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Possible localized free electron states in dense gaseous helium are studied in the self-consistent field 
approximation. It is shown that when the magnetic field is switched on, along with the usual ion states 
(small radius ions) encountered in a sufficiently dense gas with n ~ ncr ~ 1021 cm -3, new, weakly 
channeled states (large radius ions) arise in the system, their existence being possible at n < nc . 
The main parameters of large radius ions and their mobility along the magnetic field are estimafed 
for gaseous helium concentrations only slightly smaller than the critical value and in magnetic fields 
H < 108 g. Under these conditions the ion mobility is 2 to 3 orders of magnitude lower than that of 
free electrons in a gas of the same density. 

I T is well known that when electrons are introduced 
into dense helium (solid, liquid, or gas), complexes 
consisting of regions with deformed helium density and 
an electron localized inside this region turn out to be 
energywise favored. In the case of solid and liquid 
helium, the electron crowds out the helium atoms from 
the region of its localization almost completely. The 
resultant empty sphere of radius Ro R:l 20 A is called a 
"negative ion" or "anion." For gaseous helium, de
pending on the density, electron states with different 
degrees of localization are possible. The critical helium 
density that separates the regions of the existence of 
strongly and weakly localized states lies, according to 
the experimental data of Levin and Sanders [1), in the 
vicinity of ncr ~ 1021 cm-3 • In this region, which corre
sponds to only a threefold change in the gas density, 
the carrier mobility decreases by approximately five 
orders of magnitude, starting with values that agree 
well with calculations in accordance with the usual gas
kinetic theory for free electrons, to a value which is 
almost equal to the mobility of the anions in liquid 
helium. Levin and Sanders[l) attribute, in natural 
fashion, such an abrupt decrease of the mobility to the 
onset of anion formation in the dense helium gas. This 
qualitative explanation of the transition region is subject 
to no doubt, but it should be noted that there is still no 
sufficiently satisfactory quantitative description of the 
abrupt decrease, in spite of a number of attempts[2). 

In the present paper we study the behavior of elec
trons situated in gaseous helium at gas densities im
mediately preceding the transition region. According to 
the cited experimental data [1) and the simple calcula
tions presented below, localized states are energywise 
not favored in this concentration region without external 
fields, and are therefore not realized. The picture 
changes if the electron plus gas system is placed in a 
strong magnetic field. This makes it possible for local
ized states to be produced; the structure of these states 
is analogous to the structure of the so-called "magnetic 
condensons," the existence of which in homopolar semi
conductors was predicted by one of the authors [3] • It 
was also noted that such states are possible in gaseous 
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helium [4]. We present below a detailed description of 
the local electronic states brought about in gaseous 
helium by a strong magnetic field, and calculate their 
longitudinal mobility. 

1. LOCALIZED STATES IN GASEOUS HELIUM 

1. The equations that determine the self-consistent 
states of an electron in gaseous helium are obtained, as 
usual, by minimizing the free energy of the system. We 
assume that the de Broglie wavelength of the electron 
greatly exceeds the average distance between the helium 
atoms; the electron is located here in the average field 
produced by the helium atoms and determined by their 
concentration n(r). The contribution of the interaction 
between the electron and the gas to the free-energy 
density takes, following[l), the form 

2n1i'ao z 
F'nt = --n(r) IqJ(r) I, 

m 
(1) 

where ao is the length of the scattering of the electron 
by the helium atom in the pseudopotential approximation 
(ao '" 0.62A); rp(r) is the wave function of the electron 
and m is its mass. Thus, if we neglect the interaction 
between the helium atoms and regard the gas as class
ical, then the free-energy denSity of the system in an 
external field with vector potential A(r) is 

l' , 
F=z;n l(ii+7A )qJl +F'n' + nTIn(nB) , (2) 

where B(T) is a known function of the temperature. 
By varying the free energy F '" J Fdr with respect 

V 
to n(r) and rp(r) at a constant volume V of the system, 
under the condition 

J IqJ(r) I'dr = 1, 
v 

we obtain as V ~ 00 (N Iv '" no) 

n (r) = noe-OIT, (3) 

ljJ(r) =2n1i'aolqJ(rll'/m, (4) 

F= J [;ml (P++A) qJ I' +noT(1-e-<lT ) ]dr+noTVln(noB). (5) 
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The second term in (5) is the free energy of an ideal 
gas. 

The normalized extremal cp of the functional (5) 
satisfies the equation 

f (A e )' 2nli'a. 
--I.., p+-A <p+--n(r)<p='E<p. 
2m e m 

(6) 

2. Let us investigate the possibility of electron local
ization in the absence of a magnetic field. This problem 
was considered earlier by two methods [1,2] . We write 
down the dependence of the free energy (5) on the re
ciprocal radius of the local state k; for simplicity, we 
choose in this state an electron wave function in the 
form cp(r) = 1T-l/2k3/2e-kr. The change of the free energy 
Ii Fo(k), due to the electron localization 

6Fo(k) =F(k) -n.TVln (noB) -2nli'a.n,/m, (7) 

and expressed in the dimensionless variables 
k n 6F mT 

x-- n,=- 6F=-; k'= (8) - ko ' n· , 80 0 21i2ao ' 

turns out to be 

/i'k.' 
8.=~, 

f .' 
6F.(x) = x' + n, [3" ~ s'e-' exp(- x'e-')ds - 2 J. 

For Ii Fo there are the asymptotic formulas 

{ X'-'/,nx' x<1 
6F.(x) = x' + n,{'/'~-'[In3(x'Y') + ¢' ('/.) In (x'Y') - ~n (f)]- 2}, x:> f 

(9) 

where ljJ(x) is the Euler function and yo = 1.78 is the 
Euler constant. A satisfactory joining of the asymptotic 
forms (9) occurs at K ~ 1.8. 

Plots of Ii Fo(K) obtained with the aid of these asymp
totic formulas for different n are shown in the figure 
(curves 1-V). The bound electronic states correspond
ing to the negative minimum of Ii Fo(K) appear here 
starting with Ii ~ Ii ~ 7. In dimensional units, at 
T ~ 4°K, we have ncr ~ 2 x 1021 cm-3 and k-1 ~ 1.6 
X 10-7 cm. These cifiical parameters satisFf the in
equality 

'Y "" '" (0) / T :> 1, (10) 

i.e., according to (3), n(r) « no in the region of local
ization of the electron; this can serve as the justifica
tion of the empty- sphere model. 

3. In the presence of a strong magnetic field direc
ted along the z axis, the infinite motion of the electron 
is preserved only along z. But in one-dimensional 
problems, any interaction that plays the role of a poten
tial well for the electron should lead to the onset of 
bound electronic states (in three-dimensional problems, 
this well should have a finite depth). It is precisely for 
this reason that the interaction (1), which stimulates the 
deformation of the gas density in the vicinity of the elec
tron (the deformed gas density plays the role of an ef
fective potential well for the electron), turns out to be 
sufficient to localize the electron motion also along the 
z axis when the magnetic field is turned on. The mech
anism of this localization, unlike that considered above, 
has no threshold with respect to the gas density, so that 
ions of magnetic origin exist also in the region n < ncr. 

To verify this, it is convenient to obtain first, as 
above, simple variational estimates. Choosing the trial 
function in the form 

k'i. (P') ( eli ) 'j, 
tp(r) = (2n),"p, exp - 4p,' e-kl'l, po = eH 

(p is the polar coordinate; Po is the characteristic 
magnetic length), determining the change of the free 
energy Ii FH(k) connected with the localization of the 
electron in the magnetic field, in analogy with (7), and 
calculating the asymptotic form of Ii FH(k) in the limit 
of small k, we get in the dimensionless units (8) 

fJFH(x) "" x' - fix/ 8(kop.)', x < 1. (11) 

Expression (11) for arbitrary n < ncr. has a negative 
minimum, which was to be proved. plots of (11) for 
n = 7 and 8 and H = 5 X 105 G are shown in the figure 
(curves m" and IV"). USing (11) and (8), we find that in 
this case y « 1 for n < ncr and H < 106 G. Thus, 
energywise favored self-consistent states generated by 
a strong magnetic field actually exist. Subsequently, 
such states will be called large-radius ions, since their 
characteristic dimensions can greatly exceed the radius 
of the ion in the absence of a field. 

Owing to the inequality y « 1, it becomes possible 
to obtain the cp(r) and n(r) corresponding to large- radius 
ions. To this end, we expand the exponential in (5) up to 
terms of order y2 inclusive, and obtain 

6FH = S[ 2~ /(P+-;A)<pj' - (2~'a. r;;<p']dr. (12) 

Expression (12) differs from the corresponding expres
sion obtained by one of the authors[3] only in the mean
ing of the constants that enter in it, and we therefore 
use the results obtained there. In the approximation of 
the lowest Landau band, which is valid if the magnetic 
field H is strong enough, the wave function of the ground 
state is 

<p(r)= (2n~'''p, exp(-fp')x(Z), 

and the free energy is given by 

p="£"', 
p. 

6FH = +S~[~ (dX )' _ (2nli'a. )'~x,] dz. 
_00 2m dz mp. 8nT 

We write the Euler-Lagrange equation for X(z): 

(13) 

(14) 

where E~ = Eo- J.LH. The solutions of (14) that decrease 
at infinity are given by 

z - Zo 
x(z)= ±(2r,)-'''ch-' --, 

r, 

where Zo is an arbitrary constant and r z and the energy 
Et of the local state are equal to 

r, = ~ 27T (~)' , 
n lin. ao 

Ii' 
E;=---. 

2mr/ 

The self-energy of the large-radius ion, which con
stitutes the pure gain in the system free energy due to 
the localization, is equal to (1/3) IEri I. We present the 
numerical values of the large- radius ion characteristics 
for no = 2 x 1021 cm-a, T = 4°K, and H = 5 X 105 G: 

r, "" 6 . 10-' cm, po"" 3 . fO-'cm, lEo' I "" 20°, 'Y "" 0,1 (15) 

4. In concluding this section, we make a few re
marks. In the construction of the localized phase it was 
assumed that the potential field produced for the elec
tron by the helium atoms can be described with the aid 
of the averaged gas denSity n(r). In the absence of a 
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Plot of I5Fo against K for different n. Curves I-V correspond, in 
increasing order, to n = 4, 6, 7, 8, and 10. The dashed curves are plots 
of I5FH against K at small K. Curves III" and IV" pertain to n = 7 and 8, 
respectively. 

magnetic field, at densities close to ncr' the radius of 
the local states turned out to be of the order of the 
average distance between the helium ions, so that the 
use of n(r) for the description of the electron-gas inter
action is not sufficiently well justified. The characteris
tic dimensions of large-radius ions at n ~ ncr and 
H < 106 G noticeably exceed niil13 , and this justifies the 
average-density approximation and ensured stability of 
these states with respect to denSity fluctuations. 

It should also be noted that the choice of cp(r) in the 
form (13) is a good approximation if the following in
equality holds: 

a';;;;; (r, / Po)':> i. (16) 

Allowance for the next Landau bands increases the self
energy of the ion[5]. 

Some additional comments are also in order for the 
initial expressions (2) and (5) for the free energy of the 
system. We have left out from these expressions the 
terms connected with the electron entropy Sel (per 
electron). To obtain an expression for the electron en
tropy in the general case it is necessary to know the 
electron spectrum for an arbitrary density distribution 
n(r). Such a problem can hardly be solved. However, if 
the localized states of the electron are separated from 
the continuous spectrum by a sufficiently large gap, (in 
comparison with the temperature), then the estimate of 
the contribution of the electron entropy to the total free 
energy of the system becomes simpler. Such a situation 
has already arisen in its time in a discussion of differ
ent localized states of electrons interacting with a med
ium (see, for example,[1,6]). It turned out then that the 
electron entropy does not influence the structure of the 
localized state, i.e., does not change the form of (6), if 
the depth IE:I of the local level greatly exceeds T. In 
our case, according to (15), IEtl ~ 200 K and T RJ 4°K, 
i.e., the inequality IEtl »T is satiSfied, albeit not very 
well. This inequality can be improved either by increas
ing the magnetic field, which is experimentally very 
difficult, or by lowering the temperature, which is pos
sible by USing, for example, He3 instead of He4 • As to 
the curve shown in the figure, allowance for Sel in the 
spirit Of[l,S], leads to an additional deepening of the 
minimum by an amount on the order of T. 

2. LONGITUDINAL CONDUCTIVITY OF LARGE
RADIUS IONS 

1. Since the mean free path of the helium atoms with 

respect to the interatomic collisions is of the order of 
10 A at no R< 1021 cm-3 [1] , which is much less than the 
characteristic dimensions of the large- radius ions, we 
can use for their description the hydrodynamic approxi
mation. To calculate the mobility we find first the 
velocity field for uniform motion of the ion. The ex
ternal electron field, and consequently the ion velocity 
vo, will be assumed to be small enough to ensure stabil
ity of the ion and an ohmic character of the current
voltage characteristic; the last two apparently are 
violated even in electric fields that are not too strong. 

We consider the system of equations 
i)n 
-+divnv=O 
i)t ' 

Mn [:: +(vV)v]= - TVn- nV1jJ+t]('/,V divv-rotrotv), (17) 

where M is the mass of the helium atom, nand 1j! are 
the concentration of the helium atoms and the wave 
function of the electron in the moving ion (see (4)). We 
seek a solution of (17) corresponding to steady-state 
motion of the ion with velocity Vo along the magnetic 
field; then v, n, and 1j! are functions of (x, y, z - vot), 
and their expansions in powers of Vo are given by 

n = n(') + von (I) + ... , v = vov(O) + ... , 

1jJ=1jJ(O)+v,1jJU)+ ... 

In the zeroth order in vo, as expected, we obtain 
from (17) 

n(')(r) = no exp(-1jJ(')(r) / T), 

which agrees with (3). In first order, which We shall 
need for the subsequent calculations, 

1 o1jJ(') VIjJ(O) 
divv(" = ____ +v(O) __ 

T oz T ' 
(18) 

. 1jJ(0) 1jJ(\} t] 14 
Vn(\} + n(l) V - + n(O'V - = - - V div VIOl - rot rot v(O») 

T T T 3 . 

We use furthermore the fact that y « 1. Since it 
follows from (18) that v(O), nO), and 1j!(l)/T are of first 
order in y, then we can rewrite (18) in first order in y 
as follows: 

• 0) 1 oljJ(O) 
dlVV( =---

T oz ' 
t] (4 t] 01jJ(0) 1jJ(t) 

-l'otrotv(')=-V ----+n(\}+no-) 
T 3 T' oz T . 

(19) 

It is seen from (19) that in this approximation there 
exists vortex-free solutions of the problem, which are 
described by the system (the superscript (0) of v(O) and 
1j! (0) will henceforth be omitted) 

. 1 ~ 2 dlVV=--- rotv=O ( 0) 
T oz' 

with the condition that v decrease at infinity. The solu
tion (20) is usually expressed with the aid of potentials, 
but their second derivatives, which enter into the ex
pression for the mobility, are quite cumbersome and 
difficult to investigate. We therefore use another repre
sentation for v, which takes into account explicitly the 
actual symmetry of the problem. We seek v in the form 
(Jo(x) and J1(x) are Bessel functions) 

. . 
V,= jc,(u,z)/l(pu)du, V,= jc,(u,z)Jo(pU)du. (21) 

Substitution of (21) in (20) leads to differential equations 
for cp and cz: 
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!J'cp , 2yp, 'u' th s (P' 'u' ) 
!Jz' -ucP=--r-,- ch's exp --2- ""gp(u,z), 

!J'c, , 2'1' . 2 8h' s - 1 (Po 'u' ) 
--uc,=--u exp --- ""g (u z) 
!Jz' a' ch's 2' , , 

(22) 

~ == z/rz. Solutions of (22), which ensure a decrease of 
v at infinity, take the form (i = p, z) 

1. I 

c,(u, z) = - ~[eu, ~ e-u'g,(u, s)ds + e-U ' I:u'g,(U, s)ds ]. 

i.e., finally we have (j) = p/Po) 

vp(p, s)=~ j l,(pc)o'exp ( - ;') do, 
2 0 

(23) 

vp(p, 6) = a; j J, (pa)a' exp (- ;' )da j c-ao'[ch-'(s - s) - ch-'(s + s) lds, 
o 0 

-
ay· ( 0') v,(p,s)=- Slo(pa)a2 exp -2 dO' 
2 , 

xJ e-ao, [ ch-' (s - s) + ch-' (s + s) - 2 ch-' slds. 
o 

A qualitative investigation of (23), a determination of 
their asymptotic forms, and numerical calculations of v 
are simple tasks in view of the good convergence of the 
integrals in (23). 

2. We proceed to calculate the ion mobility. To this 
end, we write down the rate of change of the kinetic en
ergy of an ion moving in a compressible viscous liquid 
with a viscosity coefficient 17 (the coefficient of the sec
ond viscosity can be assumed equal to zero) 

iJEkin S- +S-[ 1 (iJ1\l)' (iJV')' ---=21t1]v,' pdp -- - + -
dt 3T!Jz iJz , -~ 

+ ( ~:p )' + 2 ( ~: )' + (~ )'] dz. 

Equating this quantity to the work eEvo performed on 
the ion by the electric field per unit time, we obtain for 
the ion mobility the expression 

IL' = ~ = - evo' / iJ~~in . (24) 

We now recognize that a »1 according to (16); at 
large a we have from (23) 

vp = 2~~(1-exp (-~p,)), 
ap ch's 2 

aVp =2...L ths [exp(-~p')-p-'(1-exp(-~p'))]' 
!Jp ap, ch's 2 2 

The expressions avp/az and avz/az are of higher order 
in a-1 , so that accurate to a-2 the mobility can be ex
pressed in the form of the Stokes formula 

where the effective radius of the sphere is 

R, "" 0.12 ('I' I a) 'r,. 

(25) 

For the values of y, a, and r z given in (15) and (16) 
we have Ro = 1.8 X 10-10 cm, and the mobility of the 
large- radius ions under conditions close to (15) turns 
out to be smaller by two or three orders of magnitude 
than the free-electron mobility fJ. e calculated with the 

aid of the gas-kinetic theory, and larger by two or three 
orders of magnitude than the mobility of a vacuum 
sphere of radius 15 A. Thus, in a strong magnetic field, 
the conditions for the observation of large-radius ions 
at densities immediately preceding the critical value 
may turn out to be favorable, all the more since inclu
sion of the terms (avp/az)2 and (avz /az)2 in expression 
(24) and of the next Landau bands in the expansion of 
cp(r), which is necessary for a R! 0 (1), leads to an addi
tional decrease of the mobility. 

Concluding the discussion of the mobility of the large
radius ions, we must present at least a qualitative esti
mate of the influence exerted on the effective mobility 
fJ.i of the finite lifetime of the localized electronic 
states. In order of magnitude we have for fJ.i: 

. ( N.) N. 
Il' "" 1-N . Il' +-N.Il •. . . (26) 

where fJ./JJ. ~ 1O-.2-10-a, and the ratio Ni/Ne , which 
determines the relative population of the localized 
states j is obtained from the approximate equality 
(see[8 ): 

N, _(M)'" ( 6FH) 
N,- --; exp -T ' 

where 15 FH is the total gain in the energy upon localiza
tion of the electron, 15 FH = - (1/3) lEt I, with lEt I taken 
from (15); M and m are the effective masses of the ion 
and of the electron. By way of estimate, we use for M 
the quantity Mo, which plays the role of the attached 
hydrodynamic mass of the large-radius ion: 

~o = S p v'~) dr, M~M., (27) 

P is the density of the helium and v(r) is the velocity 
field (23) induced by the ion motion. The value of Mo 
that follows from (27) under the conditions (15) turns 
out to be of the order of ~ mHet. As a result we have 
Ni/Ne ~ 102 and consequently both terms in (26) are of 
the same order of magnitude. In other words, the effec
tive mobility fJ. i coincides in order of magnitude with 
fJ.i from (25). 

The authors are sincerely grateful to I. M. Lifshitz 
for a discussion of the results. 
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