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It is shown that intense laser radiation can be used to accelerate atoms. In a field of a special type 
(22) the effective atomic potential takes the form of a sinusoid mOving with uniform acceleration. The 
captured atoms have an acceleration proportional to the rate at which the field frequency is varied. 
It is shown that under the conditions which can be attained in practice the veloCity of the atom during 
its excited state lifetime may reach 108 cm/sec. 

IN this paper we investigate the question as to whether 
high-intensity laser radiation can be used to accelerate 
atoms. The force acting on an atom in an external field 
is expressed in terms of the real and imaginary parts 
of the atomic polarizability. The force associated with 
energy dissipation is, in fact, the force of recoil which 
occurs during the absorption or emission of a photon, 
and this changes the momentum of the atom by an 
amount of the order of the photon momentum tik. Some 
of the effects associated with the force of recoil are 
considered in [1,2]. The other part is the ponderomoti ve 
force connected, as in a continuous medium [3], with the 
gradient of the electromagnetic energy density. In a 
strong field this force will be quite large, so that the 
acceleration of the atoms while they are in the upper 
working levels can be substantial. 

We shall consider some general expressions for the 
force acting on at atom. We shall then investigate the 
motion of the atom in the field of a special form [Eq. 
(22)], and will determine the acceleration effect. 

1. THE FORCE OF AN ATOM 

Let us begin by considering the general expression 
for the force acting on an atom in a resonance radia­
tion field 

(1 ) 

where E(t, r) is the slowly varying amplitude of the 
electric field which is such that dE/ dt « wE. We shall 
use the Lorentz formula for the force F acting on the 
atomic dipole moment 

p(t)e-'·' + p·(t)ei .', pit) = Sp(p(t)d), (2) 

which is induced by the external field. In these expres­
sions p is the atomic density matrix and d is the dipole 
moment operator for the working transition. USing the 
Maxwell equation 

iwH = c rot E, (3) 

in the resonance apprOximation, we obtain the following 
expression for the force: 

F.= .EPJ(t)V.E/+c.c. (4) 
I 

To obtain the final answer to our question we must 
solve the equation of motion for the atomic density 
matrix p with the Hamiltonian 
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H = M + dE' + d+E, (5 ) 

where t:. = wo - w is the frequency detuning and Wo is 
the transition frequency. 

To establish ~he orders of magnitude we shall sup­
pose that E N elk' r, k = kl + ik2, and kl and k2 are 
the real and imaginary parts of the wave vector: 

F=F,+F2 ; (6) 

F, = -ik,(p·E-c.c.), F2 = k,(p'E + c.c.). (7) 

In a progressive wave of constant amplitude the atom 
experiences only the force F = F 1 which is proportional 
to the field energy 1m (p*E) dissipated in the atom per 
unit time. The order of magnitude of this force is Fl 
""hk1y , and y-l is the lifetime of the excited state. The 
total momentum transferred to the atom while it is in 
the working state can be written in the form 

00 

J dtF, (t) = ± tik, W, (8) 
o 

where W is the probability of stimulated emission or 
absorption of a photon of the external field, and the 
sign is determined by the initial difference between the 
level populations. Thus, in the simplest model of a 
two-level atom in which both levels have the same 
lifetime y-l we have for the progressive monochro­
matic wave 

2d2 1EI' 
(9) W 

ti2(V'+t12)+4d2IEI' . 

In this expression d is the matrix element of the 
dipole transition. It follows that the force of recoil as 
a function of frequency is described by the Lorentz 
curve with a maximum at the line center. In a weak 
field, W is small, whereas in a strong field W = %. 
The momentum transferred to the atom is shown by 
Eq. (6) never to exceed tik 1 • 

Let us now consider the ponderomotive force F2 
which is associated with the field gradient. We shall 
restrict our attention to the case of a strong field, Le., 

dIEI~1iy. 

The force F2 can be quite large if the condition lit:. 
,'" diE I is satisfied. 

(10) 

We shall now find the final expression for the force 
in the following important case of a quasistationary 
field: 

dEl dt «:; t1E. (11) 
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In this case, we can readily show that the induced 
dipole moment is 

. d'E 
p(t) = lillELho lI, (12) 

liE' = lI' + 4d'i E I' Iii'. 
In these expressions we have not taken into account the 
decay of the atomic states (6oE is the value of 60E at 
the initial time of excitation). In the model which we 
shall consider below, 60E is much less than no (the 
characteristic frequency of the captured atoms). For 
this reason we have neglected in (12) the terms which 
oscillate rapidly with frequency 6oE. We then have the 
following effective potential for the atom in the reso­
nance field. 

F,= VU, 
(13) 

The frequency dependence of the potential is shown in 
Fig. 1. It is important that the maximum value of the 
potential (Um ) is of the order of dE. For comparison, 
let us consider the potential of a charged particle 
placed in the same field. According to[4] we have 

U= (e/2Mw)'IEI'. (14) 

Comparison of Eqs. (13) and (14) can conveniently be 
carried in terms of the atomic units. In these units 
Um ~ E, for the electron U ~ E2, and for an ion 
U ~ (E/M)2. Thus the atomic potential in the light field 
which is small in comparison with the atomic Coulomb 
field (E « Eat) has its maximum value: It is greater 
by the factor Eat/E than the potential of the electron. 
It is clear that this fact and the uncertainty in the sign 
of the potential (13) are connected with the resonance 
character of the interaction. In a weak field dE « fi a, 
and 

U=±d'IEI'/M. (15) 

In this case, the Stark shift is quadratic in the field. 
In a field of the order of 3 x 106 V / cm, the atomic 

potential Um is of the order of the kinetic energy of 
the atoms at room temperature. An atom placed in a 
field of a standing wave of this amplitude changes its 
energy by a substantial amount over a very small dis­
tance (a quarter of the wavelength). In the next section 
we shall show that, in the field derived from the poten­
tial which is in the form of a uniformly accelerated 
sinusoid, the energy can increase by an amount of the 
order 

where Vo is the characteristic initial velocity of the 
captured atom. 

FIG. 1 

(16) 

2. ACCELERATION OF ATOMS BY A NONSTATIONARY 
FIELD 

ConSider, to begin with, a field of the form (17) 

E = E,exp{i(k + Q / c)x - iQt}+ E,exp{-i(k - Q I c)x + iQt} , 

where El and E2 lie in the plane perpendicular to the 
x axis, and k = w/c. We shall suppose that 

(18) 

and this enables us to use Eq. (13) or, in a weak field, 
the expression given by Eq. (15). For the sake of 
simplicity, we shall use the latter case: 

F, =F sin (2kx- 2Qt+<p), F=4d'kIE,E,'1 / M, (19) 

where cp is a phase constant. 
If the Mandel'shtam-Brillouin resonance condition 

Q =kv, (20 ) 

is satisfied for an atomic velocity v, the atom ex­
periences a constant force. However, this force modi­
fies the velocity of the atom, and the condition given 
by Eq. (20) is violated. On the average, therefore, the 
atoms move with constant velocity: captured atoms 
move with a velocity n/k and uncaptured atoms with 
a velocity determined by the initial conditions. 

To ensure that the resonance is not violated during 
the acceleration process, n must change with time in 
such a way that Eq. (20) is satisfied at all times. To 
investigate this, consider the superposition of two 
fields for which the frequencies are linear functions of 
time: 

.Q(t) = Qo + Qt, (21) 

where n is the constant rate of change of the frequency. 
Instead of Eq. (17), we now have 

E= E, exp {i[kx-Qo(1- x/ c) - ,/,t!(t - x/ c)']} 
+E,exp {i[-kx+Qo(t+x/c) +'/,Q(t+x/c)']}. (22) 

This field clearly satisfies the wave equation. In the 
next section we shall consider how a field of this kind 
can be used in practice. 

The formula for the force now takes the form 

F,=Fsin (2kx-2Qot+Q(t'+x'lc'». (23) 

The phase of the wave determined by Eq. (23) contains 
a term which is nonlinear in x, and is multiplied by 
the small coefficient c-2. So long as x < c/ In, this 
term is small and can be ignored. In the numerical 
example discussed below, i2 = 1020 Hz2, so that the last 
condition means that x < 3 cm. When x > c/ Ifi, the 
nonlinear term becomes greater than unity. However, 
so long as it is less than the linear component, Le., 

x<ilf,L=wc/iJ., 

this can be ignored. This estimate will be justified 
later. For the moment, we shall adopt Eq. ~24) as 
valid, and will neglect the term including x in Eq. 
(23). 

(24) 

Thus, over the region x « L, the constant-phase 
front of the force F x propagates with uniform accelera­
tion. To analyze the motion of the particles in this 
case, let us transform to the uniformly accelerated 
set of coordinates: 
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x=x.(t) +y, x.(t) =v.t+at'/2; 

kvo = Qo, ka = Q. 

(25) 

(26) 

It is clear from Eq. (26) that the resonance condition 
(20) is now satisfied for the mean velocity v(t} =0 Vo 
+ at. In the new coordinate system the equation of 
motion for the particles is 

i+ a = (F I M)sin(2ky +<1'), (27) 

where M is the mass of the atom. This equation is 
well known and describes the so-called pulling phenom­
ena (for example, the frequency pulling in a rotating 
laser[51). The particle now moves in the field of the 
potential 

U(y) =May+ Uocos (2ky+<p), Uo=F 12k, (28) 

shown in Fig. 2. As long as the acceleration does not 
exceed the maximum value 

Let us suppose that Vo =0 105 cm/sec, k =0 105 cm-t, 
00 =0 1010 Hz, and A =0 10 13 Hz. The adiabatic condition 
(11) can be written in the form O(t} «A and, during 
the initial stage of acceleration, this is easily satisfied. 
Next from the condition 1) =0 1 and for M '" 10-24 g we 

, 6 
have Uo =0 0.03 eV and E = 2 x 10 V/cm. In the last 
estimate the dipole moment of the transition is as­
sumed to be equal to 1 d. According to Eq. (31), we 
then have nm = 1020 Hz2. The acceleration parameter 
is restricted by the lifetime of the atom in the working 
level T = y-1. For T = 10-7 sec, we have OoT = 103 • 

Therefore, in the present example, the velocity of the 
captured atoms at the end of the acceleration process 
is 108 cm/sec and the energy is 3 keY. The path length 
is 5 cm. We note that when t = T we have 0 = 1013 Hz, 
so that, at the end of the process, the adiabatic condi­
tion (11) is violated. 

(29) 3. DISCUSSION 
there is a bunch of captured particles which lies in 
this region of the potential (shown shaded in Fig. 2). 
The number of captured particles depends on the two 
parameters 1'/ =0 2Uo/Mv~ and a/am. If the wave propa­
gates at constant velocity then for 1'/ ~ 1 the fraction of 
captured particles is of the order of unity, and for 
1'/ « 1. The fraction is of the order of 1'/. Transition to 
the uniformly accelerated motion is accompanied by 
the fact that a fraction of the captured particles enters 
the continuous spectrum. The number of the remaining 
particles can be estimated very approximately by the 
ratio of the shaded area to the area bounded by the 
potential curve and the broken line. The corresponding 
formulas are quite complicated and will not be written 
out here. 

The condition for the existence of captured particles, 
a < am, imposes a restriction on the rate at which the 
frequenc y can be varied, i.e., 0 < n m =0 kam or 

Qm = 2k'Uo I M. (30) 

The maximum rate of change of the frequency is thus 
seen to coincide with the square of the frequency of 
small oscillations of the captured particles about the 
minimum potential A. 

For further estimates it will be convenient to write 
the last condition in the form 

(31) 

Let us now consider the acceleration of the captured 
atoms. For the maximum possible acceleration we 
have 

(32) 

The case ,., ~ 1 is, clearly, of particular interest, 
since here the fraction of captured particles is of the 
order of unity. In this case, for large t we have 
vm(t}/vo =0 Oot. It is precisely for this situation that 
we shall consider the following numerical example. 

FIG. 2 

Let us now consider the assumptions adopted in the 
course of the above calculations. 

1. In connection with the field given by Eq. (22), we 
must consider the following pOints. A field with a fre­
quency varying linearly with time can be obtained in 
various ways. We shall consider the simplest case, 
Le., that in which the variation is achieved by varying 
the length of a Fabry-Perot resonator. This turns out 
to be sufficient to realize the numerical value adopted 
for Om above. 

If one of the mirrors of the resonator travels in ac­
cordance with the law 01 (t), the radiated frequency is 
given by 

i+1l1(t)1l ' (33) 

where wand l are the initial frequency and length of 
the resonator. Hence, we find that for small displace-
ments 

Q=vwll, (34) 

where v is the velocity of the mirror. The value 0 
= 1020 Hz2 in which we are interested can be achieved 
by adopting w = 1015 Hz, v = 105 cm/sec, and l '" 1 cm. 
We must, however, take into account the restriction on 
this mechanism of frequency "acceleration" due to the 
finite Q of the resonator. The total change in the fre­
quency, Aw, during the lifetime of the photon in the 
resonator with a moving wall can be written in the form 

L\Q = 2kv / (i-H), (35) 

where R is the reflectance of the mirror. This formula 
has a very simple interpretation: 2kv is the shift in 
the photon frequency when it collides with the wall, and 
(1 - Rt1 is the number of collisions. To obtain AO 
= 10 13 Hz for kv '" 1010 Hz we must have a transmittance 
1 - R '" 10-3 • 

Thus, the field generator necessary for our problem 
can be of the form illustrated in Fig. 3. At the initial 
time we have two identical resonators filled with mono­
chromatic radiation of frequency w. The mirror of one 
of the resonators then moves in the outward direction 
with velocity v, and the mirror of the other resonator 
moves in the inward direction with the same velocity. 
As a result of the interference between the two fields 
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n ----------u= v --------- v 
---------
--------
--------

FIG. 3 

in the space between the two resonators, we have the 
effecti ve potential with takes the form of a sinusoid 
mOving with uniform acceleration. 

2. Let us now consider the condition given Eq. (24). 
It will be convenient to substitute . 

x = xo(t) + Qx' / 2wc + y. (36) 

If we look upon x2 as a small quantity in this equation 
we have instead of (27) , 

.. ( xo+ y) t. . 
(y+a) t+-L- +T(xo+y)'=Fsin(2ky+<p). (37) 

The amplitude y for the captured particles is of the 
order of the wavelength. We therefore have y « xo 
and y/xo - 1/007 « 1. Neglecting y and y on the left­
hand side of Eq. (37), we obtain the criterion given by 
Eq. (24), Le., Xo « L (for the above numerical exam­
ple L = 105 cm). It is clear that this condition can be 
written in an equivalent form as a restriction on the 
time: 

(38) 

In the above example T = 10-5 sec. 
3. Let us now estimate the minimum power neces­

sary to realize the above model. This is determined 
by the field strength E = 2 X 106 V / cm and the mini-

mum beam cross section AX necessary to produce a 
uniform field over a distance of the order of x. For 
x = 5 cm and A = 5 X 10- 5 cm we have AX = 2 X 10-4 

2 ' cm . Hence, we find the power flux of 10 10 W/cm2 and 
a power output of 2 x 106 W. The total energy con­
sumed is less than 1 J. The total number of particles 
which can be accelerated by this method for an expendi­
ture of 1 J in energy is estimated to be of the order of 
10 15 • 

We are indebted to S. I. Anisimov and V. L. Pok­
rovskii for valuable discussions, and to S. G. Rautian 
for discussions and a number of very valuable sug­
gestions. 
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