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The interac.tion between a monoenergetic electron beam and a dense collision plasma is investigated, 
using the method of partial numerical simulation. The parameters of the plasma-beam system are 
such that the collision rate in the plasma is greater than the hydrodynamic increment of a collision­
less plasma, but smaller than the electron plasma frequency. It is shown that in the linear phase of 
the interaction there arise in the plasma unstable oscillations leading toa partial capture of the beam 
particles. The nonlinear stage of the interaction is characterized by the appearance in the initially 
monoenergetic beam of a thermal spread which impedes the development of an instability, with the 
result that the beam is able to pass freely through the plasma without any appreciable energy losses. 

INTEREST to the study of the behavior of beams in a where wbe '" (41Te 2n1/ m)1/2. In the case when 
dense collision plasma has increased recently. This is '\'0 < v < (0 •• , (3) 
connected with the problem of the passage of relativis­
tic beams through a plasma and with attempts to use 
high-power beams for the production of a plasma with 
thermonuclear parameters (1-5]. 

In such systems a situation can, in particular, be 
realized when the rate of collisions of the plasma elec­
trons with the ions, vei, or with the neutral gas, Ven, 
is much greater than the maximum increment of the 
beam instability in a collisionless plasma, yo '" wpe 
x (n1/nO)1/3 [6], where wpe '" (41Te2no/m)1/2 is the elec­
tron plasma frequency, no is the plasma density, and 
n1 is the beam density; no» n1' 

For such parameters of the plasma-beam system, 
instability is possible only in the case when the thermal 
spread <l V of the velocities in the beam is smaller 
than a certain value, namely; 

d V / Vo < Vo / w.,. (1) 
Here Vo is the velocity of the beam. 

It is not difficult to see that this condition is at the 
same time the condition of applicability of the hydrody­
namic approximation: 

vo> MV, 

where k '" wpe/Vo is the wave number. Such a coinci­
dence is not fortuitous, since in the case of hydrody­
namic instability the vibrational energy 

E' ae 
W=-w-

8n aw' 

where € is the permittivity of the medium, is nega­
tive[71, and the presence of dissipation in the system 
leads to the growth of the amplitude of the oscillations, 
in contrast to the case of kinetic instability, when the 
vibrational energy is positive and dissipation leads to 
the damping of the oscillations. 

Let us consider an electron beam moving with 
velOCity Vo relative to a dense plasma with an elec­
tron collision rate v. The dispersion relation for such 
a system will have the form 

1= o>pe2 + uh.e2 

w(w + iv) (w - kVo)" 
(2) 
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the oscillations with frequency w;:,j wpe ~ kYo have 
the maximum increment y '" (WbeWpe/2v)1/2. The 
ratio of the increment for a collisionless plasma to the 
increment for a collision plasma is then of the order 
of 

-V~(!!:!..-) 'I" 

(l)pe no 

i.e., is a quantity which, according to (3), is greater 
than unity. 

Thus, the linear phase of the interaction between an 
electron beam mOving with velocity Vo relative to a 
collision plasma and the plasma is characterized by 
the development of a beam instability. As the ampli­
tude of the oscillations grows, the beam-plasma inter­
action process becomes substantially nonlinear, and 
cannot be described analytically. Therefore, to solve 
this problem we used the method of partial numerical 
simulation. This method combines the analytic descrip­
tion of the behavior of the particles of the plasma, 
considered as a continuous medium, since the plasma 
density is considerably higher than the beam density, 
no » n1) and it can be assumed that the motion of the 
plasma electrons in the field of the wave is linear in 
character, with the simulation of the electron beam by 
single particles. The beam particles are, at the mo­
ment t '" 0, uniformly distributed over the length of 
the wave, and an equation of motion is written and the 
trajectory determined for each particle. 

The method of partial numerical simulation has 
been used to investigate the interaction between a 
monoenergetic electron beam and a collisionless 
plasma [8]. It turned out in this case that the important 
events that occur in the course of this interaction are 
the capture of the beam particles by the wave field and 
the cessation of the growth of the wave amplitude when 

m . mV'(n)'/' (J'--(Vo-Vph)'''''-_o ~ , 
e e no 

where cp is the electric potential of the wave and Vph 
is the phase velocity of the wave. Subsequently, the 
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amplitude executes undamped oscillations about some 
mean value with a frequency equal to the oscillation 
frequency of a bunch of beam electrons in the potential 
well of the wave. 

1. Let us consider the interaction of a one-dimen­
sional monoenergetic electron beam with a collision­
less plasma in the case when one wave is excited in 
the plasma. Such a situation is realized when the beam 
is modulated at the frequency wpe. The level of the 
fluctuation noise should in this case be much lower 
than the maximum value of the electric field of the 
excitable wave, Le., the condition 

v'mVol ew p• > (41tnoT I ND )"'. 

where ND (~107_108 for the usual plasma parameters) 
is the number of particles in the Debye sphere. Sub­
stituting the value of the increment into the above in­
equality, we obtain 

Vo 1 no Wp• 

V" > ND -;:;:-~-. 

It is not difficult to see that the condition obtained for 
the excitation in the plasma of one wave is practically 
always fulfilled. 

Let us derive the equations describing the interac­
tion between a monoenergetic electron beam and a 
collision plasma in the case when one wave is excited 
in the plasma. Let us for this purpose use the Poisson 
equation 

divE = -4ne(n. + nb), (4) 

where ne is the perturbation of the plasma-electron 
density and nb is the beam density, as well as the 
equation of motion and the continuity equation for the 
plasma electrons. The plasma ions can be considered 
here as being at rest. From the simultaneous solution 
of the equation of motion and the continuity equation for 
the plasma particles: 

~=--':"E-~V 
dt m " 

an. 
fjt+ div(noV,) = 0, 

taking into account the condition wpe > v, we obtain for 
the perturbation of the plasma density in the linear 
approximation the expression: 

a'n, = -no"!""(-':" aE _ ~....!...E) 
at' ax m at m 

(5) 

Differentiating the Poisson equation (4) with respect to 
the time and substituting into it the relation (5), we 
obtain (y ;S v) 

~ a'E =.!...-wp,' aE -..!....wp.'vE-41te a'n. . (6) 
ax at' ax at ax at' 

Notice that when v » y the electric field of the ex­
cited wave can be determined by equating to zero the 
two last terms on the right-hand side of Eq. (6). The 
retention, however, of all the terms in Eq. (6) allows 
us to consider the more general case when v ;:: y, and 
to compare the time dependences of the field of the 
excited wave for different values of the parameter £II,. 
within a wide range. When the ratio vly is reduced to 
unity, the form of the time dependence of the field of 
the excited wave resembles the result obtained in the 
paper[8] in which the interaction between a monoener­
getiC electron beam and a collisionless plasma is 
considered. 

The electric field of the excited wave can be repre­
sented in the form [9] 

E (x, t) = E (tj exp (ikox - iwp,t + ia (t) ], (7) 

where a(t) is the phase of the oscillation: E(t) and 
a(t) are slowly varying functions of the time (the char­
acteristic variation time for E(t) and a(t) is a quantity 
of the order of the inverse increment tH ~ 11 wpe). 
Substituting (7) into (6), we obtain 

_ [2 aE + 2iE!:!:...]exP[ikoX-iw p.t+ia(t)] 
at at 

41t8 a'n. 
=-vEexp[ikoX-iw •• t+ia(t)]-i-k ,-,-. 

w.. at 

For the above-described formulation of the problem, 
the d~nsity of the beam particles can be written as 
follows: 

N 

n.(~, t')= k ~ 6(;- ~.(t')). 
p-' 

We have introduced here the new variables ~ = koX 

(8) 

(9 ) 

- wpet and t' = t; the summation is over all the parti­
cles of the beam, lip(t') is the trajectory of the motion 
in time of the particle with the index p. We shall 
henceforth drop the prime on the variable t', bearing 
in mind, however, that alat = alat' - wpeala~. 

Substituting (9) into Eq. (8), we obtain after separat·· 
ing the imaginary and real parts and averaging over 
the time wp~: 

aE 41t8W .. ~N 
2-=-vE+-- eos(~.(t)+a(t)), (10) 

at 2n .-. 
aa 4new •• N 

2E_= __ \"1 sin(~.(t)+a(t)). (11) 
at 2n ~ ._1 

The trajectories of the motion of the beam particles 
are determined by integrating the equations of motion 

1 d's. e ] d;p (12) 
--=--E(t)sin[s.+a(t); -d =kV •. 

k dt' m t 

The system of equations (10)-(12) completely de­
scribes the behavior in time of the oscillations under 
consideration. It is convenient, for the numerical 
solution of this system, to rewrite it in terms of the 
dimensionless variables: 

E=eEm~, Emax=v'm/ek, 1J=(kV-wp,)/v, T=Vt; 

de V{ 1~ } -=-- e--~eos(s.+a) , 
d,; 2V N ._. 

(13.1) 

da ~ f. (13.~n 
-=--~sin(sp+a), 
d,; 2veN ._1 

dSp/ d,; = 'lp, df)p/d,;= -Beos (6.+ a). (13.~-I) 

The presence in the first equation of the system (13) 
of the large parameter vl2y allows us to estimate the 
maximum energy of the wave. If we assume that the 
energy of the wave attains its maximum, a~/aT = 0, 
when all the beam particles agglomerate at the single 
point with sin (lip + a) = 1, then it follows from (13.1) 
that €max = 1. 

Let us now show that the motion of the plasma elec­
trons can indeed be considered in the linear approxima­
tion. The velocity of the plasma electrons in the field 

- of the wave can be estimated as Ve ~ eEmax/mwpe, 
where Emax is the maximum electric field of the waVE' 
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FIG. 1 

at the moment of capture of the beam particles. The 
dominant nonlinear term in the equations describing 
the motion of the plasma electrons is the term 
Veavelax. Comparing it with the least linear term, 
I'Ve, we find that even at the maximum amplitude of 
the wave field y Ve IkV~ ~ wpe II' » 1, i.e., our ap­
proximation is valid. 

The system of equations (13) was integrated on an 
electronic computer, using the Runge-Kutta method. 
The electron beam was simulated by single particles 
distributed in the interval -11 :s ~ :s 11. The number of 
particles was varied in the range 25 :s N :s 500. The 
program used in the computations allowed us to carry 
out the integration with a variable spacing, achieved 
by prescribing the relative error at each step, and 
with a constant spacing, in which case a spacing was 
chosen which ensured, in accordance with the require­
ments of correctness of the problem, the stability of 
the system. 

Figure 1 shows the dependence of the energy of the 
wave on time for 50 particles. The computations were 
conducted with a spaCing h = 10-2, the initial energy 
was assumed to be equal to 10-\ and, vl2y = 30. The 
result did not change when the number of particles was 
further increased and the integration spacing was de­
creased. The result also did not depend upon the mag­
nitude of the initial energy. In accordance with the 
linear theory, co: ~ eT when co: « 1. As T increases, the 
rate of growth of the energy decreases, and at T ~ 10 
the energy attains its maximum value E: ~ 0.75. This 
value is 2ylv times smaller than the level attainable 
by the energy of the wave when the electron beam inter­
acts with a collisionless plasma[81• 

The variation of the energy with time (Fig. 1) in our 
case differs essentially from the case of the collision­
less plasma, when the beam particles gather into one 
bunch before their capture by the wave and the energy 
of the wave oscillates about some mean value with a 
frequency equal to the frequency of oscillation of this 
bunch in the potential well of the wave. In our case the 
oscillations of the energy are random, the degree of 
randomness increasing as T increases. 

Figure 2 shows the dependence of the velocity IJ of 
the particles relative to the wave on the coordinate ~ 

at different moments of time T. As follows from Fig. 
2c, which corresponds to the maximum energy value, 
the beam particles do not have time to completely ag­
glomerate before their capture and possess appreci­
able velocity, as well as coordinate straggling. It is 
natural, therefore, that the capture of a portion of the 
particles by the wave cannot lead to orderly oscilla­
tions of the energy. The capture does not also lead to 
damping of the OSCillations, since the violation of the 
condition for the buildup of the oscillations with the 
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FIG. 2 

maximum increment is, on account of the decrease of 
the velOCity of the beam particles, compensated by the 
phase change 0'. It is as if the beam is "tuned up," and 
the energy, having fallen to a level considerably lower 
than in experiments with a collisionless plasma, begins 
to increase again. The beats observable in the graph of 
the function E: ( T) are connected with the presence in 
the system of two characteristic times-the oscillation 
time of the particle bunch in the potential well of the 
wave and the variation time of the potential well itself. 

It is clear from the foregOing that a numerical ex­
periment on the excitation of a single vibrational mode 
cannot yield the correct picture of the instability under 
consideration. In fact, in the interaction between an 
electron beam and a plasma, the increment of the 
resulting instability is, depending on the detuning (we 
call the quantity w = kvo - wpe detuning), not a 6-
function, and there is a buildup in the plasma of not 
one wave, but a wave packet. This circumstance was 
taken into account in subsequent experiments. 

2. The system of equations describing the behavior 
of the plasma-beam system when a wave packet is ex­
cited in the plasma is obtained by the method described 
in Sec. 1, with the only difference that the condition 
{3kV = wpe, where {3 is the number of the harmonic 
which builds up with the maximum increment, must 
now be fulfilled. In terms of the dimensionless vari­
ables 

-r= 'It, 

!;=kox-~t 
~ 

~kV - OJ p • 

'I 

the system of equations have the following form: 

d1]p 4 \"1 . 
d£p/dt = 1]., dT" = -13 LI ejsm[~£p + (tjl. 

, 

(14) 

Here, ~ = kV - wpet/{3, {3 is the number of the reso­
nance mode, and l; = {3 + j, where j = ± 1, ±2, 
± 3 .... is the number of the nonresonance mode. When 
1) = {3 = 1 the system (14) goes over into the system 
(13 ). 
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FIG. 3 

FIG. 4 

The system (14) was integrated by the Runge-Kutta 
method with the following values of the parameters: 
N = 500, wpe/2y = 50, and v/2y = 10. The velocity 11 
of the beam relative to the wave was set equal to 
unity. The time variation of the amplitude and phase of 
the 8th, 9th, 10th, 11th, and 12th harmonics was inves­
tigated. 

The plot of the function E ( T) for five harmonics is 
shown in Fig. 3. It can be seen that at the initial stage 
the waves behave in accordance with the linear theory. 
The 9th harmonic has the maximum increment, fol­
lowed by the 10th and the 8th; there is no buildup of the 
11th and 12th harmonics. After the first maximum the 
oscillations become randomized and attenuate. Figure 
4 shows the dependence on the coordinate of the velocity 
of the beam particles relative to the wave at different 
moments of time. It is easy to see that there is, even 
at the moment of capture, a more considerable spread 
in the velocities and coordinates than in the case of 
one wave. A complete thermalization of the beam oc­
curs at T = 25, and the oscillations attenuate. 

It follows from the foregoing that for the indicated 
beam and plasma parameters, yo < v < wpe; in the 
case when a packet of oscillations is excited in the 

plasma, the beam becomes thermalized. This leads to 
the damping of the plasma oscillations, in accordance 
with the relation (1), and allows the beam to freely pass 
through the plasma without any appreciable change in 
its energy. The mean free path will not, in the present 
case, be related to the instability, but will be deter­
mined by the dissipation of the reverse current, and is 
in order of magnitude equal to xo>::::: vollo/vnpol. 

The results of the present paper can also be applied 
to the relativistic beam, since the introduction of the 
relati vistic factor will affect only the normalization of 
the systems (13) and (14). 

It should be noted that the results obtained above in 
the case of a steady injection of a beam into a bounded 
plasma are valid so long as the plasma temperature 
and, consequently, the collision time do not, owing to 
the dissipation of the reverse current, increase so 
much so that the condition (3) is violated. In that case 
the slowing-down length will be determined by the 
quasi-linear theory[3-51 and may be substantially 
smaller than the value xo given above. 
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