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Strong stationary saturation of an inhomogeneously broadened EPR line is discussed with allowance 
for spectral diffusion and the dipole-dipole reservoir. The complex susceptibility of the sample is 
calculated for conditions of rapid and limited spectral diffusion. 

l. In spin systems with inhomogeneous broadening, the 
cross-relaxation process of energy exchange between 
spins with different Larmor frequencies is described, 
under certain conditions, by an equation of the diffusion 
type in frequency space and is called spectral diffusion 
(SD)[lJ. We denote by Tl the spin-lattice relaxation 
time, and introduce the time T d = 6 *2/D of the spin­
excitation diffusion over the entire inhomogeneous line; 
D is the SD coefficient and 6 * is the inhomogeneous 
width. If Td ~ Tl then the SD is called limited (LSD), 
and if Td ::; Tl the SD is called fast (FSD). 

Under conditions of LSD, the inhomogeneous line is 
an aggregate of relatively weak interacting spin packets 
of width 6 [ 1 J and is des c ribed by the Ham iltonian 

... N n 

:16, =.E :16. + :16... :16. = Uln.E S.t, :J6 .. =:16. + :16CR , 
(1) 

n 1=1 

:16. = -+ .EA<;S.,,'s:.; + .EB,;Sn'+Sn;-, 
1I71'ij nij 

:16CR = .E B,;Sn/Sn-:;, 
".l1+n'ij 

where :16n , W ,and Nn are the Zeeman energy (it is as­
sumed, that R = 1), the resonant frequency, and the num­
ber of spins of the n-th packet, Sa. (a = x, y, z) is the m 
operator of the electron spin located in the i- th point of 
the lattice and belonging to the n-th packet, S~j = S~j 
± iS~j' J'Gss is the secular part of the dipole- dipole (dd) 

interaction (l:16ss ' ~ S~i] = 0), :16d is the energy of the dd 
, lq 

reservoir, ([:16d' :16nJ = 0), and :16c~ causes the SD. The 
coefficients Aij and Bij have a we 1-known form [2J . 

The theory of stationary saturation of the magnetic 
resonance in the case of LSD and with allowance for a 
single dd reservoir was developed by the authors 
in[3,4] , where it is shown that in LSD, in spite of the 
appreciable dd- reservoir temperature shift under 
saturation conditions (it can be observed, for example, 
by studying the dynamic polarization of the nuclei[3]), 
the dd reservoir does not play an important role in the 
calculation of the temperatures of the packets. Con,se­
quently, if LSD is realized, the picture of the saturation 
of the inhomogeneous line and of the SD turns out to be 
practically the same as without allowance for the heat­
ing of the dd reservoir, and such concepts as the coeffi­
cient D of spectral diffusion, the "SD length" 11k 
= (DT1)1/2[3], etc., retain their previous meaning also 
in the presence of the dd reservoir. 
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The situation is different with FSD. We have noted[4] 
that if'6 == (s + 1)1/2 6 ~ M (~ is the width of the hole 
burned in the absence of the SD and S is the saturation 
parameter), or else if 1/k ;G 6* (this condition corre­
sponds to FSD), then the inhomogeneous line should be­
have upon saturation like a homogeneous one of width 
6*. The same result was obtained by Rodak[5]. 

Equivalent conclusions can be arrived at by recog­
nizing that the FSD causes in final analysis a reduction 
in the number of the parameters characterizing the spin 
system with inhomogeneous broadening[6], and leads to 
the two- temperature model proposed by Clough and 
SCOU[7]. Indeed, under FSD conditions, after the lapse 
of a time T d we can get along without introducing spin 
packets and characterize the spin system by a Hamil­
tonian 

ij ij 

where Wo = yHo is the central frequency of the inhomo­
genoues line ll Ho is the constant magnetic field parallel 
to the z axis, W /y is the local field responsible for the 
inhomogeneous broadening: Do *2 = N- l 2;i w;, where N is 
the number of spins. Without loss of generality, it can 
be assumed that 2; iWi = O. This condition enables us to 
represent the spin system with Hamiltonian (2) as an 
aggregate of two subsystems, the Zeeman SUbsrstem 
woSz and the local-field reservoir with energi 

(3) 

The theoretical arguments favoring the possibility of 
describing inhomogeneous broadening in the case of 
FSD in terms of two temperatures agree with experi­
ments [8] , and we shall therefore use the two- tempera­
ture model when considering the FSD. 

The stationary saturation of an inhomogeneous line 
was investigated hitherto under the assumption that the 
probability W of the processes induced by an alternating 
field is much less than the probability l/T2 ~ Do of the 
transitions due to dd-interaction of identical spins, i.e., 

l)When there are several allowed lines coupled by effective cross 
relaxation, Wo is the center of gravity of the spectrum: Wo = N'I ~m 
Wm Nm, where N = ~m Nm, wm is the center of the m-th line, and Nm 
is the number of spins producing it. 

2) Unlike the dd reservoir in Rodak's paper [5], the local-field re­
servoir contains also terms corresponding to flip-flop spin transitions 
with different resonant frequencies. 
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W « 1/T2. In the present paper we consider also strong 
saturation of the inhomogeneous line, when W ~ 1/T2. 

2. We assume that two rotating magnetic fields are 
applied to the sample, one saturating with amplitude Hlp 
and frequency wp' and the other detecting with ampli-

tude Hld «Hl and with frequency wd; wd is varied, 
or, as customfrily stated, "one passes through the 
line," and the corresponding signal is measured. The 
Hamiltonian of the spin system is expressed in the form 

~==;~.+~.p(t) +~ •• (t), 

where ~sp,d(t) = %Wlp,d{S+ exp (- iwp,dt) 

+ S- exp(iwp,dt)}, wlp,d = yHlp,d' and ~s is given by 
formulas (1) or (2). ~sp and~sd are the interactions of 

the spin system with the alternating fields. We shall 
henceforth include d6'sp in the main Hamiltonian, and ~sd 

will be regarded as a small perturbation. 
We calculate the imaginary part of the complex sus­

ceptibility X" of the sample. The behavior of the spin 
system is described by a statistical operator p(t), which 
is a solution of the Liouville equation 

iDp(t)=[~ (t)l. (4) at ' p 

The power absorbed by the spin system from the source 
of the alternating field Hld, averaged over the period of 
the field Td = 27T/wd' is determined by 

Q. =~ 1 Sp {p (t)D(t)} dt, 
t. 0 

(5) 

where 

Since in our notation the operator of the total magnetic 
moment of the system is M = -yS. 

With the aid of the unitary operator U(t) = exp(iwpSzt) 
we change over to a coordinate system that rotates with 
frequency wp about the z axis. Taking into account the 
relation [U(t), ~s] = 0, Eq. (4) is transformed into 

a '(t) i-Tt-=[~' +~,(t),p·(t) I. 

where 

p·(t) = U(t)p(t)U-'(t), ~. =~. - wps, + W",S" 

~,(t) = 1/2w,,{S+exp[ -i(w. - wp)tl + 
+S-exp[i(wo- wp)t]}. 

The absorbed power (5) can be written in form 
fa 

Q.=~ SSP {p·(t)V·(t)} dt, 
to 0 

D·(t) = _1/2iwow,o{S+exp[ -i(wo - wp)tl­
-S-exp[i(wo - wp)t]}. 

(6) 

(7) 

We assume, as is customarily done, that the detect­
ing field is turned on adiabatically at the instant t = - 00, 

and assume that at this instant the spin system in the 
rotating coordinate system (RCS) is in a stationary state 
with a statistical operator p; == p*(-oo). Obviously, p; 
satisfies the condition [~*, p*] = O. Solving Eq. (6) in 
an approximation linear in~~(t) and substituting the re­
sult in (7), we obtain after making simple transforma­
tions and USing the relation Qd = 2wdH~dX"[2J 

1 ~ 

x" "'" x" (wo, wp) = 7,,2 Re Ssp ([S+, p:IS-(T)} exp[i(wd - Ulp)TldT, 
o 

S-(T) = exp(i~·T)S-exp(-~·T). 
(8) 

We present below calculations of X" for different limit­
ing cases. 

Let FSD be realized, Le., let Td :s Tl . Then, depend­
ing on the amplitude of the saturating field, after the 
lapse of a time Td we can characterize the spin system 
by either one or two spin temperatures. 

A. Assume that the probability W of spin reorienta­
tion by the saturating field satisfies the inequality 
W < l/Td. PhYSically this condition means that the SD 
has time to envelope the entire inhomogeneous line be­
fore the influence of the saturating field comes into 
play. It follows therefore that in the course of absorp­
tion of the HF energy, the spin system is in a quasi­
equilibrium state characterized by a Zeeman tempera­
ture {3~l and by a local- field reservoir temperature i3n' 
This situation is realized at a sufficiently low amplitude 
of the saturating alternating field, and corresponds ex­
actly to the Provotorov case in homogeneous broaden­
ing[ 9J. 

Using the method of constructing the nonequilibrium 
statistical operator[lOJ and conSidering strong satura­
tion 2WT zL » 1, we can obtain the following values of 
the stationary reciprocal temperatures in the RCS: 

(9) 

where T zL and T dL are the spin-lattice relaxation 
times of the Zeeman subsystem and of the dd reservoir. 
Formula (9) agrees with the result Of[5,llJ. 

Equation (9) leads to an interesting feature. Even in 
this case when t:,. *2 »W~s (wss itself is much larger 
than t:,. in strongly diluted samples[l2J ) it may turn out 
that t:,. *2 « w~s (owing to the fast relaxation of the dd 
reservoir through the lattice), and the inhomogeneous 
broadening will not play any role in the saturation. 

The local-equilibrium part of the non-equilibrium 
statistical operator, which is of importance for the ab­
sorption, is given by 

P.· = {1 - ~,~, - ~D~D} / Sp 1, ~. = Cw, - (Op)S.. (10) 

Substituting (9) and (10) in (8) and assuming that 
wolwo- wpl »t:,.*2 + (l'W~s' we obtain 

" n (Wd - (Op) «(00 - (Op) 
x =-2 XOWo!«(Od-(OP) ( _ )'+ A"+ ' ' 

(Up Wo Ll. arou 
(11) 

where Xo = %Ny2S(S + l)i3L is the static susceptibility 
of the spin system. Thus, the entire difference from the 
homogeneous broadening reduces to the appearance of 
/:), *2 and replacement of the homogeneous line shape 
cp(w) by the correlator f(w). When M2 »/:),*2 (M2 is the 
second moment due to the interaction of ~ss from (2», 
f(w) coincides with cp(w), and in the opposite case it 
coincides with the inhomogeneous shape of the line g(w). 
It follows from (11) that, just as in homogeneous broad-· 
ening, we have X" < 0, i.e., stimulated emission takes 
place at wd > wp >wo or wd < wp < Woo 

Let us assume that l/Td < W < 1/T2' The saturating 
field can still be regarded as a small perturbation, but 
unlike the preceding case, it has time to act on the 
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resonant packet before the SD encompasses the entire 
inhomogeneous line, and makes the temperature of this 
packet equal to the temperature of the single dd reser­
voir. In such a situation, the result of the SD reduces to 
the fact that the entire spin system as a whole is char­
acterized in the RCS after a time Td' by a single spin 
temperature f3~l(t) and by a statistical operator 

p:(t) ={1-Mt)(~'+~D)}/Sp1. 

The dependence of f3s on the time is determined by the 
spin-lattice interaction. It is easy to show that the sta­
tionary value of f3 is determined by formula (9), so that 
we obtain for X" {be result (11), just as in Rodak's 
paper[5J 

The reason for this circumstance is that the form of 
the stationary absorption does not depend on the manner 
in which the single spin temperature is established in 
the spin system. Nonetheless, there is a difference be­
tween the indicated two possibilities. When W < I/Td it 
is possible to describe the process of equalization of 
the temperatures f3~1 and f3i), whereas at I/Td < W 
< I/T2 these temperatures are assumed to be different 
from the very beginning. In the latter case it is possible 
to have hole burning in nons tationary saturation of the 
inhomogeneous line after a time t < Td, and the hole 
can gradually vanish within a time T d' 

B. We assume that I/T2 ~ W 'S ~ *. In this case the 
situation is made complicated by the fact that the satur­
ating field changes the SD coefficient. If the FSD is 
nevertheless realized, we obtain the following picture. 
The alternating field must be included in the main 
Hamiltonian 

d6' =~: +~D' d6: =(w.- wp)s. + w .. S •. 

The spin system in the RCS after a time T d can be 
characterized as before by a single temperature f3~l(t) 
and by a statistical operator 

p'(t) =(1-~.(t)d6·}/sp1. 

Let us find the stationary value of the spin tempera­
ture f301. The mean values of 

ie: (t) = sp p·(t)d6:, ~D(t) = sp p' (t)d6 D 

are equal to 

d6:(t) =-~.(t)[(W._W.)2+ w • .'](S;), 

~D(t) = -~.(t) (~'2 + {il .. ') (S.'), 
(12) 

where ( ... ) == Sp( ... )/Sp 1. It is known[13,14J that the 
relaxation equations for the mean values are 

a8.(t) 8,(t)-S. as.(t) 8.(t)-S.o 8.(t) 
--=-

at at T " .L 
(13) 

_a_d6_D_(_t) = _ ~D(t)-d6DO 

at TDL 

where SO=-{3LWO(S~),jiiD=-{3L(~*2 +w~s)(S~) are 
the equilibrium values of the corresponding quantities, 
S = - {3LW (S2 ) , and T' Land Tx" L are the relaxation 

Xc 1p Z x 
times due to the secular and nonsecular parts of the 
spin-lattice interaction in the RCS[ 14J . 

According to (12) 

_a~'(t) = ad6:(t) + ad6D(t) = 

at at· at 

= -[ (w. - wp )' + w.; + ~"+W .. 2]~<S,2), 
at 

and with the aid of (13) we obtain 

where 

a~. ~.(t)-~o 

at Tip 

(w. - W p ) 2 + t. .. + w,,' + W • .' 

111 
-=--,+--". 
TXL TXL TXL 

(14) 

As a result we get for x" the expression (it is assumed 
that wolwo- wpl »~*2 + (JIW~s +W~pTzL/TxL) 

" n •. (Wd-W.) (00.-00.) (15) 
x=-2b~~-~ . 

(00. - {il.) 2 + t.., + a{il .. ' + w • .'T'LIT'L 

Here f*(w) is the Fourier transform of the correlator 

I'(t)= s+1s [.S+exp(id6·t)S-exp(-~·t», < -). 
whose second moment is M: = M2 + ~ *2 + w~p' 

Formula (15) differs from (11) in the presence of the 
form W~pTZL/TxL in the denominator, and in the fact 
that the absorption line f*(w) has a different width in 
comparison with f(w). 

C. Let now w 1 »~ *. In this limit, it is convenient 
to apply to the Liguville equation (6) with Hamiltonian 

d6' = (00. - w.)S. + w •• S. + ~D 
the canonical transformation 

U.=exp(ies.), tge=~, 
000 - 0>9 

which is equivalent to introduction of an inclined RCS 
with z axis directed along the effective field 
He = weir = .,.-l[(wo- Wp)2 + W:p]112. Neglecting in the 

transformed Hamiltonian Ur*u~1 the nonsecular terms 
(i.e., those not commuting with Sz = ~iSiz)' which can 
be done because W 1p » ~ *, we obtain the equation 

apt(t) = ~[i6, p(l)]' (16) 
(j ~ 

where 
p(t) =Uyp·(t)U.-', d6=~.+J'iD' ii,= w,S" 

fi D = '1,(3 cos' e-1)d6 .. + cos e ~w.s". 

The situation is formally analogous to that considered 
in item A. Consequently, after the lapse of a time Td' 
the Sf> on the entire inhomogeneous line (we assume 
that Td S T1), the state of the spin system can be de­
scribed by the following non-equilibrium statistical 
operator: 

p(t) ={1-~.ii.- ~D~D}/Sp1, 

where f3z and f3D are the recipr2cal te~peratures of the 
subsystems with Hamiltonians d6z and d6D' respectively, 
and the time dependence is determined by the spin-lat­
tice interaction. Since we are not interested in the 
"rotational saturation" [2,15J by the field H 1d' the sub­
system ~D' owing to the small specific heat, does not 
play any role in the absorption and we can use a statis­
tical operator in the form 

p. = {1- ~.~.}/ Sp 1 == Uyp."U.-'. (17) 
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The stationary value of 8z is given by the formula 

~ =~ wo(wo-wp)+w,.'T<LITxL' 
Z L (coo _ Wp ) ,2 + <Olp 2 T tLIT xL ' 

(18) 

which is obtained from (14) under the assumption 

Using the invariance of the trace relative to cyclic 
permutation of the operators in (8), we obtain after 
simple transformations and using formulas (17) and (18) 

/I Jt (00(0>0 - (i)p) + Wt/TzLIT:CL' 
X =gXow. (wo-wp)'+W,.'T'LITxL (19) 

x{(1 + cose)'f(Wd- Wp - w,) - (1- cose)'f(wp - Wd-W,)}, 

from which it follows that the form of the absorption is 
determined by the Fourier transform of the correlator 

f(t) = (S+exp (idlfDt)8-exp (-i.UDt» 1 (8+8-). 

The second moment of the function 7 (w) is equal to 
/J, = '/.(3 cos'H - 1)'M, + ~.' cos' e. (20) 

Formula (20) shows that the absorption line width varies 
in a very wide range, depending on the ratio of the am­
plitude of the alternating field HlP to the detuning 

IHo- wp/YI. In particular, at wp ~ Wo (i.e., (} = 7T/2) we 
can observe an appreciable narrowing of the inhomo­
geneous line in the RCS3). 

Expression (19) determines the energy absorbed by 
the spin system from the source of the non-saturating 
transverse alternating field Hld under conditions when 
the spin system is strongly saturated by another trans­
verse field HlP ~ 6* (the field HlP corresponds to the 
so- called "Redfield case" [15J). The absorption has a 
resonant character and is observed in the vicinity of 
two frequencies wd = wp ± we' with absorption at one of 
these frequencies ()(" > 0) and stimulated emission at 
the other (X" < 0). 

A simI1le calculation shows that for the frequently 
employed[2J longitudinal detecting field Hl cos wdt 
parallel to the constant field we obtain in p1ace of (19) 
the formula 

" n wo(wo-wp)+w,.'r,LITxL' f( ) . 'e (21) 
X =2'XoO)e (WO-<op)2+Wtp2TzL/T:CL CiJd-.(J)e SIn ; 

resonance in the RCS is observed at one frequency 
wd = we and there is an appreciable deviation from the 
situation with two transverse fields when, as noted 
above, the absorption line consists of two resolved 
resonances. This feature obviously is not connected 
with the inhomogeneity of the broadening and is ob­
served also in homogeneous broadening. 

4. Assume that LSD is realized, i.e., Td »1. There 
are several possibilities. 

a) W < I/T2. This case was investigated in detail 
earlier[3,4J. 

b) I/T2 < W -:::; 6*. The effective Hamiltonian of the 
spin system in the RCS is 

:1&' = L,(Wn - Wp)Sn" + w,p8x + :1& ... 
., 

We apply to equation (6) the canonical transformation 

3)Unlike this result, "rotational" narrowing of an inhomogeneously 
broadened line [2) is ~bserved in the vicinity of the magic angle OM de­
fined by the condition cos2 OM = 1/3. 

U.=exp(i .Een8nl), 
nJ 

which is equivalent to introducing for each packet a 
separate local system of coordinates with axis zn 
directed along the corresponding effective field 
Hen = AnIY == y-l[(W n - Wp)2 + w~p)1/2. Neglecting in 

the transformed Hamiltonian Uy:1&*U~l the terms that do 
not commute with Sz = ~ SZ., we obtain Eq. (16) with 
Hamiltonian ni m 

i&= ,EiCn +.1€d+iCcR , 

n 
(22) 

i&n = An .E8n,', i6CR = .E B'j,nn,8n,+8;:'h 
i n*n'ij 

- 1 ~ ,~ 
~d=2 ~Aij,nn·S"1.zSn·j+ ~Bij,nnSni+Sn;-, 

nn'i; 11.1) 

Aij, nn' = A;; cos en cos en' + 2 BiJ sin en sin en" 

B;;, nn' = '/,{'/,Aijsin en sin en' + Bij(1 + cos en cos en')}' 

For times t tha!, exceed the small time scale Tq due 
to the interaction~d' we can separate in the spin system 
with Hamiltonian (22), as subsystems, the Zeeman ener­
gies of the lndividual spin packets ;en and the single dd 
reservoir ~d' assigning to them the reciprocal tem­
peratures i3n and J3d' :1&CR realizes the interaction be­
tween the subsystems and leads to the SD between the 
packets in the RCS. The non-equilibrium statistical 
operator describing the system at times t ~ T2 , takes 
the form 

p(t)= S!1 {1- ~~nYe"-~d:fid+ L(Il..-~d) ~ e.tK,,(t)dt}, 
" ,,--» (23) 

where the flux operator is 

K,. (t) = - i [.Ye" (t), JeCR (t)l = ei:i(t K"e-i:i(t, K" = - i [Jem :#fcRI 

and the time dependence of the temperature is deter­
mined by the SD and by the spin-lattice interaction, 
which is not taken into account explicitly. 

In analogy with the procedure used in[3J , we can 
derive with the aid of (23) equations for fj and fjd and 
obtain the diffusion ap~oximation an expflcit equation 
for the SD coefficient D(w) for a packet with frequency 
w in the RCS. We shall not do this, and confine our­
selves to an examination of two limiting cases, in one 
of which the SD plays no role whatever, and in the other 
the influence of the rotating field HlP on the SD does not 
appear. Disregarding, as before, the "rotational satur­
ation," that part of the nonequilibrium statistical opera­
tor which is of importance in the calculation of the ab­
sorption can be expressed in the form 

P. = _1 {1 _ ~ li j6 } 
~p 1 ~pn n, (24) 

where fjn is the stationary value of 73 (t). Calculation 
of X· yieYds n 

" n 1 ~ 
X =8Xo~ ~gnAn~no {(1 + cos en)' /n(Wd - Wp - An)- (25) 

-(1- cos e)' /n(W p - Wd -An)}. 

Here gn = Nn/N, N = :2: nNn, fn(w) is the Fourier trans­
form of the correlator 

/.(-r:) =(8n,+eXP(~d-r:)8ni-eXP (-~d-r:) )/(8n,+8n,-). 
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The second moment of the function fn(w) is equal to 

M 'n) 1 M { 5 (2 2 \"1 } , =g 2 --;; 3eos On-1) gn+COsSn ..:::..rgn'COsSn' . (26) 
n'(¢n) 

gn « 1, and therefore at frequencies wn not too close to 
wp the main contribution to M~n) will be made by the 
second term in the curly brackets of (26). Changing 
over in (25) to a continuous distribution of the spin 
packets, in accordance with the rule 

E gnCPn -+- S g(w - w,)cp(w)dw, 

we obtain 

" :r 1 S l( = 8X' jJ;," g(w -wo)A(w) ~,(w) {(1 + cos S(w) l' I.(wd - W. - A(w» 

-[1-cos8(w)]'I.(wp-wd-A(w»} dw, (27) 

where 
1 00 

M,(w) = gM2cos S(w) J g(w' - w,)cos 8(w')dw', 

w-w 
COS o (w)=---' , A(w)=[(W-Ulp)'+W, '],1. 

A(w) • 

and the notation f (x) indicates that the second moment 
of the correlator 'f(x) depends on the frequency w. 

In our case M2(W) «w2 ,so that for all values of 
the de tuning ~d == wd - w;Pwe obtain fw(A(w) + I~dl) 
RJ O. Consequently, at wd" wp we can represent (27) in 
the form 

" It 1 d. S· ( [dd]' 
1( =8X'~lddl_oog w-w,)A(w)~,(w) Hlddl cosO(w) (28) 

x f.<I ddl- A(w»dw. 

In the region of detecting-field frequencies satisfying 
the condition I~dl < w1p we have fw(l~dl- A(w)) RJ 0, 
and there is practically no absorption of energy from 
this field by the spin system. Noticeable absorption 
takes place in the region I~dl > w1p. In this case the 
argument of the correlation function in (28) vanishes at 
two frequencies WI and W2, which are determined from 
the condition I~dl - A(w) = 0 and are equal to W1,2 = wp 
± (~d - W~p)I/2. Using the approximation 

I,· ( I dd 1- A (w) ) "" <5 ( I dd 1- A (w) ) 

I ddl 
( A , ')'1. {b(W - UlI)+ <5(w - w.)} 

Lld - W1P 

in formula (28), we obtain 

" It dd (' "I 1 { [ dd]' a X =gX'ldd!'dd-WIP)'jj; g(w,-w,) 1+ (L'I/-WI.,)'I. !,,(w,) 

d ' 
+ g(w, - wo) [ 1 (L'Io' _ ~,p') ;/0] ~O(W2) }. (29) 

Let WIP » 1/k, i.e., let the amplitude of the saturat­
ing field be much larger than the SD length. Then the 
SD does not play any role, and the values of the station­
ary reciprocal temperatures PO(WI) and (30(W2) are de­
termined by the saturating field and by the spin-lattice 
relaxation in the RCS. Using in place of (13) the relaxa­
tion equations 

asn : 

at 

and recognizing that, in accordance with (24), 

p: = exp (-i EOnS,,?) p. exp 'i ~ 8"S",') = S~ 1 (1- EBn..un·}. 
n) nj n 

we obtain after a number of calculations that are similar 
to those given above in the derivation of (14), 

~o(w)= BL w(w-w.) 
(Ul- wp )' + Wl p 2 T'L/TxL 

Assuming that in (29) I~dl »w1P' we get 

'1." ~ '/2ltX"wog(.Wd - wo) == x," (Wd). (30) 

As expected, far from the frequency of the saturating 
field we observe an undistorted inhomogeneous line 
shape. On the other hand, if I~dl « ~*, then wp RJ wd 
RJ Wo, g(WI,2 - wo) RJ g(wd - wo) and 

(31) 

In particular, for the isotropic mechanism of the spin­
lattice relaxation T zL = T xL and 

x" = x," (Wd) (da' - WI.')'" II ddl· 

Thus, in our case, in an interval I~dl < W with 
widths 2 w1p and with a center at the point Wdl~ wP' 

there is practically no absorption, and when 16dl in­
creases from the value I~d I = w1p it increases to its 

unsaturated value (30). Consequently, the width of the 
burned hole is of the order of 2 WI' and the shape of its 
edges is determined by the functi~ 

(32) 

which approaches rapidly the form g(wd - wo) with in­
creasing 16d l, so that the hole is almost rectangular in 
shape. 

At w1p « 11k, the width and shape of the burned 
hole, with the exception of a region 16d I < W that is 
small in comparison with 11k, are determin~g mainly by 
the SD that is not perturbed by the saturating field and 
by spin-lattice relaxation. We shall henceforth neglect 
the dimensions of the region I~dl < w1p. Such an ap­
prOximation is equivalent to assuming the alternating 
field to act at only one frequency W d = wp and that the 
field can be regarded as a perturbation[9). This 
circumstance can be easily understood, since in the 
considered limiting case the SD reduces, as it were, to 
an effective increase of the width of the packet, from a 
value wss « w1p to a value 11k» w1P ' which is equiva-
lent to regarding the alternating field as a perturbation. 

Putting 16dl »w1p we obtain in accord with (29) 

" It A ( 1 {~ L'ld ) 2 (L'ld )' } X =gX'Lldg Wd-W')~ \1 + Iddl ~,(WI)+ 1-~ ~,(w,) . 

(33) 

Since we are interested in the region IW 1,2 - wpl RJ I~d 

» 2 w1P' the Zeeman energy of the packet with frequency 

wn in the RCS can be taken in the form (wn - wp)S~i' It 

follows therefore that the packet temperature (3~I(W) in 
the RCS can be expressed in terms of the temperature 
of the same packet BOI(W) in the laboratory frame, by 
using the known relationt2]. 

~,(w)=-w-Mw), 
m -{J}p 
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Therefore (33) yields 

" "() 1 {( t1d )' (~d )' } x =Xo Wd 4~L 1+d~dl BO(Wl)+ 1~~ ~o(,w,) . (34) 

{30(W) is a solution of the free SD equation 

with boundary condition {3o(w p) = 0 and {3o(w) - {3L at 

W - ±oo and was obtained inC.] in the form 

so that 
x"= xo" (rod) (1- exp(-k! t1 d i), (35) 

which, as expected, coincides with the result ofC4]. It 
follows from (35) that the width of the burned hole is of 
the order of 11k, and the shape of its edges, unlike (32), 
is determined by the function g(wd ~ wo)(1- exp(-klt.dl)), 
which slowly approaches the value g(wd - wo) with in­
creasing It.d l, so that the hole has in this case an 
almost triangular form. 

c) w 1p »t.*. Obviously, in this limiting case there 

is no difference between the FSD and the LSD, and the 
saturation of the inhomogeneously broadened line is 
described by (19) or (21). 
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