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The nonequilibrium state of a superconductor, which arises because of tunneling transitions, is inves
tigated. In this state both the total number of superconducting excitations and their energy distribution 
change (decrease). This should lead to an increase of Tc since the critical temperature depends on 
the number of excitations and on their distribution. A double tunnel structure is considered, consist
ing of a superconducting film with both of its surfaces covered by dielectric layers. Two semiconduc
tors, one p-type and one n-type are in contact with the dielectric layers. In the presence of tunneling, 
holes from under the superconducting gap enter the n -type semiconductor, and quasi particles from the 
region above the gap enter the p-type material. Their decrease is compensated by the production of 
excitation-hole pairs by phonons. In this connection the total concentration of the excitations de
creases. 

T HE critical superconducting temperature T c depends 
on both the number of excitations-that is, the number 
of quasiparticles above the gap and the number of holes 
below the gap-and on their distribution. Therefore, the 
establishment of a nonequilibrium distribution of the 
quasi particles can lead to an increase in the value of 
Tc. In the present article we investigate the nonequili
brium state that arises in a superconductor because of 
tunneling of the excitations into a semiconductor that 
forms a tunnel junction with the superconductor. 

The utilization of tunneling extraction of the excita
tions as a method for increasing the value of Tc was 
discussed in the article by Parmenter yl The tunneling 
from a superconducting film into another superconduc
tor with a higher tranSition temperature, which in this 
case must be higher than the antiCipated increase of 
Tc in the film,l) was investigated in Parmenter's work. 

The increase of Tc due to the effect of the non
equilibrium distribution created by an uhf field was in
vestigated in the articles by Eliashberg[2a1 and by 
Ivlev and EliashbergPl Then the authors of the pres
ent article considered f41 the question of increasing Tc 
due to the influence of the nonequilibrium distribution 
which arises as a consequence of the interband transi
tions associated with illumination of the superconduc
tor by light of a definite spectral composition. The 
method of establishing the nonequilibrium distribution 
by tunneling, which is investigated in the present 
article, may turn out to be more convenient from an 
experimental point of view. 

Let us consider the structure shown in the accom
panying figure. Both surfaces of the superconducting 
film of thickness Lz are covered by thin dielectric 
layers. Tunneling of holes and electrons takes place 
through these dielectric layers into the semiconductors 
1 and 2, which are n- and p-type, respectively. In 
order to be definite, we assume the semiconductors to 

l)The double tunnel structure (superconductor-insulator-semicon
ductor) which we consider in the present article is, in principle, free 
from such a limitation. 
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be nondegenerate; for the sake of Simplicity we neglect 
the distortion of the bands near their surfaces. The 
value of the voltages, which are applied to the dielec
tric layers, is assumed to be such that the top of the 
valence band in the n-type semiconductor is displaced 
from the lower edge of the gap by the amount e6V 1 - t:. 
(e is the electron charge), and the bottom of the con
duction band is displaced from the upper edge of the 
gap by the amount e6V2 - t:.. 

As a result of the tunneling, the quasiparticles 2 ) will 
enter from semiconductor 1 into the region below the 
superconducting gap. In other words, an extraction of 
holes from below the gap will occur, that is, the injec
tion of minority carriers into the n-type material. The 
concentration of quasipartic1es below the gap will 
thereby increase. Then, by absorbing a phonon during 
the characteristic time Tph of the phonon collisions, 
the quasiparticles will undergo transitions into the 
region above the gap, from where they will be extracted 
into semiconductor 2, that is, an injection of minority 
carriers into the p-type semiconductor will occur. 
Here one can consider two limiting cases. 

The first of these limiting cases corresponds to the 
regime of strong extraction, when the quasiparticle 
concentration above the gap and the hole concentration 
below the gap are appreciably smaller tha,n the equili
brium concentration associated with a given tempera
ture T. The virtue of this regime lies in the fact that 
the distribution of the quasiparticles and hence also the 
magnitude of the superconducting gap are here almost 
the same as in equilibrium at T = O. The defect lies in 
the very large value of the tunneling current which is 
required in order to achieve strong extraction. In par
ticular, this means that the transverse dimensions of 
the tunnel contact must be small, in order that the 

2)In the region below the gap the distribution functions of the 
quasiparticles, Fp' and of the holes, F :oles, in the superconductor are 
related by the equation F~oles == I-Fp; the energies of the quasiparti
des and of the holes are equal in magnitude and opposite in sign. 
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FIG, I. The double tunnel structure consisting of a semiconductor
dielectric-superconductor sandwich. Here Iln and IIp denote the chemi
cal potentials in the n- and p-type semiconductors, and eV\ and eV2 

denote the potential differences which are applied between the semi
conductors I and 2, respectively, and the superconductor s. 

magnetic field arising from the tunneling current 
not destroy the superconductivity. 

In fact, the number of quasiparticles above the gap 
in the superconducting film, which must be extracted 
during the time interval Tph, is equal to noS LzkT/ /J. in 
order of magnitude, where no is the total electron con
centration in the superconductor, S is the area of the 
film, and /J. is the chemical potential of the supercon
ductor. It follows from here that the tunneling current 
density is given by 

(1) 

We obtain j ~ 3 X 104 AI cm 2 for no = 1022 cm-\ Lz = 3 
X 10-5 cm, Tph = 10-10 sec, and kT/ /J. = 10-4. For a 
superconducting semiconductor film (such as SrTi03 ) 

with no = 1019 cm-3 , kT//J. = 10-2, Lz = 3 X 10-5 cm, and 
Tph = 10- 10 sec, we obtain a value for the tunneling cur
rent which is an order of magnitude smaller. 

In the opposite case, namely, the regime of weak 
extraction, the distribution of the quasi particles and 
holes differs very little from the equilibrium distribu
tion. The qualitative picture which arises in this con
nection turns out to be different and resembles the one 
considered by the authors in[4b]. Briefly, the situation 
here reduces to the following. The phase transition 
into the superconducting state is a transition of the 
second kind. In this sense it is analogous, for example, 
to the transition in magnetically ordered systems. 
Meanwhile it is known that if a ferromagnetic sub
stance is placed in an external magnetic field, the 
phase transition vanishes, and the ordering parameter 
(the magnetization) remains different from zero at all 
temperatures. 

It is natural to pose the question whether anything 
like such an external field exists in the case of super
conductors. It is found that a similar "quasifield" may 
exist in superconductors under nonequilibrium external 
conditions. Namely, let us imagine that the nonequili
brium distribution function of the quasiparticles under
goes a finite jump associated with a transition through 
the superconducting gap. In this connection let the 
magnitude of the discontinuity be determined only by 
the tunneling conditions and the magnitude itself does 
not depend on the magnitude of the gap. Then, as we 
shall see below, the width of the gap does not vanish as 

long as it turns out to be possible to maintain this dis
continuity in the distribution function. 

In the case of weak extraction which is considered 
below, in addition to a possible discontinuity of the dis
tribution function, its change near the gap also occurs. 
In different cases different situations finally turn out 
to be possible: both the disappearance of the transition 
due to the discontinuity in the distribution function, and 
an increase of Tc because of its rearrangement. 

Which factors will prevent the change in the distri
bution function which we need? In the first place, there 
are fluctuations of the electrostatic potential in a semi
conductor, which are related to the random distribu
tion of impurities inside and on the surface of the semi
conductor. In order that the energy spread of the tun
neling excitations should not be too large, these fluc
tuations must not too strongly smear the bottom of the 
conduction band and the top of the valence band. 
Another factor is the uncertainty in the energies of the 
states of the eXCitations, which is due to the scattering 
of the electrons by phonons. One can talk about a 
finite jump or about a change of the distribution func
tion in general only by considering energy intervals 
which exceed this uncertainty. When the width of the 
gap is smaller than this uncertainty, our treatment 
becomes inapplicable. 

Let us proceed to a quantitative solution of the 
problem. Let us choose the coefficients up and vp in 
the Bogolyubov transformation in the following way: 

,_ 1 [1+ Is.1 ] ,_ 1 [1 Is.l] (2) 
u. -2 (s.'+ !I.')'" ,v. -2 - (~.'+ !I.')'/o . 

Here ~p = (p2/2m) - /J., P is the quasi momentum of the 
electrons, and m is their effective mass. Then the 
problem under consideration will be symmetric with 
respect to the extraction of excitations from the region 
above the gap and the extraction of holes from below 
the gap; in this case iJ. coincides with the Fermi level 
of the equilibrium metal. Such a choice of the quantities 
up and vp differs from the usual choice for ~p < 0; 
however, it is somewhat more convenient for our prob
lem. We then have 

u.v. ~!I./ n., 
s. ~ ± -Vs.' + ,!l.', 

(3 ) 

(4) 

where the sign in front of the square root agrees with 
the sign of the quantity ~p' For ~p < 0 we shall as
sume up> 0 and vp < O. ~or ~p > 0 we regard both of 
these quantities as positive. For I ~p I » ~ one finds 
that up - 1, vp - 0, and the quasiparticle creation 
and annihilation operators go over, respectively, into 
the operators for the creation and annihilation of non
interacting electrons. The quantity ?;p represents the 
energy of the quasiparticles. In the representation we 
have chosen, the equation for the gap in the BCS 
theory[5] has the form 

hWD 

1 =gN(O) \ d~ F(-~)-F('~,) 
o " (S2 + <1')" ' 

(5) 

where g is the effective coupling constant of the elec
tron-electron attraction, N( 0) is the density of states 
near the Fermi surface, and WD is the limiting phonon 
frequency. Thus, it is necessary to find the distribution 
function of the excitations. 



TUNNELING OF EXCITATIONS FROM A SUPERCONDUCTOR 959 

The operator describing electron-phonon collisions 
~n a superconductor has the form (see the article by 
Eliashberg[2b1) 

[ BF. ] 2n ~ M con h '-" la.I'{[F._.(1- F,)N. - F,(1- F,_.) (N. + 1) 1 
• 

x(u,_.u, - v,_.v.) 'b (~._. + hro. - ~,) +[F'H (1- F,) (N. + 1) 

- F.( 1 - F.H)N.l (u,+Ou. - v.Hv,) 'b (~'H -hro. - ~.)} 
(6 ) 

Here Nq = [exp (nwq/kT) - 1]-1 and aq is a quantity 
which is proportional to the matrix element of the 
electron-phonon interaction. For acoustic phonons one 
has 

I a.I' = A'q! 21'pw, (7) 
where A is the deformation potential constant, 7" is the 
volume, p is the density of the crystal, and w is the 
speed of sound. We consider temperatures such that 
the optical phonons (if such modes exist) are not ex
cited. 

We shall not explicitly take into account the elastic 
collisions of excitations with impurity centers. How
ever, we shall assume that these collisions are fre
quent enough so that the distribution function Fp will 
only depend on the excitation energy !;p. 

Let us begin with an investigation of the simpler 
complete extraction. In this case, in the zero-order 
approximation F( ~) = 0 for ~ > 0 and F( ~) = 1 for 
~ < O. Essentially the only quantity which is relevant 
to the calculation is the characteristic time Tph for 
the transitions of the excitations through the gap. Let 
us analyze the conservation laws associated with such 
transitions. We have 

~p + hro,._, = ~p" 

Let us substitute the value of the function !;p here: 

(1;.' +~') ',. + (1;,,' + ~') ',. = 2WPF( 1- x)"'; 

(8) 

(9) 

x denotes the cosine of the angle between p and p'; in 
calculating the right-hand side of Eq. (9) we assumed 
that p R! p' ~ PF:; ';2mp-. From Eq. (9) we have 

x = 1- [(1;.' + ~') 'f, + (£ • .' + ~') 'I,],! 4w'p,.'. 

First of all let us remark that it is impossible to 
satisfy relation (9) for 

[{1;.' + li') 'I. + (1;,.' + ~')'''J' ;;;. 4w'p/ 

that is, the Single-phonon processes are incapable of 
transfering the excitation through the gap. If D.. > wPF, 
then single-phonon processes 1/ Tph = 0 for any initial 
state. Electron-phonon collisions do not occur for 

[q;.' + ~')'. + {6 • .' + ~')'f,]' < 4w'p.' 

In this connection, if 
wPF '" kT, (10) 

then the energy transferred in a collision is equal to 
wPF in order of magnitude. The scattering, which is 
accompanied by the transfer of the excitations through 
the gap, occurs at large angles. However, if 

wp, > kT, (11) 

then phonons having an energy of the order of kT (pho
nons of larger energies are not excited) play the funda
mental role in the collision processes). The scattering 
occurs at small angles of the order of kT/wPF. 

By using expreSSion (6) we obtain the following ex
pression for l/Tph, the probability for the transition of 
excitations from the state with quasi momentum p be
low the gap into the region above the gap: 

_1_ = n ~ lu.,_.I'N.,_. 15 «6." + ~') 'I, + (1;.' + ~2) 'I. - hw.'_.) 
Tph L...J . . 

X[1- 1;.G., - ~2 ] 
(I;." + ~2)",(!;.,2 + ~')'f, . 

(12) 

It is convenient to express the answer in terms of the 
quantity la, which is the mean free path of the conduc
tion electrons in a normal conductor for wPF « kT. 
For this purpose we utilize the relation 

n h'w 
la,I' = 2 7"kT:'I, 

We obtain the following result: 
2mplo'-.!! 

1 1 J /l'de' (8+8')' (13) 
-;.M = 8mpFw'kTl, • (e" - ~') ',. e(H,'!I" - 1 

[ 
(E" - ~ ')". (e' - 1'1') 'I. + 1\' ] 

X 1 - --'-----.:--.:.-8-8-' -'------ , 

where € = 1 !; I. It is clear from this formula that 
1/rph ~ vF /la in order of magnitude for D.. « wPF 
« kT. However, if WPF » kT and t:.. « kT, then for 
to < 2wPF we have 

(2.wp _£)/kT 

u'(e) (kT)' J (x+e!kT)' 
, dx e.x+e/kT _ 1 ' 8mpF w 1, 

and for D.. » kT the value of 1/ Tph is exponentially 
small for all values of €. 

(13a) 

Let us find the distribution function F( -) (€) of the 
excitations under the gap in the energy range € «1J 
(where 1J is the characteristic energy transfer in col
lisions of electrons with phonons). In writing down the 
kinetic equation in this region one can neglect all 
transitions (both the absorption and the emission of a 
phonon) occurring between states below the energy 
band, since their probabilities are strongly suppressed 
because of the Pauli exclusion principle. Then the 
kinetic equation takes the following simple form: 

, FH (8) 1-FH (8) (14) ---+ =0 
't.h(e) t-(e) , 

where T _ (€) is the characteristic time governing the 
intenSity of the tunneling into the region under the gap 
as a function of €. Hence 

(15a) 

or for T_« Tph we have F(-)(€) = 1 - (L/Tph). In this 
case the function is slightly different from unity. This 
difference becomes smaller as the value of € increases, 
when Tph decreases. Expression (15a) is unsuitable for 
€ :: 1J, since then it is no longer possible to neglect the 
transitions between the states under the gap. However, 
in this region it is still possible to Simply neglect the 
difference of F(-)( €) from unity. 

In similar fashion we obtain the following expression 
for the distribution function of the excitations above the 
gap for € < wPF: 

F(+)(e) = (1+'t • .' /'t+)-t",,'t+!'tp.', (15b) 

in the case T + « Tph, where T. (€) characterizes the 
rate of extraction of the quasi particles from the region 
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above the gap. We have T.( E) = 7-(E) == TS(E) in our 
approximation of symmetric extraction. If we neglect 
the difference of the function F( -) (E) from unity in 
evaluating the time Tph, we find Tph = Tph. We shall 
use this equality in what follows. 

Let us go on to the calculation of the function T s ( E) 
which determines the number of quasiparticles with 
energy passing from the region above the gap into 
semiconductor 2 per unit time. The current of quasi
particles with a given energy flowing from the super
conductor into the semiconductor is given by 

L~~.E v.Dfi(e - ~p)up'F(~p), ~ "" .E 6(e - ~p). (16) 
p 

Here ?;p = (~p + fl2)1/2 denotes the energy of the quasi
particles, D is the transmission coefficient of the 
barrier between the metal and the semiconductor (for 
the case of the normal metal, Lz is the thickness of 
the superconducting film, and the z axis is perpendicu
lar to the film boundary. The summation is taken over 
all values I pI> PF corresponding to a positive com
ponent Vz = a?;/apz of the velocity on the z axis. We 
assume that the conduction band of the semiconductor 
is empty. 

The quantity (16) is none other than F(E)!rS(E). The 
total current J can be expressed in the following way: 

~ 1 
1 = 2e S de-~ v,m,(e - ~p)up'F(~p) (17) L,i-J 

o p 

(the factor of 2 arises from the summation over the 
spins). Integrating the numerator of (16) with respect 
to Pz, we find 

1 u'(s) ~ 
'I'.(e)= 2rr~ ..:.., D(e,pol)' (18) 

p 
ol 

Later it will be necessary for us to know the ex
plicit form of the function D which generally depends 
on p~ (the z-component of the electron's quasimomen
tum in the semiconductor), Pz, and Pl' We shall 
neglect the dependence of D on the last two factors 
since the quasi momentum of the excitations in a metal 
is large, and the characteristic (for our problem) in
terval of its variation is small. However, the depend
ence on p~ should be taken into consideration. We con
sider two limiting cases. 

a) The case of an abrupt barrier. For characteristic 
values of Pz, the characteristic distance over which 
the height of the potential barrier changes substantially, 
is much smaller than Iii pz. The coefficient D is pro
portional to p~[61 and by introducing the dimensionless 
coefficient Da one can write down 

D =D,p,' / PF. (19) 

b) The case of a smooth (flat) barrier when the op
posite inequality holds. The quasiclassical approxima
tion can be used to calculate the coefficient D. The co
efficient D is small; to the first approximation it does 
not depend on p~ and is equal to a certain constant 
value Db. 

Let us carry out the integration in Eq. (18), taking 
the following relation between the energies of the ex
citations in the metal and in the semiconductor into 
account: 

ep• = ep - e6V, Pol' = Pol. 

where eOV is the difference between the energy level 
at the bottom of the conduction band and the middle of 
the superconducting gap. For case (a) we obtain the 
following result: 

1 1 D. (mo)'I' (e-e6V),/, 2 (e'-L\')'h 
FO -- = ~- - u (e)-'----'-

'1'. (e) 312 L, m Ilm'/' s' (20a.) 

for e>eIW; 

_(1_)_= 0 for e < e6V. 
'1'. e 

In case (b) we find 
1 1 (8'_ Ll')'/' mo 1 

--=-u'(e) Db---(e-e6V) 
'1'.(8) 28m L,p, 

(20b) 

under the previous condition E > eoV. Here mo de
notes the effective mass in the semiconductor. 

It is convenient to express the quantities in (20) in 
terms of an observable quantity, namely, the total 
current density J o passing through the tunneling con
tact under certain characteristic conditions. We choose 
as such conditions fl/kT « 1 and eoV/kT « 1. We 
then have 

l'2 eD m '1'(kT)'I, 
1 - • 0 F, (0) 
0- 3 2 to3 I~, 

rr "PF 
(21a) 

where 

F, (0) =} x'dx 
o eX + 1 

is the Fermi integral; hence 

10= 2:'Ii' eDbmO(kT)'F,(O). (21b) 

Let us introduce the characteristic time 

~=~~~ (22) 
'1', 3 enoL, k1 

Then in case (a) we have 

1 1 1 (8 - e6V)'/' (s' - Ll')'~ (23a) 
't'.(e) F,/,(O) 't',' -----,;r u'(e) • 

and in case (b) we have 
1 1 8-e6V 18'_ Ll')'" 

--=-- u'(e) . 
'1'.(8) F,tO) 't'J kT e 

(23b) 

It is clear from the form of these expressions that 
one can discuss a regime of strong extraction only if 
eoV < fl. Further, in order to be definite, let us con
sider strong extraction in case (a). By substituting 
(15a) and (15b) in Eq. (5) with Eqs. (13a) and (23a) 
taken into consideration, we obtain 

Llo 'I'J ~s ede (e) In-=2-F'dO) (kT)"" x -
Ll To' " (e' - Ll') ", kT 

(24) 

x[(e-eov),/'(e'-Ll')'h+ :: F';,(Oh(k~)e(kT)'I'r', 
where flo denotes the half-width of the gap in equili
brium at T = 0, and 

210p fAT 's y'dy (kI)' x(x)= --, '1'0-' = . (25) 
X e" - 1 8mpF w'l. 

Let us solve Eq. (24) by the method of successive 
approximations, using the smallness of the parameter 

y=~x(O)F';,(O) (~)'I'. 
'to Llo 

In the zero-order approximation fl = flo, and in the 
next approximation for y « 1 - (e('j vi fl 0) we find 
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~=~[1+ ylny ], 
o (1-e6V/~o)'/~ (26) 

Now let us consider the regime of weak extraction, 
In this case one can represent the distribution function 
as the sum of the eqUilibrium Fermi function F o( {; p) 
and a small nonequilibrium correction: 

F(~.)=Fo(~.)- kTiJFo rp(~.), (27) 
iJ~. 

Linearizing the collision operator (6) with respect to 
this correction term and integrating over the angle be
tween p and p', we obtain the following result for the 
region below the gap: 

iJF,<-) 1 1 • e'de' (e'-e)' 

[ --at] co; ~ (kT)' {J (e"- ~')'/' e"-")/OT -1 ' • 

_ S~ e'de' (e' - e)', (_), (_) 
(1$" _ ~') 'I, e(' ,')jAT -1 U _Fo(e )[ 1 - Fo (e) ]( rp (e) - rp (8) ] 

, , 

S.. e'de' (e+e')' } 
+ • ' (e" _ ~ ') 'I. e'H,"/OT -t + [t - F. (e) ][ t- F.(e') ][ rp(+) (e') - rp(-) (e) ] 

Here 

U",(e, e',~) =l+[(e'z-~')'I'(c-~')"'±~']/ee', (29) 

The collision operator for the region above the gap 
differs from expression (28) by the change qJ( -) ( €) 
~ cp(+)(€). 

In the case of the "symmetric extraction" of quasi
particles and holes (which is the case under considera
tion), the rate of quasiparticle tunneling from semicon
ductor 1 into the state with energy {; = -€ is given by 

[1-Fo(-e)]J.r.(e) =F.(e)h.(e), (30) 

and the rate of quasiparticle tunneling from the region 
above the gap into semiconductor 2 is given by 

F.(Il) /,\,.(e), 

In accordance with the adopted apprOximation, in the 
expressions for the tunneling rates we have replaced 
the quasiparticle distribution function by its equili
brium value. 

Furthermore, in our case 

q>(+) (e) = -<p(-) (8) - q:(e). (31) 

as one can easily verify. Setting the sum of expressions 
(28) and (30) equal to zero and using (31), we obtain the 
following integral equation concerning the function 
cp ( to:): 

1 {Sl e'de' U_(e' - e)'[<p(e')- <p(e)] (32) 
1:. (kT) , • (e" - ~')'I. (e(" .)/AT :"'1) (e-·'/lT + 1) 

SiI' e'de' U_(e' -e)'[<p(e')-<p(e)] 
.-. (e'·-~·)'.' (e(·'-·)IAT_t) (e-""r+l) 

Let us investigate the solution of this equation in the 
most interesting case ~ « kT, and in order to do so we 
apply a procedure similar to the one used in [3). Let us 
start with an analysis of the solution in the energy 
range to: « kT. As we shall verify below, values of to:' 

of the order of kT are important in the integrals over 
€'. Therefore, the first integral inside the curly brac
kets is small in comparison with the other two, and we 
shall discard it. In the other two integrals we neglect 
~ in comparison with to:' and to: in comparison with kT. 
In addition, to within the same approximation we re
place the lower limits of these two integrals by zero. 
Finally the functions cp ( €') appearing in the integrand 
mutually cancel each other, and the following expres
sion is obtained for the function qJ ( to:) in the region of 
small energies: 

( ) T. 1 
q> e - --(-)--,-( ) , 

't'. 8 U B 

where 1/T 1 = 7{;(3)/To and t;(x) is the Riemann zeta 
function. The expression in the denominator of (33) 
comes from the coherence factors of the type 

(33) 

(up..qup - Vp+qVp)2 which appear in the probabilities 
for electron-phonon collisions; it differs substantially 
from unity only for values of to: of the order of ~. 

The mutual cancellation of the contributions from 
the functions cp ( to:') inside the sign of the integral over 
10' is due to the following reason. As has already been 
noted, energy values €' of the order of kT are im
portant in the integral over to:'. The integral terms 
describe the arrival of the quasiparticles in a state 
with a small (in comparison with kT) energy 10 due to 
the nonequilibrium corrections to the distribution func
tion. But the regions with €' > 0 and €' < 0 are almost 
symmetrically distributed with respect to this state, 
and the functions cp (-) ( 10) and cp ( +) ( 10) are equal in mag
nitude and opposite in sign. Therefore, their total 
contribution vanishes to within the accuracy of our ap
proximation. 

Substituting (23) into (33), for .to: « kT we obtain the 
following results for cases a) and b), respectively: 

1 '1'. (e-eIlV)·I'(e.'-~')'I' 
<p(e)=---- --

F'I. (0) 1:; kT e 
(34a) 

1 1:, e-e6V (e'- ~')'I' (34b) 
<p(e)= ----. 

F,(O) T, kT e 

If t ~ kT one can neglect the small terms proportional 
to ~/ to: in the kinetic equation for the function qJ, that 
is, one can use the kinetic equation for the normal 
metal. In this connection the solution of the kinetic 
equation will have the following form (in order to be 
definite, we present the result for case b»: 

1 T. e (e) (35) 
<p(e)=- F,(O) -;;kf lJl kT ' 

where ljJ(x) is the solution of the following equation: 

S"dz' (x - x')'[x'lJl (x')-,x,p (x) ] S~. dz' (x - x')'[x:1Jl (x') - ,x,p(x) ] 

o 1 (e"-'-1) (e .' + 1) • (e" '-1)(e" + 1) 

_ "Sdz'(X+X')'[,x,p(x)+x'lJl(x')] 7W) 
o (e-"-' -1) (e" + 1) -2- x , (36) 

This equation does not contain any parameters and can 
only be solved numerically: However, for our purposes 
the exact form of the function ljJ( t/kT} does not playa 
special role. It is sufficient to know that the solution 
of Eq. (32) can be represented in the form 

<p (e) = __ ._8_~~ (e' - d') 'I. IJl (..!..) [ 1 + 0 (~)], (37) 
F,(O) '1'; kT 1$ kT kT 
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Here l/I( 0) = 1, and for energies € » kT the nonequili
brium correction cpkTaFo/ a€ to the distribution func
tion falls off exponentially. 

Substituting expression (37) into (27) and then into 
Eq. (5), we obtain the following equation for the quantity 
A: 

"" 1 \ de q> (e) 
"2 J (e' - Ll')'/. ch' (e/2kT) . 

" (38) 
Here €o is the larger of the two quantities A and eoV; 
we have extended the range of integration in the second 
integral to infinity in view of the rapid convergence of 
the integrand for € ~ kT «fiwD. By integrating we 
obtain 

In 1\,= 2I(~) +~K 
1\ kT 2' 

(39) 

where 
1\ - de 1 

I (kT ) = h";i _ Ll')'/' e,/AT + 1 ; 

K - J- de q>(e) 
- (e' - 1\')'1. ch'(e/2kT) • '. 

Since cp < 0, it follows that K < O. This means that at 
any temperature the nonequilibrium value of A ex
ceeds its equilibrium value. 

Now let us concentrate our attention on case b) 
since here somewhat simpler quantitative expressions 
are obtained, even though the qualitative picture is 
similar in both cases. For A « kT we have 

I(~)=~ln~kT +o((~)') 
kT 2 V 1\ kT' 

Then, by introducing the transition temperature under 
equilibrium conditions, 

kT,,=v/:;.,ln, Inv=C=0.577, 

we can represent Eq. (38) in the form 

In T •• =_~_1_.2:-S~ (~) . de (40) 
T 2 F.(O) 'tJ kT '" kT e ch' (e/2kT) . 

~ ,-. 

First let us consider the case eOV > A. Then the 
right-hand side of Eq. (40) does not depend on A, and 
this equation determines the transition temperature in 
the normal state, Tc , as a function of Tco. Calculating 
the right-hand side to lowest order in eoV /kT, we ob
tain 

In~=--. _1_~{A+e{)v In et'JV} (41) 
T, 2F, (0) 'tJ kT, kT, ' 

where A is a constant of the order of unity: 

A=Sdx~. (42) 
o ch' (x/2) 

If eoV < A, then €o = A, and the equation for A has the 
form 

Here 

-S (\jl(X»)' 
Inc= dxInx ch'(x/2) . 

o 

Equation (40), which gives relations (41) and (43) in 
the appropriate limiting cases, enables us to analyze 
qualitatively the dependence of A on T and e/iV and 

the dependence of Tc on eoV. For eOV ~ kT the 
tunnel effect has little influence on the nature of the 
temperature dependence of the gap. As the value of 
eoV decreases, the curves representing the tempera
ture dependence of A always move higher and intersect 
the axis of abscissas at temperatures Tc , which in
crease as e/iV decreases. The transition temperature 
TCl for eOV = 0 is determined by the expression 

T" - T,. A 't, (44) 
T" 2F,(0) ~. 

The phase transition vanishes for eOV < O. This is 
the case of the "quasifield" which was mentioned at 
the beginning of this article (also see article{4b] by the 
authors). In this case the width of the gap is damped 
out exponentially as the temperature increases. 

What is the fundamental difference between the 
cases e/iV > 0 and eOV < O? In the first case the 
tunneling transitions perturb the distribution function 
in such a way that even though its discontinuity on 
going through the gap is increased in comparison with 
the eqUilibrium value, it still tends to zero together 
with the width of the gap. At the same time, for eOV < 0 
the tunneling transitions create a discontinuity which 
does not depend on A, and the phase transition vanishes 
within the framework of the BCS theory. It is necessary 
however, to bear in mind that direct tunneling of the 
electrons from one semiconductor through the super
conductor to the other semiconductor can occur for 
eOV < O. 

The behavior of the phase transition at eOV = 0 is 
determined by the nature of the perturbation of the dis
tribution function of the excitations for small energies. 
In the case considered above, the probability of tunnel
ing transitions vanishes when € = O. This leads to the 
emergence of a finite tranSition temperature TC1. 

The vanishing of the probability for tunneling transi
tions at € = 0 is related to the following property. We 
have considered the tunneling transitions which occur 
with conservation of energy and conservation of the 
transverse component of the quasimomentum. On the 
other hand, this transverse component must be small 
since the electron's energy in the semiconductor is 
small (measured from the bottom of the conduction 
band), Le., the energy in that state where the tunneling 
transition originates. But this implies that the tunnel
ing can originate only from states of the superconductor 
occupying a small fraction of the total area of the 
Fermi surface. And as € - 0 the tunneling probability 
vanishes due to the smallness of the corresponding 
phase volume. However, if the tunneling transitions 
take place without conservation of the transverse com
ponent of the quasi momentum (this might happen in the 
presence of sufficiently strong scattering by impurities 
or if the surfaces of the film are sufficiently rough), 
then the tunneling probability does not vanish in the 
case of a sufficiently smooth barrier as € - O. In this 
case Tc - "" as eOV - O. 

In other respects the qualitative picture of the effect 
is not very sensitive to the specific form of the expres
sion for the tunneling probability. Quantitatively, how
ever, it is clear that it should be more favorable to 
consider the case when the tunneling transitions occur 
without conservation of the transverse component of 
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the quasimomentum, because in this case the tunneling 
probability may turn out to be substantially larger. 

The authors thank G. E. Pikus for a helpful discus
sion. 

Note added in proof. Through an error the authors 
have left out of Eq. (6) terms describing the production 
and annihilation of quasiparticle pairs from the con
densate. Allowance for these terms makes it necessary 
to replace the last factor in (12) by 

1 + I!.' /i(6.' + I!.') (6.,2 + 8'). 

and the last term of (13) by A + t..2/EE'. Expression (13a) 
should be divided, and expressions (33), (34a), (34b), 
(37), and (40) as well as the first term in the denomin
ator of (24) should be multiplied by 

u'(e) = '/,(1 + ie2 -I!.' / e). 

Formula (29) should take the form 

In addition, it is necessary to multiply by 2 the expression 
for y after formula (25) and the right-hand sides of (13a) 
and (32) by the formula for T'r/ after formula (25). 

As a result, the final expression (41) remains un-

changed. In (43) the coefficient of t../kT is 1/2 + 71/4 in 
place of unity, and in the expression for In C it is 
necessary to add the term (1 -In 2)/2. 
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