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The energy distribution in a gas or semiconductor is analyzed for energies E » (E) (E) is the mean 
electron energy) in the presence of sources of nonequilibrium electrons with energies Eo » (E). The 
case when the electron source density depends on the coordinate is considered. A method for solving 
the problem is proposed which simultaneously takes into account electron diffusion in coordinate space 
and energy relaxation due to interelectron interaction, impact ionization, interaction with phonons (for 
semiconductors) or elastic and inelastic scattering by atoms (for gases). 

T HE problem of relaxation of fast non-equilibrium 
electrons produced in a medium is frequently encoun
tered in gas and semiconductor electronics. By way of 
example, we can point to two rather extensive groups of 
phenomena where this problem arises: 

1) Photoelectric phenomena in semiconductors. In 
this case fast non-equilibrium electrons are produced 
inside the semiconductor by the incident radiation. 

2) Phenomena in the near-cathode region of a gas 
discharge; here the reason for the appearance of fast 
electrons is the acceleration of the emission electrons 
in the region of the cathode potential drop. 

A feature of the problem is that in the general case 
the electron-energy distribution function depends on the 
coordinate, since the density of the sources of the 
primary electrons is not uniformly distributed in space. 

(1) 

where T is the temperature of the medium, Te = (2/3)(E) 
is the temperature of the slow electrons in the medium, 
and (E) is the average electron energy. We solve the 
problem in the diffusion apprOximation, assuming that 
the electron distribution depends little on the angles in 
momentum space[10J. This is true if the distribution of 
the primary electrons that appear in the medium is iso
tropic. If the last condition is not satisfied (as, for ex
ample, when a beam of fast electrons enters the med
ium), then it is meaningful to solve the problem in the 
diffusion approximation if the electron momentum re
laxation length Ap is noticeably smaller than the energy 
relaxation length A: 

A.<A. (2) 
This problem was solved earlier for different particular As usual [10J 
cases. The distribution function was obtained in a num
ber of papers [1-6J without allowance for the dependence 
on the coordinate. The dependence of the distribution on 
the coordinate was taken into account by others [ 7-9J , but 
the solution methods used by them were suitable only 
for the case when all the coefficients of the kinetic 
equation are independent of the energy. This condition 
either imposes stringent limitations on the energy de
pendence of the collision frequencies, or yields the 
form of the distribution only in a narrow range of energy 
values IE - Eol « Eo near the energy Eo of the primary 
electrons. 

We show in the present paper that the problem of the 
relaxation of fast non-equilibrium electrons can be 
posed and solved in general form by making certain 
realistic assumptions. The method proposed by us for 
the solution of the problem yields the distribution func
tion for arbitrary energy dependences of the collision 
frequencies in a wide energy interval,with the exception 
of a narrow region IE - Eol « Eo. In connection with the 
latter limitation, our method and the method employed 
earlier[7-9J are mutually complementary. 

1. FORMULATION OF PROBLEM 

Assume that the electrons are produced with a char
acteristic energy of the order of Eo. We shall hence
forth be interested in the energy distribution function 
fo(E, x) of fast non-equilibrium electrons under the con
ditions 
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( 2e ) 'I, 1 " 
A. = - T p , - = 2n J P(e, tt) (1- cos tt)sin ttdtt, 

m 't p 0 

(3) 

where m is the electron mass, T is the momentum re
laxation time, and P( E, J) is the Erobability of scattering 
through an angle J. An expression for A will be derived 
later on. 

If we neglect the action of the space- charge field in 
the medium on the fast electrons, then the kinetic equa
tion for a medium occupying the half-space x "= 0 can 
be written in the form 

a'/. /. 
D(e)-+S{fo)---=-R(e,x). 

ax' T(e) 
(4) 

Here D(E) is the diffusion coefficient of electrons of en
ergy E, T( E) is the electron lifetime, R( E, x) is the den
sity of the primary-electron sources, and S(fo) is the 
collision operator. We assume that at E »Te 

/o(e, x) » /oo(e, T,), 

where fo( E, T e) is the equilibrium distribution function. 
As the boundary condition at x = 0 we assume the condi
tion of total electron reflection: 

afore, x) / axlx~o =0. ( 5) 

In the case of the photoeffect in semiconductors, this 
condition is satisfied if the electron energy is lower 
than the work function and if the surface- recombination 
coefficient is small. 
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In the near- cathode region, condition (5) is satisfied 
for electrons with energy E < eUc (Uc is the cathode 
potential drop). At E > eUc ' the condition (5) is a good 
approximation for the energy region E - e U «E, for 
in this case the fraction of the electrons safisfying the 
condition for returning to the cathode (%mv2 ~ eUc) is 
small. The energy of the electrons emitted from the 
cathode is usually much lower than eUc ' so that the 
boundary condition (5) makes it possible to describe 
well almost the entire distribution of the fast electrons, 
with the exception of the energy region E > eUc ' where 
the number of electrons is exponentially small. 

We assume the condition 

/o(e,x)-+O as X-+oo. (5a) 

More accurately speaking, fo( E, x) should tend to the 
equilibrium distribution function as x - 00. However, 
in the energy region E » T e the number of equilibrium 
electrons is exponentially small and we can assume the 
condition (5a). 

The form of the function R( E, x) depends on the 
mechanism whereby the fast electrons are produced. 
In the case of the photoeffect, R( E, x) can be easily ex
pressed in terms of the spectral density of the incident 
radiation and the absorption coefficient. When the 
primary electrons are introduced in the medium in the 
form of a beam, then the beam relaxes over a distance 
x R:! Ap. If Ap « A, then a diffusion flux of electrons 
should exist at x > Ap' with a density equal to the den
sity in the primary beam (under the condition of total 
reflection at x = 0). The same result is obtained when 
x > Ap' if it is assumed that the electrons are pro-
duced in the x = 0 plane and with an isotropic momen
tum distribution, so that we can write in this case 

R(e,X)=-,-!-('o r(e)6(x-o), 
g e) 

(6) 

where ti (x - a) is a ti function, a - 0 after integration 
with respect to x, jo is the emission-current density, 
r( E) is the distribution with respect to energy in the 
beam, and g(E) is the density of states. 

2. FORM OF THE COLLlSION OPERATOR 

In the general case, we take into account in the colli
sion operator the interelectron interaction, the interac
tion of the electrons with the phonons (for semiconduc
tors) or with atoms (for a gas), and impact ionization. 
We write down the form of the collision operator for 
these processes. 

1. Interelectron interaction. For electrons with en
ergy E »Te , when the number of fast electrons is much 
less than the total number of electrons in the medium, 
the interelectron interaction operator can be represen
ted in the form [11, 12J 

(7) 

lIe(E) = 23/27Tc4neL/m1/2E3/2 is the frequency of the inter
electron collisions, ne is the electron concentration, 
and L is the Coulomb logarithm. 

2. Elastic scattering by gas atoms or scattering by 
acoustic phonons. In this case, the collision operator is 

given by[lOJ 

S.(fo)=~ ~ {I\".(e)e';'[ T ~:o + lo]}. (8) 

Here ti is the average fraction of the energy lost in a 
single scattering act, and lIa(E) is the collision fre
quency. For scattering by atoms we have ti = 2m/M, 
and for scattering by phonons ti = 2ms2/T; M is the 
mass of the atom and s is the speed of sound. 

3. Excitation of atoms or emission of optical 
phonons. If we neglect the small dispersion of the opti
cal phonons, then the collision operator has the same 
form for the two processes [13,14J : 

8'.(fo) =_1_ ~ [(e+en)"'''n·(e+en)/o(e+en)-e·hv,:(e)!o(e)]. (9) 
eLI • .Ll 

Here II;(E) is the frequency of excitation of the n-th 
level of the atom or of the emission of an optical 
phonon of the n-th type, and En is respectively the exci
tation ~nergy of the atom or the energy of the optical 
phonon. For Simplicity we neglect the phonon absorp
tion or the deactivation of the excited atoms, assuming 
that in the case of a semiconductor En » T, and in the 
case of a gas the relative number of excited atoms is 
small. 

At E » En' the inelastic-process operator (9) can be 
written in differential form, expanding the first term in 
powers of En: 

s:(fo)= e'~ d~ [e'" 1: en"; (e)fo (e) ]. (10) 

4. Impact ionization. For Simplicity we confine our
selves to the case when the mass of the hole is notice
ably larger than the mass of the electron. In this case 
we can write for a gas and for a semiconductor 

S,(fo) = e~ [j w,(e', e)lo(e') l'-;'de' + 
e+ej 

+ j w,(e',e' -e-e,)!o(e')Y-;'de']-v,(e)!o(e). (11) 

Here wi(E', E) is the probability of a process in which 
the primary electron with energy E' produces a secon
dary electron with energy E, vi(E) is the frequency of the 
ionization processes, and Ei is the ionization energy. At 
energies E »Ei' this expression can also be written in 
differential form. 

At high incident-electron energies, processes with 
small energy transfer predominates [15] , so that the 
function W.(E', E) has a sharp maximum with respect to 
the argum~nt E in the energy region E' »E. Taking this 
into account, we can neglect the first term of (11) when 
E »Ei' introduce the variable ~E = E' - E - Ei in the 
second integral, and expand the integrand function of E' 
in powers of Ei + ~E, retaining the first two terms of 
the expansion. Then, recognizing that 

J w,(e, tie)d(tie)= ",(e), 
o 

we obtain for E » Ei 

S,(fo)=-J,. d: [e';' j w,(e, tie) (e,+ tie)di'J.elo] 
o 

(12) 
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3. SOLUTION OF KINETIC EQUATION 

We make a simplification that plays an important 
role in what follows. The collision operators Se and Sa 
defined in (7) and (8) have the form of divergences of the 
flux in energy space. The part of the flux proportional 
to fo is always directed toward lower energies and de
termines the deceleration of the fast electrons by the 
dynamic friction force. The part of the flux proportional 
to dfo/dE is due to diffusion of the electrons in energy 
space, and its direction depends on the sign of the der
ivative. The relation between the diffusion and the dy
namic friction depends on the form of fo. In the case of 
a MaXWellian distribution, these two terms in the flux 
are equal and opposite. 

In a problem of our type, when there is a source of 
fast electrons concentrated in the energy region 10 RJ Eo 
» T e ;::: T, it is natural to expect the principal process 
governing the distribution in the region 10 < Eo to be de
celeration by dynamic friction, and the resultant distri
bution varies little over energy intervals of the order 
of Te or T. 

In the region 10 > Eo, where the source denSity 
R( 10, x) becomes small or exactly equal to zero, one 
cannot neglect the diffusion in energy space, since elec
trons are present in this energy region only because of 
diffusion. 

The depth of penetration of the electrons in the en
ergy region where R( 10, x) = 0 is obviously of the order 
of T e or T, and therefore the number of electrons in 
this region turns out to be small at Eo »Te and Eo 
» T. If this small fraction of the electrons is of no 
special interest, then the distortion of the form of the 
distribution in this region is immaterial. Taking the 
foregoing into account, we assume that the following 
conditions are satisfied 

dlo dlo 
T,-<t:/o, T-<t:/o, 

de de 
(13) 

and neglect subsequently the diffusion of the electrons in 
energy space, assuming that 

1d, 1d , ) 
8'(/0)=-" -d [v,(8)e /,/0], 8.(/0)=-'-1 -d [6v.(e)8 /'lo]. (14 

8' 8 e 2 e 

This assumption will be justified by the results. 
We assume also that the density R( 10, x) of the sour

ces is either exactly equal to zero at 10 > Eo, or de
creases rapidly with increasing energy at 10 > Eo in the 
intervalE - Eo «Eo. The form of the solution of the 
kinetic equation depends on the relation between the 
characteristic energy Eo, the minimum excitation en
ergy 101 of the atom or of the optical phonon, and the 
ionization energy Ei' We consider in succession several 
possible cases: 

1. The case Te « Eo < 101> Te « Eo < Ei' It suffices 
to take into account in the collision operator only the 
interelectron interaction and the processes of interac
tion with acoustic phonons or elastic colliSions with 
atoms. Using for the collision operators the expres
sions in (14), we can rewrite the kinetic equation in the 
form 

a'io 2 'I, d 10 
D(8)-,-. +(-) -[eQlo]---= -;R(8,X), 

OX' m8 de T(e) (15) 

( m8 )'1' Q= -2- [v,(8)+lIv.(e)], 

The function Q has the meaning of the average energy 
lost by the electron per unit length, and is usually called 
the "decelerating ability of the medium." 

We introduce a new function lj! (E) and a new variable 
teE) defined by 

[ "( m )'1' de] 'I' = eQ exp f Te" ~ /0, (16) 

t= S·, D(8) (~)'I' de. 
,Q(8) 2e 

Then Eq. (13) reduces to the heat-conduction equation 
with a source 

(17) 

F( ) R(x,t)eQ [S ( m )'1' de] x t = exp -'-
, D • 28 Q-r: 

(18) 

with conditions 

USing the Green's function of the heat-conduction 
equation[16], we can write the required solution of (17) 
in the form 

'1'= 1_s'dt'f dx' F(lx'l,t') exp[- (X-x')']. (19) 
2Ylt_ oo _00 (t-n'l. 4(t-t') 

Formulas (16) and (19) yield the general solution of the 
problem at 10 < 101 and Eo < Ei' 

2. The case Te « 101 < Eo::S 2101> Te « Eo < €i. In 
this case it is necessary to take into account processes 
such as excitation of atoms or emission of optical 
phonons. We assume for simplicity that it suffices to 
consider one energy level or one type of phonon. Then 
the kinetic equation takes the form 

a'/o 2 'I, d /0 
D(8)-. +(-) -[eQ/o]---+R(e,x) 

ax' m8 de -r:(e) 

{
V' (8)10 (e) 

= -(e+e,)'I'v·(e+e,)/o(e+e,)/e'I. 

where Q(E) is given by formula (15). 

if e;;;' e, 

if e < e" (20) 

The solution in the region El::S 10 ::s 2101 can be ob
tained by USing (16), (18), and (19) and replacing in them 
liT by liT + v*. We then get 

/o(e)=~exp [- S( ~)'I' (~+ v·)!:!:...] 
2Y It eQ ,2e -r: Q 

X S'dt' SOO dx,F(lx' I, t') ex [_ (x - x')'] 
___ ~ (t-t')'I, P 4(t-t')' (21) 

In the region E::S 101, the right- hand side of (20) is a 
known function if (21) is taken into account. We intro
duce again the variable t in accordance with (16) and 
make the substitution 

'I' = eQ exp [j' ( 2: ) '''( + + v') ~e] 10, (22) 

Recognizing that v* = 0 when 10 < 101, we obtain for the 
function lj! the same equation (17) with the function 
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[ ( e + e, ) 'I. ] eQ 
F= R(x,e)+ -e- ,,'(e+e,)/o(e+e,) D 

[ "(m)'I'(1 )de] xexp f 2£ -:;+ ,,' Q (23) 

in place of F. 
A solution of (23) can be obtained with the aid of (19). 

Recognizing that fo(E) = 0 at E ~ 2El, we obtain for the 
kinetic equation (18) at E:S El a solution that goes over 
into (21) at the point E = El and has the same form (21) 
with F from (23) in place of F from (18). 

3. The case Eo » El ~ Te , Eo < Ei or Eo » El 
~ Te , Eo ~ Ei ~ Te' We obtain the form of the distri
bution for high energies E ~ El and E ~ Ei' In this 
case we can use the approximate expressions (10) and 
(12) for the operators of the inelastic processes (9) and 
(11). For electrons of energy E ~ El we can almost 
always neglect recombination processes and processes 
of the type of elastic scattering by atoms or scattering 
by acoustic phonons. The kinetic equation then coincides 
with (15), from which we can leave out the term ro/T, 
and Q is given by 

Q= (~e)"'[ ".(e)+ 1: e,,,;(e) ] (24) 

at Eo < Ei and 

Q = (~e) 'I. [ ".(e)+ 1: en"; + j w,(e, ~e) (e, + ~e)d~e ] (25) 
o 

at Eo ~ Ei' 
A solution of the equation can be obtained from (16), 

(18) and (19) by putting in these formulas 1/7 = 0 and 
substituting (24) or (25) for Q(E). 

4. EXAMPLES AND DlSCUSSION OF RESULTS 

By way of examples of the applicaUon of the general 
formulas, let us find the form of the electron distribu
tion for two particular cases: 

1. Distribution in the near-cathode region of the dis
charge at E »Ei > Eb Eo = eUc »Ei' In this case we 
can put r( E) - I) (E - Eo) in (6). We then easily obtain from 
(6), (16), (18), and (19) 

m'j (X') 
10 (e, x) = 8n'l .e;t'" exp - 4t if e";; eo (26) 

fo( E, x) = 0 at E > Eo. It follows from (26) that the num
ber of electrons with energy E decreases practically to 
zero at a distance x on the order of several times v't( E). 
In order of magnitude we have 

t(e)"" (~)'I'D(eo) (1-~) . 
2 Q(eo) eo 

(27) 

It follows from (27) that we can use for the energy re
laxation length the quantity 

A= [( meo )'I'D(eo)] "'. (28) 
2 Q(eo) 

2. Distribution of photoelectrons in a semiconductor 
illuminated with monochromatic light when Te « Eo 
< El. In this case the source density is 

R(X,e)=ke-'x~(') ~(e-e,), (29) 
g eo 

where 10 is the photon flux density and k is the absorp-

tion coefficient. From (29), (16), and (19) we obtain 

m'klo [S~( m ) 'I. de ] 
I,(e,x)= 16n'I'eQt'" exp - ~ 0 

~[exp[-kIX'I-(X~:')']dX' if e";;eo, (30) 

fo( E, x) = 0 at E > Eo. 
Let us examine the form of the distribution at E < Eo 

in different limiting cases. 
A. [Ve(EO) + I)va(Eo)h(EO) ~ 1. 

In this case 

S" ( m )'" de - -"';1 
o 2e Qr: ' 

and the characteristic value of t(E) can be taken to be 
equal to A. From (30) with 

kA=k[ D(eo) ]';'»1 
".(e,)+ ~"a(eo) 

we then have 

m'lo [X' "( m ),;, de ] 
10(e,x)""8n'I'eQt'" exp -41-,s z;- r;;-' (31) 

and for kA « 1 we get 

m'klo ,[ 'S' ( m )';. de] I,(e,x)=--exp -kx- - -. 
8neQ • 2e Qr: 

(32) 

B. [Ve(Eo) + I)va(Eo)h(EO) « 1. 
In this case the bulk of the fast electrons is concentra-
ted in an energy region where 

"( m )';. de (m )'" (eo-e) f 2e"'" 0:;"" z;,- Q(e,)r:(e,)"';1. 

Using (27), we obtain from this the characteristic value 

t "" D(eo)r:(eo); if kW(e,)r:(e,) l'" »1 we have 
(33) 

m'lo [S·' ( m) 'I. de x' ] 
/,(e,x)= 8n'I'eQt'" exp -, 2; ~-4t' 

If inequality B is satiSfied, then the function (33) has a 
sharp peak at E Rj Eo and almost all the electrons have 
an energy close to Eo. To find how the number of fast 
electrons varies in coordinate space, we integrate the 
function (33) with respect to energy, taking into account 
the presence of the sharp peak at E Rj Eo. The integra
tion yields 

n.(e,)= ~'t,(e)g(e)de=[~~e:;) fhexP[- (D(e,):(e,»"']' (34) 

This result is obtained also directly from the kinetic 
equation, if we ne~lect the collisions. 

At k[D( Eo)T( EoW/2 « 1 we get from (30) 

m'kl, { s·, (m)'1. de} I,(e,x)=--exp -kx'- - -. 
8neQ • 2e Qr: 

(35) 

In the case of weak interelectron interaction ve 
« I) va' our formulas S32) and (35) coincide with the re
sult of Ladyzhenskil[6 . In the particular case consid
ered by Abakumov and Yassievich[3], our formula (31) 
and their formulas coincide in the region of applicability 
of our theory if 
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Let us see how the true form of the distribution is 
distorted by the approximation made in the theory. It 
follows from our results that fo(E, x) = 0 at E > Eo if 
R(E, x) '" 0 at E > Eo. The reason is that by neglecting 
diffusion in energy space we disregard the possible ac
celeration of the electrons. In fact, diffusion in energy 
space causes a small number of electrons to penetrate 
into the region E > Eo. 

For a correct description of the distribution in this 
energy region, it is necessary to retain the diffusion 
terms of the type Te dfo/dE or T dfo/d in the energy flux, 
and to solve the problem by previously developed 
methods[7-.J • 

In general, our results are reliable only in the range 
of values of E and x that satisfy the conditions (13). For 
example, for the functions (26), (31), and (32), the condi
tions (13) reduce to the inequalities 

1dtx' 11 
---<t:--
t de 4t T' T, ' 

T, Te ~ Q(2e / m) '1'1:. 

(36) 

(37) 

It follows from (36) that our results do not describe 
the distribution correctly at energies too close to Eo or 
when x »A. We note, however, that if the inequalities 
(36) are violated, then the distribution function is 
already quite small. 

It should be recognized that the inequalities (36) 
limit the applicability of the results only if ve + /) va 
2: v* + 1/T, when the interaction with the electrons, 
atoms, or acoustic phonons is appreCiable, but if 
ve + /) va « v* + 1/T, then these processes have little 
effect on the distributions, the inequalities (36) and (37) 
can be disregarded, and the limits ve - 0 and /) va - 0 
can be taken in all the formulas. 

Another source of distortion is the changeover to a 
differential form of the operators of the inelastic proc
esses (9) and (11). For example, if the electrons are 
produced with a distribution of the type R( E) ~ /) (E - Eo) 
and relax as a result of excitation of the atoms or emis
sion of optical phonons, then it is quite obvious that the 
distribution function have peaks at the points Eo - nE1 
(n is an integer). But we obtain from (24) a smooth 
function in this case. Thus, the changeover to differen
tial form smooths out the distribution. However, by 
comparing the approximate solution with the exact solu-

tion of the problem, which can be obtained at a source 
density R independent of x, we can verify that in an en
ergy interval of length El the number of electrons at 
E »E1 is close in both cases. 

The energy spectrum of the electrons was assumed 
in this paper to be quadratic and isotropic, but all the 
results can be easily generalized to include the case of 
an arbitrary isotropic spectrum. 
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