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The concurrent manifestation of dispersion and nonlinear effects in the evolution of quasi-monochro­
matic helical waves in a magnetoactive plasma is investigated. (Implied here are the nonlinear ef­
fects due to cyclotron interaction between the wave and resonance particles.) It is shown that the role 
of dispersion becomes important at sufficiently large wave amplitudes. The stationary waves of the 
envelopes are investigated; in the case under consideration these waves have the form of shock waves 
with an oscillatory structure behind the wave front. 

1. THE BASIC EQUATIONS 

DURING the propagation of circularly polarized waves 
along a magnetic field, the dOminant nonlinear effect 
(for not too large amplitudes) is the resonance cyclo­
tron interaction of the wave with a group of particles 
whose velocity is close to the "resonance" velocity 
vR = (w - wc)/k, where wc is the cyclotron frequency 
(we consider, for definiteness, electron-cyclotron 
waves ("whistlers"); the extension of the correspond­
ing results to the case of ion-cyclotron waves is ap­
parent). If a packet of such waves has a sufficiently 
small spectral width, such that we can neglect dis­
perSion, then its evolution is described by the theory 
developed in[ll. 

If, however, the wave front is sufficiently steep 
(such a situation may, as has been shown in[ll, arise 
owing to the nonlinear twisting of the front due to the 
cyclotron interaction between the wave and the reso­
nance particles), then the dispersive spreading of the 
front becomes important and should be taken into ac­
count together with the nonlinear effects. The present 
paper is devoted to the investigation of this problem. 

For waves propagating along a magnetic field (the 
Z axis), Maxwell's equations are easily reduced to a 
single equation which is conveniently written in the 
form 

_{}'_<G_a _~_{}_'f!!)_a = 4rr.{}(ja-j.a) 
{}Z' c' {}t' c' {}t 

(1) 

where on the right-hand side stands the difference be­
tween the total current vector 

j = - en J vf(t, Z, v)dv (2) 

and the same vector jL in the linear approximation, 
obtained by replacing the total distribution function f 
in the expression (2) by the solution fL, of the linear­
ized equation!). We require then, in addition, that the 
poles in fL be circled in the principal-value sense. 
Thus, fL determines the Hermitian part of the permit-

1)Such an approach was also used in a recently published paper [2] 
in which the nonlinear frequency shift for Langmuir waves of constant 
amplitude was investigated. 
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tivity tensor, and, consequently, in the matter equation 
f!!)a = Eaf3 <G f3 we should take Eaf3 to mean a Hermitian 
tensor, as is henceforth assumed. 

Taking into account the fact that the components of 
the field in a circularly polarized wave have the form 

<G. = A cos(kZ- wt + cp); <Gu = -A sin(kZ - wt +IP), 

where A = A( Z, t) is a real amplitude and 'I' = '1'( Z, t) 
is the slowly varying part of the phase which deter­
mines the correction to the frequency and the wave 
number, 15w = -a'P/at, 15k = a'P/aZ, it is convenient to 
introduce the following complex quantities: 

E = Ae;q" if = <G. - iffJ'. = E exp(ikZ - iwt), !i5 = f!!). - if!!)u, 

6j = - en J (v.- ivu) (f - h)dv. (3) 

Then Eq. (1) can be easily reduced to the form 

(Pi 1 {}'~ 4n a (bj) 

az' -7at'""=-;;zfit (4) 

- ~ - ~ a 
f!!)=N'(w)<G, w=iiit, 

whe re N( w) is the refractive index for the whistle rs 

The expansion 
{}'ij) { a(w'N') aE -.-=- w'N'(w)E+i--
at' aw at 

1 {}'(w'N') a'E 
--2 ' , + ... ,}exP(ikZ-iwt), 

{}(f) at . 

(5) 

(6 ) 

where the dotted line stands for terms with third and 
higher-order derivatives with respect to the complex 
amplitude E( Z, t), may be used in the transformation 
of Eq. (4). We shall henceforth consider aE/at and 
aE/aZ as terms of first order in smallness, and the 
second derivatives on the right-hand side of Eq. (4), 
as second-order terms. Then, the usual relation 
(a/at + vga/aZ)E = 0, where Vg = dw/dk is the group 
velocity, follows, in the first apprOximation, from (4) 
and (6). Retaining terms of second order in smallness, 
we obtain from (4) and (6) the following equation: 

( fiE fiE ) 1 ,{}'E v,w (7) 
i -+v.- +-vg -=-2ni--bjexp(-ikZ+twt), 

lit az 2 az' kc' 

where vi?; = dvg/dk = d2w/dk2 (here, vga 2E/az 2 has 
been substituted in place of a2E/ae). 



898 Ya. N. ISTOMIN and V. I. KARPMAN 

It follows from Eq. (7) that y?( Z, t) and A( Z, t) 
satisfy the following system of equations: 

( a + a) + v,' ( a<P)' v,' a'A 
at v'az <P "2 az -2A"azz 

= _ 2n wv, 1m (i'lIj) 

kc' I~I' ' 

(~+ v • ...!....)U+v.' ~ (U~) = - Re(i'IIj), at az az az 

(8) 

(9) 

where U is the energy density of the wave, which can, 
after simple computations, be represented in the form 

U= c'(~,-w)A' Bo'w, h'. (10) 
2nv,'w, 8n (w, - w) 

Here, h = B/Bo (B is the amplitude of the field of the 
wave and Bo is the amplitude of the constant magnetic 
field). We can replace the expression on the right-hand 
side of Eq. (9) by 

. - dfJT (a a ) Re(lS·fJj)>aj,$.+j,)S,=_S5 -+VR- liT, 
dt at az 

(11) 

where OT is the mean kinetic energy of the resonance 
particles of the plasma, for which the following expres­
sions were obtained in(11: 

fJ1 = Bo'w, r(h) (12a) 
8n(w,-w) , 

r h = " (hm1h)'I. 1
- "sah'l'hm" 

( ) - - 4'.ah'I'hm'i 1 + ./. ~ dyyR (y)]. (12b) 

The first of the expressions (12b) is valid for those 
pOints of the front of the packet which are situated be­
fore the maximum of the amplitude h = hm, the second, 
for those points behind the amplitude maximum, 

W;', J fo'W'l,dW 

64 o 

a = 3n' YLTm - YLTm. 

J fo'W'dW (13) 
o 

Here, yL is the linear increment, 

Tm = (hmkw,W,)-%, (14) 

1m is the characteristic nonlinear time, WT is the 
transverse thermal velocity, 

f'=(~+~~) 
o av, kW oW ',-'R ' 

and the function R(Y) is given parametrically: 
R = l!KK( K), y = E( K)!K (K( K) and E( K) are complete 
elliptic integrals of the first and second kinds). 

Equation (11) is a consequence of the energy-con­
servation law and the fact that on the average the wave 
does work on the resonance particles, which propagate 
with the average resonance velocity vR = (w - wC>/k 
(for the whistlers this velocity is always directed in 
the direction opposite to that of the motion of the 
packet, since w < wc). The relation (11) can, of course, 
be obtained directly from the expression (2) for OJ and 
the kinetic equation for the resonance particles in the 
packet. Using (10) and (12a) and going over to a coordi­
nate system mOving with the group velocity, 
z = -( Z - Vgt) (the z axis in this system is directed 
into the packet, i.e., opposite the direction of its mo­
tion), we finally write Eq. (9) in the following form: 

(15) 

where r(h) is defined in (12) and Vo is the velOCity of 
the resonance electrons in the reference frame under 
consideration: 

Vo = v,- VR = v,(t + 00,/200). (16) 

Equation (15), without the second term on the left­
hand side, which describes the dispersion spreading, 
was the basic equation for the investigation of the evo­
lution of the packet in(11. Let us now ascertain the 
cases in which dispersion becomes important. Disper­
sion clearly becomes important when the wave front is 
sufficiently steep, so that the second term in (15) is 
comparable with the third. Denoting the characteristic 
width of the front by I and setting a'P/az ~ l/l, we 
obtain by equating the orders of magnitude of the 
second and third terms in (15) and taking (12b) into 
account, 

I = v,' / VOYLTm• (17) 

The length lover which the dispersion effects are 
comparable with the nonlinear effects will henceforth 
play an important role. It can be seen from (17) and 
(14) that I is proportional to the square root of the 
wave amplitude. 

On the other hand, since we use the expression (12bjl, 
which was obtained in[11 in the adiabatic apprOximation, 
it is necessary that the length (17) be considerably 
greater than the nonlinear length IN = volm. This im­
poses the following limitation on the wave amplitude: 

(YLTm)'<I~,~(t-~~)I. (18) 

It can be seen from (14) and (18) that in order for the 
dispersion to manifest itself under the conditions of the 
adiabatic apprOximation, the wave should be suffic­
iently intense2). In the opposite limiting case when 
I « VOlm, the dispersion effects are of little importanc1e 
compared to the nonlinear modulation effects con­
sidered in [11 for a packet with a steep leading edge (see 
Sec. 6 of the paper cited). 

Let us turn now to the analysis of Eq. (8). Let us 
set 

~w = 2nwv, Im(~'IIj) 
'kc' IlSl' 

(19) 

(this deSignation is connected with the fact that for a 
wave with a constant-in space-amplitde, the quantity 
(19) is, as can be seen from (8), equal to -a'P/y?t, i.e., 
coincides with the frequency shift). We can, on the 
basis of the kinetic equation, show after simple but 
tedious calculations that ~w depends only on the am­
plitude h of the field (and not on its derivatives, as 
obtains in (11) and that in order of magnitude 

~ 00 - ~Yt - ~a / T m , (20) 

where {3 is the small parameter given in the footnote 2) • 

2) On the other hand. it should be borne in mind that the whole 
theory (both in [I] and in the present paper) is valid for not very in­
tense waves, namely, when 
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It can be seen from (20) that aw is, generally speak­
ing, an extremely small quantity. More precisely, it 
follows from (8) and (20) that under the condition that 

(21) 

which we shall henceforth assume to be fulfilled 3 ), the 
right-hand side of Eq. (8) can be neglected. 

2. HELICAL SHOCK WAVES 

As the simplest solution to Eqs. (15) and (8) which 
gi ves some idea about the nature of the effects due to 
the concurrent manifestation of dispersion and non­
linear resonance interaction between the waves and the 
particles, let us consider a steady-state solution of the 
form 

h = h(z - vt), <p = <p(z - vt). (22) 

Substituting (22) into (8) and integrating, we obtain 

<p' = (vh' - vor(h) + C) / v.'h', (23) 

where C is the constant of integration and a prime 
denotes a derivative. Substituting (23) in (15), we shall 
have 

h" + {v'h' - [vor(h) - C]'} / h'v." = O. (24) 

Let us choose the constant C such that the resulting 
wave propagates into the unperturbed region, Le., 
h - 0, rp' - 0 as z - - 00 (we recall that our z axis 
is directed against the motion of the packet). It should, 
however, be borne in mind here that the expression for 
r(h) is, strictly speaking, not valid for very small h, 
since it was obtained in[11 under the condition that 
YLTm « 1 (which is, in a sense, contrary to the linear­
approximation condition). To overcome this difficulty, 
we replace the above-indicated boundary conditions by 
the following conditions: 

h --+ ho, <p' --+ 0 for z --+ -00, (25) 

where ho is neglibly small compared to the maximum 
amplitude hm, but, on the other hand, YLTo« 1 (To is 
the nonlinear time (14) in which ho has been substituted 
for hm ). 

It follows from (23)-(25) that 

C = -vho' + vor(ho). (26) 

Substituting this in (24) and considering the region of 
the wave in front of the maximum, we must use the 
first of the expressions of (12b). Assuming that h » ho, 
we obtain the following equation for the amplitude 
(hm = hmax): 

h"+~h- 16vo'a'hm =0 
" 9 I~ • Vg V g 

(27) 

The solution of Eq. (27) has the form 

(28) h - l6vo'a'hm H (V» 
- 9' + cos-,~, v v, 

where I: = z - vt + const, and H is the constant of in­
tegration. Let us assume that the maximum value of 
the amplitude is attained at I: = O. Then, it follows 
from (28) that 

3)1t follows from (21) and (18) that the amplitude of the wave should, 
in our case,' satisfy the condition 1 ~ Vo T m ~ 131. 

( l6v,'a' ) 
H=hm 1--- +O(ho). 

9v' 

(29) 

In order to satisfy the boundary condition (25), we 
should consider the solution to the more exact equation 
(24), where the constant is defined in (26). We can, 
however, proceed more simply by matching the ap­
proximate solution (28) with zero in such a way that 
the continuity of the first derivative is preserved. For 
this purpose we should require that h(l:) = h'(I:) = 0 
when 1: ~ 1:0. Hence, we obtain 1:0 = -1[ I/vg I v I, 

h =l=..(1 + cos~~), 1;. < ~<O, 
2 v, (30) 

h =0, ~ < ~o, 

V = ±O'32/3)voa - ±VO'\'L"Cm • 
(31) 

The approximate solution (30) is quite a good substitute 
for the exact solution, since it differs from the latter 
in a region of little importance where YLT ::., 1. 4 ) 

The two different signs in expression (31) for v, 
indicate that two types of waves-fast (whose velocity 
is higher than the group velocity by the amount I v I ) 
and slow (whose velocity is smaller by the same 
amount)-can exist independently. 

The length of the front part of the wave where h 
changes from 0 to hm is, as was to be expected, 
equal to 

v/ 3n v,' 
n-=--==--~l. 

v 1'32 voa 

Let us now investigate the profile of the wave behind 
the point where the amplitude is a maximum. In this 
region the second of the expressions in (12b) should be 
chosen for the function r(h). Let us write Eq. (24) 
(where the constant C can, as before, be neglected) in 
terms of the dimensionless variables 1) = h/hm , 
A = vl:/Vg, p(1)) = 9r 2( h)/16aVhm : 

(32) 

Equation (32) coincides in form with the equation of 
motion of a particle in a force field with the potential 
energy: 

(33) 

The arbitrary constant in P(1)) is chosen such that the 
potential is continuous at the point 1) = 1. The shape of 
P(1)) is shown in Fig. 1 (the integral in (33) was com­
puted numerically). The amplitude of the envelope of 
the wave will behave in the same way as the coordinate 
of a "particle" oscillating in the potential shown; 
therefore, the profile of the wave is periodic, undamped 
oscillations with a spatial period ~l. The resulting 
profile of the amplitude is shown in Fig. 2. It has the 
form of a shock wave with undamped oscillations be­
hind the front, the characteristic period of these oscil­
lations being the same as the width of the transition 
layer, Le., of the order of the length (17) over which 
the nonlinear effects are comparable with the disper­
sion effects. The modulation index behind the wave 
front is quite high: it is equal to the distance ab in 
Fig. 1, Le., of the order of half the maximum ampli­
tude. 

4)The auxilliary constant ho then drops out from the solution. 
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FIG. I. "Potential energy" PC!)~: I-before the first maximum of 
the envelope of the shock-wave amplitude; 2-behind the wave front 
after the maximum. 

FIG. 2. Profile of the shock wave. 

The periodic modulation behind the wave front leads 
to the appearance of an effective mean shift of the wave 
number by the amount Ok = -cp'. It follows from for­
mula (23) (where we can set h ~ hm and C = 0) that 
15k ~ v/Vg ~ ± 1/1. Correspondingly, the average fre­
quency shift I5w = Vgl5k ~ WcyLTm. This quantity is 
considerably higher than the nonlinear shift (20): 
aw/ ~w ~ (TmWc)/ f3 » 1. A frequency broadening of 
the spectrum ~f ~ l/Tm [31 should be simultaneously 
observed. 

Let us finally consider the results obtained from the 
point of view of the experiments on the observation of 
monochromatic whistlers emitted by ground-level 
transmitters with frequency f = 15 kHz and propagating 
along the lines of force of the geomagnetic field[4 1• Re­
ports of the experimental observation of this kind of 
amplitude modulations, which arise in the process of 
propagation and are apparently nonlinear in nature, 
have recently been published[5,61. The frequency broad-

5)This time can be estimated in the following way. Ground-level 
transmitters emitted dot-dash Morse-code type of signals. The trigger 
radiations were observed almost exclusively in the dash-type pulses 
(duration I SO j.lsec); they were very rarely observed when the dots (dura­
tion - SO j.lsec) were transmitted. Hence it follows that the generation 
time for the trigger radiation is - !,sec. 

ening of the spectrum in such experiments is ~f = 102 
Hz. We must consequently assume that T ~ 10-2 sec. 
The generation time for the satellites (which, accord­
ing to[31, is of the order of YL) is approximately 
0.1 sec.5) 

Thus, it is reasonable to assume yLTm ~ 0.1. The 
cyclotron frequency in the equatorial region for the 
line of force along which the signal propagates (this 
region is roughly three times the earth's radius away 
from the earth's center), fc ~ 30 kHz. The mean 
group velocity computed from the time lag of the sig­
nal, Vg ~ 4 X 109 cm/sec. The length (17) computed 
from these data is 1 ~ 2 X 105 cm. On the other hand, 
the nonlinear length IN = VoT ~ 8 X 107 cm. Thus, 
1 « IN in the experiments discussed and, consequently, 
the observed amplitude modulation apparently corre­
sponds to the mechanism, considered in[ll, in which 
dispersion is unimportant. The dispersion-nonlinear 
mechanism considered in the present paper appears in 
the case of waves of much higher intensity. 

In conclusion the authors take the opportunity to ex­
press their gratitude to V. L. Ginzburg for stimulating 
comments. 
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