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An equation set for depolarization of fJ. + mesons in magnetic semicnoductors is formulated. It is shown 
that the presence of polarization of conductivity electrons results in the appearance of fJ. +-polarization 
along the direction of polarization of the medium electrons and also leads to an additional shift of the 
muon precession frequency in a magnetic field about the direction of the conductivity electron polar­
ization and to a displacement of the precession stopping point. Polarization of captured electrons 
leads, in particular to a Significant phase shift of the complex residual polarization. It is thus shown 
that fJ. + mesons can be used effectively to study magnetic semiconductors. The results also show that 
the state of fJ. + mesons in ferromagnetic metals (atomic or ionized) can be determined. 

1. The Nosov- Yakovleva (NY) equations[1] were der­
ived under the assumption that the polarization of the 
ensemble of electrons in a medium is equal to zero. 
This pertains both to electrons that captured by a meson 
and those which are subsequently scattered by the muon­
ium. Perelomov[2] succeeded in formulating an equa­
tion for a magnetic medium in a particular case, namely 
when the magnetic field is longitudinal relative to the 
initial muon polarization and the polarization of the 
electrons of the medium, and assuming total polariza­
tion of the electrons of the medium. 

Our present task is: a) to formulate in convenient 
form (in the NY operator formalism) equations for arbi­
trary polarization of the medium electrons and for arbi­
trary direction of the magnetic field, and b) to show that 
in fact the NY equations (as well as the Perelomov 
equations) do not presuppose the usual limitations 
(under which the Wangsness-Bloch equations are ob­
tained) if the relaxing action of the medium is deter­
mined only by the scattering of the electrons by the 
muonium. 

In fact, we consider in the present paper a situation 
wherein the muon is stopped in a magnetic semiconduc­
tor. Recently, many such magnetic substances were ob­
served, in which doping produces an appreciable con­
centration of conduction electrons (up to 1019 cm -3, for 
example, in europium chalcogenides doped with rare 
earths[3]). We assume that the ferromagnet in which 
the muon is stopped has a single-domain structure. 
Additional effects connected with the domain distribu­
tion will not be considered here. 

We assume furthermore that the temperature of the 
medium is infinite, i.e., that kT is much larger than the 
level splitting of the ground state of muonium (but, of 
course, much less than the ionization potential). 

2. In the most general case, the polarization matrix 
describing the spin state of the two electrons is given 
by[4] 

(1) 

Here pI and p2 are the polarization vectors of the inci­
dent and atomic electrons, P ij is the spin- correlation 
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tensor. Inasmuch as in the cases considered by us the 
interaction between the electrons of the medium and the 
atomic electron takes place only during the time of the 
collision act, the correlation tensor Qij is equal to zero. 
In this case, according to[S], the polarization of the 
atomic electron is given by 

P"(8) =a(8)P' + ~(8)P', (2) 

where QI(e) and (3(e) are expressed in terms of the sing­
let and triplet amplitude of scattering to the angle e. If 
we average over all the scattering directions, we obtain 

P" = apt + ~P'. (3) 

Thus, it can be assumed for simplicity that in ex­
change scattering there is a certain probability that in 
part of the ensemble the old polarization of the atomic 
electron is replaced by a new one, and a certain de­
polarization takes place in addition. In so far as the 
practical calculation of the coefficients (i and {3 for the 
medium is a very complicated matter, this does not de­
crease our ability of extracting information concerning 
the electrons of the medium. 

3. The equations for the density matrix can be 
formally derived by using first the basis of muonium 
wave functions with a definite direction of the spin pro­
jection on a certain axis, and taking into account the 
following conditions: the normalization of the density 
matrix before and after the collision, the equality of the 
muon polarizations before and after collisions, change 
of the polarization of the electrons of part of the ensem­
ble into polarization of the medium electron and partial 
depolarization of the atomic electron as a result of the 
scattering. It remains then to make a formal transition 
to operator variables and to use the NY equations for an 
arbitrary direction of the magnetic field (introducing at 
the same time a correction to the relaxation term). The 
derivation leads to rather obvious equations, so that the 
details are relegated to the Appendix. We note only that 
the coefficient 2 in front of the "spin-flip" frequency v, 
which appears first in the paper of Nasov and 
Yakovleva[l], is wrong; moreover, one cannot speak in 
general of a partial restoration of the polarization of 
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the atomic electron after a second scattering by another 
electron of the medium, if the medium electrons are not 
polarized. On the other hand, the NY equations turn out 
to be perfectly correct (accurate to a renormalization 
of the parameter 11). 

4. The system of equations for the polarization den­
sity matrix P consists of three parts: three equations 
for the time variation of the muon polarization, three 
equations for the time variation of the electron polar­
ization of the atomic muonium, and nine equations for 
the time variation of the correlations of muon and elec­
tron polarizations. The first three equations are not 
altered at all, since they contain the medium only via 
Wo: 

(4) 

Here Iw'l = eH/mec, where H is the resultant magnetic 
field at the point where the muonium is located, and 
, = 11111 +/Ilel is the ratio of the moduli of the magnetic 
moments of the muonium and the electron. 

In the NY equations, the density matrix components 
corresponding to electron polarization in muonium in a 
nonmagnetic medium contain a term - 211p ok' Retaining 
the notation, we retain also the coefficient 2, but now 
Pok is replaced by the difference Pok - UJ'W1l, where fPk 
is the medium-electron polarization component. In 
other words, there is a probability 2f that the polariza­
tion of the muonium electron will turn into the polariza­
tion of the medium electron. As seen from (3), all that 
actually happens in each scattering act is a rotation of 
the muonium-electron polarization towards the medium­
electron polarization, but this does not matter, since 
we are dealing with an ensemble and writing the equa­
tions for the polarization directly. The difference be­
tween 11 and f corresponds to partial depolarization of 
the muonium electron in exchange scattering. Thus, for 
a magnetic medium the indicated three equations take 
the form 

(5) 

The equations for the polarization correlations PKk 
contained previously the relaxation term - 211PKk' Fol­
lowing exchange scattering in the magnetic medium, 
however, a correlation will set in even if it did not ex­
ist before. Obviously, this correlation is proportional 
to the product of the muon-polarization component that 
exists at the scattering instant by the medium-electron 
polarization component, i.e., the correlation term is 
replaced by 

-2" (p,..(t)- ~ P,.(t)9".). 

Thus, the equation for the density-matrix components 
corresponding to the correlations of the polarization of 
the magnetic medium take the form 

dp,.. = C1l'[e" .. p .. (t)_e"'POl(t)-~e"""C1l:pu+e.m'C1lm'p,,,(t)l (6) 
dt2 

- 2" [p,," (t) - +- p". (t)[JJ.] . 

Although these equations are obvious, it is tacitly 
assumed in the present derivation that PKk corresponds 
exactly to the polarization correlations. This makes it 
all the more desirable to obtain a rigorous derivation of 

Eqs. (4)-(6); this will be done in the Appendix. 
5. Now a few words concerning the initial conditions. 

Nosov and Yakovleva used as the initial conditions the 
vanishing the density- matrix components corresponding 
to the electron polarization and to the polarization com­
ponents, and also equality of the polarization of the 
muon in the muonium to its initial polarization when the 
muon is produced in the 7f decay. The situation now is 
somewhat more complicated, since nonzero conditions 
can also arise for the components Pok and PKk' When 
the muon slows down it captures those electrons whose 
relative velocity with respect to the muon is of the order 
of the Bohr velocity. Consequently, electrons from dif­
ferent shells will be captured. However, the muonium 
will have a very large kinetic energy and will therefore 
easily lose those electrons which it acquired from other 
shells. It is therefore difficult to predict reliably the 
polarization of those muonium electrons that remain 
the muonium after the slowing down. In any case this 
polarization can differ from the polarization of the con­
duction electrons that experience exchange scattering by 
the muonium. 

The polarization of the electrons stopped in the 
muonium at the start of the depolarization process (i.e., 
after the slowing down of the muonium) will be designa­
ted S. Then the initial conditions for the polarization of 
the electrons in the muonium are 

POk(O) = S •. (7) 

The correlation of the polarizations at the initial instant 
of time can be connected only with the product of the 
initial polarizations of the electron and muon, since the 
hyperfine interaction has "not yet been turned on." 
Thus, for PKk we have the initial conditions 

P".(O) =P,,(O)S., (8) 

where P(O) is the polarization of the muon at the instant 
of its production. For PK there remains the old initial 
conditions: 0 

P><.(O) = P,,(O). (9) 

6. To understand the structure of the equations, it 
is very useful to write down the system following the 
Laplace transformation. For concreteness, we direct 
the magnetic field in the medium along the axis 1. If 
the direction of the magnetic field does not coincide with 
the direction of the conduction-electron magnetization, 
then the system (4)-(6) cannot be divided into subsys­
tems and it is necessary to consider a system of 15 
equations. In the present paper we confine ourselves to 
the following situations: the magnetic field is perpen­
dicular to the direction of the initial polarization of the 
muon and is so strong that the magnetization of the con­
duction electrons coincides with the direction of the ex­
ternal field. In addition, we assume that the magnetiza­
tion of the electrons that can be captured when the muon 
and the muonium slow down is directed along the field. 

Following the preceding paper [8] , we use complex 
variables that are plane vectors (in the plane 2, 3): 

P. = p .. + ip20, p. = p" + ip02; 

G = p" + tp", E = pat + ip... (10) 

In the situation indicated, the system breaks up into 
eight, six, and one equation. After the transformation 
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(10), the system of eight equations goes over into a sys­
tem of four equations for the complex combinations. 
These last four equations are 

dp" '. eH ,iwo G iwo E de = l~ -;;;;; P. T -2- - -2- , 

,~= -i~P,- iwo G+ iwo E_ 2vP 
dt /n,c' 2 ' 2 " 

dG iwo iwo ieH 
- =? p. - -,-P, - --G - 2vG, dt _ 2 m,e 

dE iwo iwo i~eH 
-d =--2 p.+2/£f',P.+-P,+--E-2vE, 

t 2 m,c 

(11) 

Here and below, £f'i are the projections of the polariza­
tion vector of the electrons of the medium. 

The system of six equations has a right-hand side 
corresponding to a gradual onset of polarization in the 
direction of the medium-electron polarization, i.e., in 
our case, in the direction of the field. In other words, 
the medium operates like a thermostat. This system of 
equations is given by 

dplO 000 
T = - T(p" - p,,), 

dpOl 000 -at = T(p" - p,,) - 2vp" + 2f£f' .. 
dp" 000 ,eH ~eH (12) 
--= -(PIO - POl) - 2vp" + -- p" + -- P33, 

dt 2 m,c m,e 

dp" 000 1;,eH eH 
-d-= --2 (p,,- p,,)-- 2vp" ---P"-~P33, 

t meC m"c 

dP22 dp" ------;It = - Hp" + 1;,Hp32 - 2\'P22, at = -1;,Hp" + Hp" - 2vp". 

The initial conditions for the systems (11) and (12) 
are 

The remaining components of the density matrix at the 
initial instant of time are equal to zero. 

7. Although we are conSidering a single-domain 
sample, the equations for the density matrix are suitable 
in fact for a much larger class of cases. In order for 
them to be valid it suffices that the muonium remain 
within a single domain during the time of its decelera­
tion, when intense charge exchange not accompanied by 
depolarization takes place. To obtain the entire picture 
of the observed process of the change of polarization, it 
is sufficient to average the solutions of (4)-(6) over 
many domains. 

8. Returning to our situation, we solve first the sys­
tem of equations (12). The solution reduces to a solution 
of a system of algebraic equations obtained following 
the Laplace transformation. For the Laplace transform 
of the polarization component in the direction of the 
axis 1 we obtain 

P(,,)_ (,,8, + 2/£f',) 00,' (13) 
, - 2AP·'+4vA'+A[4v'+wo'(1+x+,)+wo'vj} 

We have used here the standard notation 

x+ = (1 + 1;,)x, x = eH / m,cwo. 

From (13) we obtain for the polarization component 
along the direction 1 (the direction of the medium-elec­
tron polarization) 

_ 1 ( 1 ) _ 1 - _, (8, + 2/-r£f',) (14) 
Poo,----:;p, -:;- -2(wo-r) (1+2v-r:)'+(wo't)'(1+2v-r:+x+')' 

In the analysis of the time dependence of the polar­
ization, we confine ourselves to cases when only 
changes occurring within times much longer than 1/wo 
can be observed. Taking the inverse Laplace transform 
of (13) and taking into account only the terms indicated 
above!) , we obtain 

p" = -.l.,£f', + (!.!...-~£f',) ,exp { -~}. 
v 2y v y 

(15) 

Here y = 1 + ~ + 4Il/w~. 
Proceeding from (15) to a real case, when the muon­

ium either loses an electron to the conduction band or 
enters in a chemical reaction, we can easily obtain for 
the time dependence of the polarization 

(16) 

or in explicit form 

( ) _ f "" + '/.8, - /£f',y/v [1 {( 1 + v )}] P, t --oT, -exp --t - - . v y + v-r: 't y 
(17) 

We consider now other polarization components. Solving 
the system (11), we obtain for the Laplace transform 

flv.+(/-1) = Q / D, (18) 

where 
/-1 = Ii.- i1;,eH / m,c, 

Q(Ii.) = [(/-1 + 2v) (/-1 + 2v + ix+wo)' + 1/. 00 0'(2/-1 + 4v + ix+wo) 
_1/2iw08,(/-1 + 2v + ix+wo)']p.,(O), 

D(/-1) = /-1(/-1 + 2v + iX+wo)'(/-1 + 2v) 
+ 1/.000' (2/-1 + 2v + iX+wo) (2/-1 + 4v + iwox+) 
+ i/£f',wo(2/-1 + 2v + iX+wo) (/-1 + 2v + ix+wo). 

For the residual polarization, as always, we have 

P 1.00 = +P.+ (+) = [q(q + Ii)' + '/,b'(2q + 6) - i8,b(q + 6)'/2] 

x [q(q + 6)' + '/,b'(1 + 6 + q)(2q + 6)+ i£f',(j't)b(1 + q + 6) (q + 6) ]-'. 
(19) 

Here q = 1 + 21)T, /) = iX+woT, b = TWo. 

Solving the equations D = 0 for the case of "large ex­
changes" (IJ ~ wo) we obtain for the value of the small 
root 

000' i/ /-1=----£f',wo. 
4v 2v 

(20) 

Thus, we have found that scattering by polarized elec­
trons of the medium produces, besides the trivial 
damping, also a shift in the precession frequency (we 
note that in accordance with (18) a quantity equal to the 
precession frequency of the free muon has already been 
subtracted from fJ.). The physical meaning of this fre­
quency shift is extremely simple, namely, owing to the 
frequent scattering, the muon is located at all times in 
the magnetic field of an electron, and this field is per­
pendicular to the muon polarization while the electron 
spin, the direction of which determines the field direc­
tion, does not have time to flip during the time between 
the scattering acts. We note that this frequency shift 
remains also when the external field is turned off. 
Since f and IJ are of the same order and the frequency 

l)To take the large roots (-wo) into account it is necessary to solve 
a cubic equation or to use a computer; at the present time, the experi­
ment still does not require the study of such strong damping. 
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of the hyperfine splitting is very large, one can observe 
a very small polarization il'l of the conduction electrons. 
Unfortunately, the polarization il'l always enters multi­
plied by f, so that measurements yield only the product 
f9\. In other words, one can determine only the order 
of magnitude of :11 , but with very high sensitivity. We 
note in this connection that if muonium (and conse­
quently also hydrogen) were to be present in the metal 
in a bound state, then this would inevitably lead to large 
observable precession-frequency shifts in ferromagnets. 
On the other hand, the absence of large shifts should 
indicate that the muon (and the proton) in the metal is in 
the free state. 

Finally, notice should be taken of one more feature 
in the behavior of the polarization of IJ. + mesons in mag­
netic semiconductors. As seen from (19), the polariza­
tion of the captured electrons in a direction transverse 
to the initial polarization of the IJ. + mesons leads to the 
appearance of a phase shift in the residual polarization, 
provided only that WoT ~ 1. (As is well known, the tan­
gent of the phase angle is defined as the ratio of the 
imaginary and real parts of the complex residual polar­
ization, and the phase itself corresponds to the initial 
angle with which the precession with muon frequency 
begins.) 

In the case of ultrastrong fields, it can be easily 
seen from the equation D = 0 that the condition for the 
stopping of the preceSSion is now 

x+ = 1 1 2~ + Iil', 1 wo~. 

The second term in the last expression corresponds to 
an additional shift of the pOints where the precession 
stops; we note that this shift depends only on fil'l but not 
on II. 

In conclUSion, I am deeply grateful to Yu. G. Abov, 
B. T. Ge'1likman, V. G. Nosov, O. B. Firsov, and V. A. 
Khodel' for discussions. 

APPENDIX 

FORMAL DERIVATION OF EQUATIONS FOR THE 
POLARIZATION DENSITY MATRIX OF MUONIUM 
IN A MAGNETIC MEDIUM 

We consider an auxiliary problem, the case when the 
medium electrons are described by a wave function. Let 
the spin wave function of the electron by 

¢,m = k¢t + f¢1, kk' + It' = 1. (A.l) 

The arrows denote here the proper wave functions with 
respect to the quantization axis. Assume, further, that 
at a certain instant of time the spin states of the atomic 
muonium are described by the wave function 

(A.2) 

(the first arrow pertains to the muon and the second to 
the electron). In (A.2), the wave function of the muonium 
has been expanded in terms of the direct product of the 
proper wave functions of the muon and electron in the 
muonium. The coefficients a, b, c, and d satisfy the 
normalization condition 

lal' + IbI' + lei' + Idl' = 1. (A.3) 

We consider first the model corresponding to a simple 

exchange of polarizations between the medium electron 
and the atomic electron. This does not correspond to 
reality, but the result will not change in the subsequent 
transition to the density matrix, if the result is taken to 
mean the form of the equations rather than the connec­
tion between the phenomenological and microscopic 
parameters. 

Following the scattering act, the spin wave function 
of the muonium will take the same form (A.2), but now 
with other coefficients: 

(A.4) 

We have seven equations with which to determine the 
new coefficients A, C, D, and B. There is no eighth 
equation, since these four coefficients can have a com­
mon phase factor which does not affect the major quan­
tities. 

1) The normalization equation 

IAI'+ ICI'+ IDI'+ IBI'= 1. (A.5) 

2) The equality of the polarization of the electron in 
muonium to the value obtained as a result of the scat­
tering act (in our model, Simply the equality of the 
medium- electron polarization prior to the scattering 
act). In explicit form, this condition yields for the 
z-projection . 

IAI' -IDI' + ICI'- IBI' = Ikl' - If I', (A.6) 

and for the x- and y-projections 

A'D+C'B = k'f. (A.7) 

3) The polarization of the muon should not be altered 
by the scattering act; in explicit form, this condition 
yields for the z-projection 

lal'+ Idl' - lei' - Ibl' = IAI' + IDI' - ICI'- IBI', (A.8) 

and for the x- and y-projections 

a'c + d'b = A'C + D'B. (A.9) 

The system of equations (A.5)-(A.9) is nonlinear. It 
can be easily reduced to a linear form, however, if it is 
noted that formally it does not contain the interaction 
between the muon and the electron at all. We therefore 
seek solutions satisfying the conditions 

AID=k!f=CIB. (A.l0) 

We verify first that these conditions do not contradict 
(A.5) and (A.7). If the condition (A.l) for the normaliza­
tion of the wave function of the medium electron are 
satisfied, these equations reduce to the following: 

IAI' + ICI' = Ikl'. (A.ll) 

Thus, it remains to solve the system (A.8)-(A.ll). For 
the moduli of the coefficients A, B, C, and D we get 

IAI = Ikl1'(1+R)/2, ICI = Ikll'(1-R)/2, 

IDI = 1/11'(1 + R) /2, IBI = 1/11'(1 - R) 12, 
(A.12) 

where R == lal 2 + Idl2 - Icl 2 - Ibl2 corresponds to the 
projection of the muon polarization prior to the scatter­
ing act on the direction of the z axis (the quantization 
axiS). For the phase differences we obtain 

eQOc-oA) = 2Q li1.- R', e;(OB-OA) = 2QI kif 1 kl/l1'1 _ R' 
. (A.13) 
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Here Q =: a*c + d*b corresponds to complex polarization 
of the muon (prior to the scattering act) on the xy plane. 

If we now introduce the muon density matrices p and 
p, constructed on the basis of the wave functions, with 
definite muon and electron spin projections: p = n*m 

~ --- nm 
and PNM = N*M (the average is taken over the enSem-
ble) , and also introduce the medium- electron density 
matrix TZq = Z*q (in our model; more rigorously it 
would be necessary to take the density matrix of the 
electrons in the muonium after the scattering act), then 
we obtain from (A.12) and (A.13) the relations between 
the density matrices before and after the scattering. 

Before we proceed to the operator representation, it 
is useful to call attention to the following circumstance. 
According to quantum mechanics, a particle can have a 
definite spin projection only on a single axis. But this 
does not mean that the choice of the quantization axis 
determines the polarization direction; one can choose 
as the quantization axis, for example, the x axis, and 
the particle can be polarized along the y axis. The elec­
trons of the medium are not polarized. This can mean, 
for example, that each electron of the ensemble has a 
certain direction, along which its spin has a definite 
value, but when the entire ensemble is considered the 
picture becomes isotropic, and therefore even single 
scattering with change of the spin direction of the atomic 
electron and electron of the medium leads to depolar­
ization. Therefore the idea that the second scattering 
act restores the polarization partially (as assumed by 
Nosov and Yakovleva [lJ) is in error. The picture can 
be even more complicated: the electron can be in such 
a state that its spin states are not determined by a wave 
function at all; then depolarization occurs even without 
averaging over the ensemble. However, to understand 
the muon depolarization picture this is no longer very 
important, since an ensemble of muons is observed all 
the same. 

As shown convincingly by Nosov and Yakovleva, it is 
more convenient to use for muonium the operator repre­
sentation of the density matrix, namely, following Fano's 
ideas[7] , YakovlevaraJ proposed to use the following 
operator representation: 

(A.14) 

where UK and Uk are two-row matrix operators corre­
sponding to muon and the electron, namely, the zeroth 
components are unit operators Uo = x/f2 and the vector 
components are U = a/f2. Formula (A.14) was correc­
ted as against those in[1,7J by adding the coefficient 1/2. 
This coefficient is necessary to make the maximum 
polarization equal to unity. 

Expanding in (A.14), we can obtain relations between 
the density- matrix components in the operator repre­
sentation and in the representation corresponding to a 
basis of wave functions having definite muon and electron 
spin projections, and also formulas for the inverse 
transformation. Using these formulas, as well as the 
NY equations for the polarization density matrix of 
muonium in an arbitrary magnetic field, we obtain (5) 
and (6). In writing down the formulas, we already took 
into account the fact that what actually OCClli'S is not ex-

change of polarization of the atomic electron and the 
medium electron, but the more complicated process 
described by formula (3). 

At first glance we are faced with a paradox consist­
ing in the following. We found that the polarization 
correlations that occur after scattering are expressed 
directly in terms of the product of the corresponding 
components of the muon and medium-electron polariza­
tions prior to scattering. On the one hand this is under­
standable, since the medium electrons are independent: 
of the muon and the only correlation that they can bring 
about is precisely the one found in the polarization of 
the muon and the electron. On the other hand, one can 
visualize a muonium denSity matrix corresponding to 
zero polarizations (at a given instant of time) of the 
muon and the electron, but with correlation of the polar­
izations still present. But then, were we to replace the 
atomic electron by a medium electron whose state dif­
fers little from the state of the atomic electron, the 
correlations would clearly remain. The reason is that 
we have obtained on the basis of (A.13) expressions for 
ten quantities, whereas we had only seven equations. We 
could obtain these ten quantities only because we have 
actually assumed that each muonium atom, taken separ­
ately, exists at a given instant of time in some pure 
state, i.e., it can be described by a wave function. Since 
collisions with electrons of the medium are quite rare 
(the interaction with the medium is actually small), the 
muonium density matrix is obtained by averaging over 
all the particles of the ensemble. Each of the particles 
of this ensemble is then described by a wave function. 
The meaning of smallness of interaction consists there­
fore in the fact that the scattering time multiplied by 
the number of scattering acts is much smaller than 
unity; in other wordS, the muon becomes depolarized at 
those instants of time when the muonium can be de­
scribed by a wave function. We note that in addition to 
the fact that such an approach to concrete situations is 
realistic, any other description would call for concrete 
information concerning the interaction between the 
muonium and the electrons of the medium. 
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