

We can now write a kinetic equation describing the 
change of the nuclear density matrix over a time that is 
long in comparison with the time of stay of one electron 
at the center: 

(20) 

where f is the number of electrons captured by one 
center per unit time, and t.411l1l is determined by ex­
pression (18), in which the matrix 41 must be replaced 
by 41(t) , since the change of the state of the nuclei dur­
ing the time of stay of one electron at the center is 
small (iT « 1). The second term in the right-hand side 
of (20) describes nuclear relaxation. The first term in 
(20) describes transitions between the spin levels of the 
nuclei as the result of hyperfine interaction with cap­
tured electrons. If there were no electron orientation 
(So = 0), then this interaction would lead to an equaliza­
tion of the populations of the spin sublevels of the 
nuclei, i.e., to their additional spin relaxation. In this 
case the quantity (1/2)flv Il +1// has the meaning of the 
probability of the transition Il ~ Il + 1. 

As is well known, it is convenient to describe the 
spin state not by means of a density matrix, but by 
means of average values of the polarization moments of 
different orders (orientation, alignment, etc.). The re­
laxation times of these moments, generally speaking, 
are different. Let us find these times for relaxation on 
captured electrons. Multiplying the first term of (20) 
by Il and summing over Il, we obtain (at So = 0) 

f ~fl,d<1>",,= -'11,,(/.>, 

• 
where 

2/ (W"t) , 

'11.,= (21+1)' 1 + (Ctlh't) , (21) 

is the reciprocal time of decay of the orientation (of the 
average nuclear spin) as a result of the hyperfine inter­
action with captured non-oriented electrons. Analog­
ously, at So = 0 we obtain for the second moment 

f ~ [fl' - 1(1 + 1)/3]11<1>"" = - v,,<In' - J(! + 1)/3>. 

where ve2 is the reciprocal time of decay of the align­
ment, i.e., of the quantity (I~ - 1(1 + 1)/3). Calculation 
yields ve2 = 3vel. 

Equations (20) can be solved for an arbitrary nuclear 
spin if the character of the nuclear relaxation is known. 
We present the solution for the Simplest case I = 1/2. 
In this case there is no alignment and (20) can be re­
duced to an equation for the single quantity (In) by in­
troducing a certain "dark" time of nuclear relaxation 

d<ln)/dt = -(v., + v,) <In) +'11,,80 , (22) 

Under stationary conditions we obtain 

(23) 

We recall that the frequency f of the captures, and 
consequently also Vel' is proportional to the intensity 
of the exciting light. Thus, at low intensities (In) in­
creases linearly and at high intensity it saturates at the 
level So. Substituting the obtained value of (:r.,) in 
formula (15) and using the fact that (~) = 1/2' at I = 1/2, 
we get 
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_ ( v,, v, ) 
Sn=So 1----- . 

f V,, +v, 
(24) 

with increasing light intensity, the electronic orienta­
tion increases and tends to So when lIe1 ~ Ill. 

At arbitrary nuclear spin, the electron orientation at 
low intensities is given by formula (17), and at high 
intensities when the dark nuclear relaxation is insig­
nificant, Sn - So. We note that since the electron orien­
tation depends on the spin state of the nuclei, the 
nuclear relaxation time should come into play in the 
transient processes that are connected, for example, 
with the change of intensity or of the degree of polariza­
tion of the exciting light. 

4. ORIENTATION OF ELECTRONS AND NUCLEI IN 
LONGITUDINAL MAGNETIC FIELDS 

A magnetic field directed along the initial electron 
spin So should increase the stationary orientation of the 
electrons and decrease the stationary orientation of the 
nuclei. The reason for both effects lies in the fact that 
the longitudinal magnetic field weakens the coupling be­
tween the electron and nuclear spins. A parameter 
characterizing the influence of the field is the quantity 
defined by formula (5). 

Expressions for the electron spin and for the change 
of the nucleon density matrix are given as before by 
formulas (12) and (18). Now, however, we have in place 
of formula (19) for IvMI2 

-- (I+'/,)'-M' (Olh') , 
IVMI'= 2(1+'/,)' 1+(Olh,)'[1+4Mx/(2I+1)+x']· (25) 

At low light intensities, when the nuclei are not orien­
ted, we can obtain an explicit expression for the 
magnetic- field dependence of the degree of orientation 
of the electrons. To this end, we put if> /J. /l = 21 + 1-1 in 
(12). We then obtain 

(26) 

In particular, at I = 1/2 

[ 1 (mhf) , ] 
Sn = So 1- 2 

1 +(00,,)' + (p.ogH,/n) , . 
(27) 

Figure 1 shows plots of Sn(H) calculated from (26) for 
the case I = 3/2. 

With increasing intensity of the exciting light, the 
spin distribution of the nuclei becomes ordered and 
this, in turn, influences the electron orientation. In the 
Simplest case I = 1/2, at arbitrary intensities, formulas 
(23) and (24) are valid but with a value of lIe1 that de­
pends on the magnetic field and is given not by (21), but 
by 

f (m,f) , 2 v., =-. . ( 8) 
2 1 + (m,"t) , + (ftogHr/n) , 

Thus, in a longitudinal magnetic field, to obtain the 
same nuclear orientation and at h = 0, it is necessary 

Tk:: 0.5 J 

I 

I Z J 
J; 

FIG. 1. Dependence of the stationary 
electron orientation on the logitudinal 
magnetic field at low intensity of the ex­
citing light for I = 3/2. The values of the 
parameter whT are zero (I), 1 (2), and 
00 (3). 

to have a larger light intensity. The electron orienta­
tion, to the contrary, increases with increasing longi­
tudinal magnetic field (see formulas (24) and (28)). 

For nuclei with angular momenta I > 1/2, the gen­
eral character of the dependence of the electronic and 
nuclear orientations on the magnetic field and on the 
intensity of the exciting light remains the same. There 
appears, however, a qualitatively new effect, namely the 
dependence of the orientation on the sign of the magnetic 
field, Le., on whether the magnetic field is directed 
parallel or antiparallel to the initial electron spin So. 
This asymmetry is most strongly pronounced in inter­
mediate fields and is connected with the fact that the 
quantities IvM I2 (which determine, according to (18), the 
probabilities of the transitions between the spin sub­
levels of the nucleus), are not even functions of the 
magnetic field (see formula (25)). 

It is curious, however, that if the populations of all 
the nuclear spin sublevels relax in equal fashion (Le. j 
if the last term in (20) reduces to-II[if>/l/l - (21 + 1)-1) 
then it can be shown that there is no asymmetry in the 
electron orientation. At the same time, even in this case 
the stationary state of the nuclei depends on the sign of 
the magnetic field (relative to So). Therefore, if the 
states of the nuclei does not have time to change follow­
ing a reversal of the sign of the magnetic field, then the 
electron orientation changes and will then tend to a 
stationary value with the nuclear-relaxation time. 

On the other hand, if the spin relaxation of the nuclei 
is not described by a single constant (for example, if 
the orientation and the alignment relax differently), as 
is usually the case, then the stationary orientation of the 
electrons depends on the Sign of the magnetic field. The 
corresponding formulas can be obtained with the aid of 
(12), (20), and (25) if the character of the nuclear re­
laxation is known. 

5. DEPOLARIZATION IN A TRANSVERSE MAGNETIC 
FIELD (HANLE EFFECT) 

A magnetic field transverse to So flips the spins of 
the electrons and nuclei and therefore decreases the 
stationary degree of orientation. The character of the 
influence of the transverse magnetic field is signifi­
cantly different in the three field-variation intervals. 
In the weakest fields, the main effect is connected with 
the influence of the magnetic field on the nuclear spins, 
mainly in those time intervals when there is no elec­
tron at the center. When the nuclear spin precession 
period becomes smaller than the nuclear-relaxation 
time, the orientation and the alignment of the nuclei 
vanish, and the stationary value of the electron spin de­
creases to the value corresponding to a random distri­
bution of the nuclear spins (formula (17)). We assume 
that the nuclear- relaxation time is so long that the 
spins of the nuclei are completely disoriented even in a 
field that does not affect as yet the electrons directly 
(/J.ogH « DWh' DT -1). With further increase of the mag­
netic field, the electron spins will turn. So long as 
/logH « DWh, the two hyperfine states with total angular 
momentum I ± 1/2 will correspond to g- factors 
± g(2I + 1 r1 , so that in this region the hyperfine inter­
action decreases the depolarizing action of the trans­
verse field. Finally, at /logH ~ DWh' the coupling be-
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tween the electron and nuclear spins breaks and the 
depolarization proceeds in the usual manner. 

We consider first the case when the intensity of the 
exciting light is so low that there is no polarization of 
the nuclei. Then the spin intensity matrix of the nuclei 
is given by ~J.lJ.l1 = oJ.lJ.l,(21 + lrl. We shall assume as 
before that the quantization axis is chosen along the 
magnetic field. The initial direction n of the average 
electron spin So is taken to be the x axis. Then the 
average value of the electron spin projection on this 
direction at the instant t is given by the formula 

(29) 

Using formulas (10) and (7) and the assumption that the 
nuclear spins are randomly distributed, we obtain from 
(29) 

(30) 

where the superior bar, as before, denotes averaging 
over the time of stay of the electron at the impurity 
center (see (14». Substituting the expression for uM 
from (8), we finally get 

(31) 

where tl.~ = WJ.l +1/2 ± WJ.l-1/2' 

B = W.'[~ + '/2 + x(1 + '/,) 1 [ft - '/, + xCI + '/,) 1 (32) 
• (21 + 1) 'W,q ,,,W,,_'I, . 

We recall that x = J.logH/(tiwh)' and the frequencies wM 
depend on the magnetic field in accordance with (9). At 
H = 0, Eq. (31) coincides with (17). We see that the form 
of the Sn(H) plot (the Hanle line) is in general very com­
plicated and is determined by the parameter wh T. At 
wh T « 1, the hyperfine interaction is negligible and the 
magnetic field influences the orientation only when 
x» 1. Then wM = J.logH/2n, BJ.l = 1, and formula (31) 
yields the usual relation 

(33) 

On the other hand, if wh T » 1, then the orientation 
vanishes already at magnetic fields such that x « 1. In 
this case we obtain from (31) 

~ ._ [. ( ~ogH-r: )']-' 
8 n =8"(0) 1+ h(21+1) (34) 

where Sn(O) is determined by formula (17) at wh T » 1. 
Thus, in this case the Hanle line again turns out to have 
a Lorentz shape, but with a g-factor decreased by a fac­
tor 21 + 1. Figure 2 shows a plot of Sn(H) for a nuclear 
spin I = 3/2. 

Formula (31) was derived under the assumption that 
the nuclei are not polarized. If the intensity of the ex-

OL---~'~~====~5-

pugH,/n 

FIG. 2. Dependence of the stationary 
orientation of the electrons on the trans­
verse magnetic field in the case of a ran­
dom distribution of the nuclear spins at 
I = 3/2. The values of the parameter 
WhT are zero (I), 2 (2), and 00 (3). 

citing light is so high that the nuclei become noticeably 
polarized in the absence of a field, then this polariza­
tion vanishes in a weak magnetic field with values de­
termined by the nuclear g-factor and by the nuclear 
spin-relaxation time. Accordingly, the electronic 
orientation decreases from the value (15) to the value 
(17), i.e., by an amount 

1 (Wht) , <In> + 280 <In' - l(l + 1)/3> 
Ll8= ~ . 

2 1+('J)hr)' (1+ '/,), , 
(35) 

which is determined by the orientation and alignment of 
the nuclei in a zero magnetic field. We present a form­
ula describing the spike on the Hanle line in a weak field 
at I = 1/2: 

S =80[1-~+"'''''''' 1 ] (36) 
n / / v,,+v, 1+("NgNHT/h)' ' 

where J.lNgNH/n is the nuclear-spin precession fre­
quency in a magnetic field, the effective relaxation time 
T depends on the intensity and on the degree of polar­
ization of the exciting light and is determined by the 
formula 

and Vel is given by formula (21) at I = 1/2. 
At H = 0, formula (36) coincides with formula (24). 

We see that the width of the spike is determined not 
only by the dark relaxation of the nuclear spin, but also 
by the relaxation due to the captured electrons, so that 
the spike broadens with increasing exciting-light inten­
sity. A spike on the Hanle line in weak magnetic fields 
was observed in[6J. 

6. OPTICAL ORIENTATION UNDER NUCLEAR 
RESONANCE CONDITIONS 

We have seen above that optically oriented electrons 
polarize nuclei and as a result the electron-spin relaxa­
tion due to the hyperfine interaction decreases. Under 
nuclear- resonance conditions, the alternating magnetic 
field strives to equalize the populations of the spin 
levels of the nuclei, and consequently to eliminate the 
polarization of the nuclei. The electronic orientation 
therefore decreases under these conditions. This effect 
was observed in [7J . 

Nuclear resonance can be described with the aid of 
an equation for the off-diagonal density matrix of the 
nuclei ~J.lJ.l': 

d<1> .. , --- - - i - - (37) "dt" = /Ll<1> •• , - (v<1» •• , - Ii[ v, <1>]".', 

which is a natural generalization of (20). Here 
V = - J.lNgN(H + Hl)I is the operator of the interaction of 
the nuclear spin with the magnetic field, where H is the 
constant field directed along So (the z axis) and HI is an 
alternating field perpendicular to the constant field 
(HIX = HI cos wt, Hly = - HI sin wt). 

The expression for tl.~J.lJ.l' can be derived in analogy 
with the derivation of (18). We present here this ex­
preSSion for the Simplest case 1= 1/2: 

/Ll<1>v, , '/' = -/Ll<1>_'/,. -'/, = _1/2", .. (<1>'1., 'h - <1>_'1., -'I.) +"",80 , 

(38) 
/ Ll<1>'I., _'I. = -g<1>'I., _'I .. 

where Vel is given by (28) and 

g = / [1 - exp (.- iWhxt ) ( cos wot + ix sin wot) 
2 (1 + x') 'I. 
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x (cos ~,t _ 2iSo sin oo;t)]. 

From (37) and (38) we obtain an expression for the 
change in the nuclear orientation as a result of the 
alternating field: 

<111 > = _ <I > Q,'T,T, 
n n 1 + Q,'T,T, + 6'T,' ' 

(39) 

(40) 

where (In> = lIel T IS0 is the stationary nuclear orienta­
tion in the absence of an alternating field (see formula 
(23», 

Q, = /LNgNH,/Ii, Tj = (Vet +v,)-', T, = (g'+ v)-', 

6 = (i) - /LNgNH / Ii + g", 

g' and g" are the real and imaginary parts of g, lIi1 and 
11-1 are the longitudinal and transverse times of the dark 
relaxation of the nuclear spin. 

The change of the nuclear orientation causes a change 
in the orientation of the electrons, since at I = 1/2 

Sn = So(1-v,,/f) + (v" It) (In). 

We present expressions for the quantities g' and g", 
which determine the broadening and the shift of the 
resonance as a result of the interaction of the nuclear 
spins with the electron spins for the case of weak and 
strong magnetic fields. In a weak field (x « 1, 1J.0gHT/n 
« 1) we have 

.g'=v", g"= ISooohT[1+ (oohT)']-'. 

In a strong field (x » 1) 

g' = 1(00,1:)'[4+ (oohT)']-', g" = 4/Soooh~[4 + (ooh1:)']-'. 

We see that the broadening and the shift of the reson­
ance line are proportional to the capture frequency f, 
i.e., to the intensity of the exciting light. The shift of 
the resonance frequency reverses sign when the sign of 

the electron orientation changes, i.e., when the circular 
polarization of the exciting light changes sign. 

Under resonance conditions, changes take place not 
only in the orientation but also in the alignment of nuclei 
with spin I ~ 3/2, as well as in other higher polariza­
tion moments. Since all the polarization moments of the 
nuclei influence the orientation of an electron in a mag·· 
netic field, the resonance line shape can be very com­
plicated in the general case. 
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