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High-energy shadow corrections are expressed in terms of the cross sections of inclusive processes. 
It is shown that shadow corrections determined with a high degree of accuracy yield additional infor­
mation about the mechanism of inelastic processes. Comparison of the computed corrections with ex­
perimental values shows that antishadow effects playa significant role in rescattering for large mas­
ses in the intermediate state. 

I N experiments on the scattering of Tf mesons by deu­
terons and nucleons carried out recently on the Serpuk­
hov accelerator, the Glauber corrections CIJ to the total 
Tf-d scattering cross sections were measured with a 
high degree of accuracy at energy intervals of 15-60 
GeV[2J. Thus, there arose the possibility of a detailed 
comparison with experiment of the theoretical computa­
tions of the Glauber correction carried out under vari­
ous assumptions about the mechanism of rescattering 
of an incident particle by the nucleons constituting the 
deuteron. As was indicated by Abers et al. [3J , at 
impinging-particle energies of the order of several GeV, 
besides elastic rescattering of the impinging particle 
by the deuteron nucleons (Fig. 1a), processes involving 
inelastic rescattering begin to play an appreciable role 
(Fig. 1b): at relativistic energies the formation of a 
particle group with an invariant mass M becomes possi­
ble at small momentum transfers t, so that after the 
interaction with the impinging particle, the nucleons ag­
glomerate again to form a deuteron. 

Let oT(E, 0) be the shadow or Glauber correction to 
the scattering amplitude for a particle with energy E 
which undergoes zero-angle scattering on a deuteron: 

6T(E, 0) = Tp(E, 0) + Tn(E, 0) - Td(E, 0). 

It is described by the sum of graphs of the type shown 
in Fig. 1 a) and b) [4J , and can be expressed in terms of 
the amplitude A(t, s, s', M2) of the process shown in 
'Fig. lc and the deuteron form factor Set): 

1 ~ ~ 

bT(E, 0) = - -, S dM'S dk'A (t, s,s;M')S(4t), (1) 
iBn . 

_00 0 

where t = - (M2 - /J. 2)2/ 4E2 - k2, /J. is the mass of the im­
pinging particle, and h = 2mE (m is the nucleon mass). 
The contour integration over M2 is shown in Fig. 2. 

The poles in the M2 complex plane correspond to 
elastic processes in the forward and crossed M2 chan­
nels of amplitude A(t, s, s', M2) (Fig. 1a); their contri­
bution to the amplitude (1) and to the total cross section 

cr (E) = (1Bn') -. 1m T (E, 0) 

is called the elastic Glauber correction oUel. The cuts 
along the real axis are connected with the Singularities 
of the amplitude A(t, s, s', M2) in the forward and 
crossed M2 channels; their contribution to the integral 
(1) is the inelastic shadow contribution oUinel. The cuts 
in the M2 complex plane is connected with the singulari­
ties of the form factor S(4t). 

835 

a b d 

g h 

FIG. 1 

M' 

FIG. 2. The contour integration in (I). 

In the inelastic- tescattering amplitude the interaction 
with each nucleon is realized by means of a Pomeran­
chuk pole exchange in the t-channel (Fig. 1d). The am­
plitude of each interaction with a nucleon is then almost 
purely imaginary. It is easy to obtain from formula (1) 
the usual expression [4J for the elastic Glauber correc­
tion to the total cross section: 

11 -.2.~Sd dcr(E,t) 8(4) 0.,- t--d - t. 
o t 

(2) 

Here, du(E, t)/dt is the differential cross section of 
elastic scattering on a nucleon (Fig. lb); we used in the 
derivation of (2) 

1m A (t, s, s, M') = - (i6n') 'II(M' _ Il') dcr(E, t) . 
dt 

Let us now proceed to consider the contribution of the 
inelastic processes to the shadow correction. At com­
paratively small M2 - in the region of resonance produc­
tion-the inelastic processes are similar to the elastic 
ones: they are due to a Pomeranchuk-pole exchange in 
the t-channel. In this region of M2 the amplitude 
A(t, s, s', M2) can also be represented in the form of a 
successive exchange of P-poles (Fig. If). Just as in the 
case of the elastic rescattering, the imaginary part of 
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A(t, s, S, M2) is connected in this case only with the 
singularities in the M2-channel: 

aa(t,E,M') for ~ M' M' 
1m A (t, s, s, 14') = - (16n')' dt dM' min OS;;; OS;;; 0, 

where da(t, E, M2)/dtdM2 is the cross section of inelas­
tic production on a nucleon (Fig. Ig). For negative 
values of ~, the amplitude A(t, s, S, M2) has similar 
imaginary parts connected with the Singularities in the 
crossed channel. Thus, the processes with compara­
tively small M2 (diffraction dissociation) make to the 
shadow correction a contribution similar to that made 
by the elastic rescattering[4,5J : 

d M,/ -:» do (t, E, M2) 
~Oinel = 2 ~ dM' ~ dt dtdM, S (4t), (3) 

M~in fmin 

where Mo is a quantity of the order of 2 Ge V. 
In the integral (1), however, M2 ~ E/R are substan­

tial (R is the radius of the deuteron). This means that 
as the energy inc:reases the range of the integration 
over M2 broadens. If we represent the amplitude of the 
inelastic process at large M2 in the form of a series of 
terms with exchange of different reggeons (one of such 
terms is shown in Fig. Ih; bi is the trajectory of a reg­
geon), then the spectra of da(t, E, M2)/dtd~ are des­
cribed by the three-reggeon diagrams of Fig. li. Scale 
invariance of the spectra requires that a(O) be equal to 
unity in this description, i.e., that the upper reggeon be 
a P-pole. The cross section da(t, E, M2)/dtdM2 can be 
represented in the form of a series: 

da(t,E,M') 

dtdM' 

'\""'1 da(b/, b/) + '\""'1 do (b,-, br) 
.t... dt dM' .t... dt dM' 

i,j i,i 

(4) 

Each of the terms in this series corresponds to a con­
tribution made by diagrams of the type shown in Fig. li 
with a positive (+) and a negative (-) signature. The 
individual terms in this series depend on M2 and s as 

S-1(S/M2)bi + bj-l. The summation is over all possible 
values of i and j, and this leads to the appearance in (4) 
of two interference terms corresponding to the inter­
change of i and j. 

Analysis of the three-reggeon diagrams carried out 
in the Appendix shows that the contribution made by 
large M to the shadow correction can be written in the 
form • -_ 

,sa'n,' = ,sa!,,- 2 J dM' S dt S(4t) 
M02 tmin (5) 

x '\""'1 { i do (b,+, b,+) _ 1 da(b,-, br) }. 
.t... cosnb/ dtdM' cpsnb, dtdM' 

i,} 

Entering into formula (5) are terms making positive, as 
well as negative contributions to the Glauber correction. 
The negative contributions constitute an antishadow cor­
rection. 

If the spectra are determined by the sum of the con­
tributions with bt = bt = 1 and b7 = b7 = 0, then formula 

1 J 1 J 
(5) becomes entirely similar to formula (3): 

OPR d s·, S-- () da(t,E,M') 
/10, •• , = /lafn,' + 2 dM dt S 4t dt dM' . (6) 

Mo' 'm.in 

Such a form of the shadow correction was proposed by 
Gribov[4J , Pumplin and Ross [5J. If there are no anti­
shadow terms in (5), then the Gribov-Pumplin-Ross 
formula yields the minimum possible-in this case-

shadow correction. Indeed, in this case, all the terms 
in (5) are pOSitive, and the minimum value appears when 
cos 1Tbi = -1. 

The experimental values of the spectra at fixed t 
(Fig. 3) outside the region of resonances practically do 
not depend on M2. Such behavior served as a basis for 
the description of the particle-production processes by 
means of diagrams with exchange in the t- channel of the 
poles with bi = %(P', p, w) [9J. As can be seen from 
formula (5), the description of the spectra by means of 
the single pole with b; = % is unsatisfactory: the ampli­
tude A(t, s, S, M2) the1n becomes infinite and makes an 
enormous contribution to the shadow correction. There­
fore, to explain the constancy of the spectra, we need 
some other, more complex mechanisms. 

1. The constancy of the spectra can be obtained by a 
superposition of two or more poles with bi close to %. 
Suppose there exist two noninterfering poles: bl = % + 6 
and bz = % - 6. Such a mechanism provides constant 
spectra at large M2 and a bounded correction to the 
amplitude A(t, s, S, M2). In this case 

• d S·, ( 2 M') -S~ da(t,E,M') (7) ,sai",,=l5a'ne,-2 dM 1+-1n- dt M S(4t) 
Mo' n S 'mir dt d ' , 

2. There exist two poles with b = % but with different 
signatures. As in the previous case, the infinite parts 
in the amplitude A(t, s, S, M2) cancel out, and the contri­
bution to the inelastic shadow correction from the region 
of large masses is finite for constant-with respect to 
M2 -spectra. In this case the contribution made by large 
masses to the amplitude A(t, s, S, M2) is the inverse of 
the contribution from small masses: 

+- d S· -S- da (t, E, M') (4) 
,sai"" = ,sain,' - 2 dM' dt dt dM' St. 

M2 t. ' o nlln 

(8) 

3. The constancy of the spectra is explained by the 
superposition of the diagrams with b+ = 1 and b+ = O. In 
this case the contribution of the pole with b = 1, which 
falls off as 1/M2, will combine with the second pole's 
contribution, which grows proportionally to M2 and is an 
antishadow correction. We emphasize, however, that the 

AQ...tl ' b/GeV' 
dtdM toO 
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FIG. 3. Experimental spectra: a-1T-p interaction, E = 2S GeV-ac­
cording to [6]; b-1T-P interaction, E = 40 GeV-according to [6]; c-p-p 
interaction, E = 19.2 GeV-according to [7]; d-p-p interaction, E = 30 
GeV-according to [8]. 



SHADOW CORRECTIONS 837 

b = 0 pole cannot be only a 7T-meson pole; for in that 
case, owing to the fact that an exchange of the state 
with isospin 1 occurs in the t-channel, the neutron yield 
should, in the corresponding range of values of momen­
tum, be two times higher than the proton yield. This is 
at variance with experiment. The formula for the inelas­
tic shadow correction (with allowance for inelastic 
charge exchange) has the form 

/)Oi~:'= /)Oi~"+2'S~ dM' -S~ dtS(4t) {dO(b= 1) do(b=O) t. (9) 
Mo' 'min dt dM' dt dM' f 

The results of numerical computations carried out 
with the formulas (6)-(9) are shown in Table I. The 
spectra shown in Fig. 3 were used in the computations; 
the deuteron form factor was determined from experi­
mental data[10] and was chosen in the form 

S (t) = O.55e"" + O.45e"", 

a, = 19.66 Ge y-2 , a, = 4.67 Ge y-2 • 

In Fig. 4 are shown the results of the computations, 
together with the experimental values of the Glauber 
corrections in 7T_d[2] and p_d[u-13] collisions. The 
errors in the computed shadow corrections are connec­
ted mainly with the errors in the experimental deter­
mination of the index of the exponential function in the 
dependence of the spectra on t (Table II). Furthermore, 
the considerable error in the computations with the 
formulas (7) and (8) leads to an inaccurate determina­
tion of the value of Mo at which a change of regime oc­
curs in the behavior of the spectra. The values cited 
correspond to Mo = 2 GeY. 

Comparison of the experimental data with the results 
of the computations shows that antishadow effects of the 
inelastic processes with large M2 make an appreciable 
contribution to the Glauber correction. Indeed, as has 
already been mentioned, the minimum, purely shadow 
contribution from large M2 is determined by the Gribov­
Pumplin-Ross formula, i.e., formula (6). The experi­
mental values for the shadow corrections lie subs tan-
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FIG. 4. Shadow corrections fjo = fjoel + fjoinel for a-1r-d interactions, 
and b-p-d interactions: /:;. represents fjoinel computed from formula (6), 
\Lfjoi~el computed from formula (7), O-fjotIi"el computed from for­
mula (8), and O-fjo~el computed from formula (9); the dots (e) rep­
resent experimental data for a) 1r-d collisions [2] and b) p-d collision 
[ 1l-13]. 

Table I 

E,GeV Sael, mb I GPR I l5ot nt'l. mb &a!!!el,·mb &cJ;;'l. mb &Cl~neh.mb 

p--d interactions 

19.2 I 3.37 t o.06 11.33t0, 15 1 0.55tO.20 0.39tO.25 Q.71±0.25 
30 3.30±0.06 1.28±0,18 0.44±0.22 0.25±0.26 0.72±0.26 

7T-d interactions 

25 11.34±0.031 0,89+0.08 1 0.53±0.12 0.38tO.21 O. 70±0. 21 
40 1.30±0.03 0.92.f0.09 0.44tO.13 0.17±0.23 0.63±0.23 

Table n. The nucleon quantities b(E, M2) [Gev-2] 

7T-p collisions P-P collisions I 
-M-'-,-Ge-v-'-'I-E-=-1-9.-2-Ge-v~I---30-G-e-V----M-'-,Ge--V-''I--E-=-2-S-G-eV--'---4-0G-e-V--

1.20-1. 75 
1.75-2.00 
2.00-2.50 

>2.50 

7.7±0.4 
6.1±0.8 

7.7±0.4 
5.7±0.8 
5.2±0.8 
5.2±0.8 

tially below the values given by this formula. Such a re­
duction in the shadow correction can be caused only by 
antishadoweffects. 

The study of shadow corrections, USing deuteron as 
an example, may prove to be quite an effective tool for 
the elucidation of the structure of inclusive processes 
in the region of small M2/s. This is connected with the 
fact that in formula (5) figures an additional factor 
l/cos 7Tb which enhances the contribution of the reggeons 
with b close to %. 

The authors are profoundly grateful to Yu. M. Anti­
pov, L. G. Landsberg, and Yu. D. Prokoshkin for a dis­
cussion of the experimental situation, and to Y. N. 
Gribov, A. B. Kaldalov, and L. A. Kondratyuk for 
theoretical discussions. 

APPENDIX 

Let us consider the simplest six-line diagram of the 
three-reggeon type shown in Fig. 5. Its amplitude is 
equal to 

A (t s s' M')=~S~ A (s"k')Bv;"t,k')B(s,',t,k') (A 1) 
bb '" s' (2n)'i (k'-,.')'[(k-q)'-,,']· • 

We shall assume that the two-particle amplitudes A 
and B for large SI and S2 have the Regge asymptotic form 

A(s'l=-.A_{(_..!!...)" +(~)"}, 
SIn tea mo2 mo2 

B(t) {( --. s. )"(1) ( S. ) .(.)} 
B(s" t) . b(t) - --; + --;: , 

Sinn rno mo 

where m~ is some quantity (which may be a function of 
.k2) of the order of the particle masses. This notation 
is, of course, arbitrary. The addend (-s1/m~)a has, in 
fact, a right- hand cut starting from some finite value of 
sl-from S1 = m~ , say. At the upper shore (the physical 

1 
region) of this cut this term has the complex phase 

~ 
P'..(~·~ h: 

P,-f P,'-f 

FIG. 5 
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e- i1ra , and at the lower shore, the phase e i1ra. Similarly, 
the term (s1/m~)a has a left-hand (a u-channel) cut 
starting from S1 = -m~ , and the lower shore of this cut 
is the physical region. 1 

Let us introduce the Sudakov variables [14] : 
P "'" Ii + '1P', p. = p. + '1p, p' = P.' = 0, '1= m'/s; 

q = ~Ji + aJi. + q.L, P.' = WP + a'p. + P.c, k = liP + apt + k.L; (A.2) 
q1.' =-q', P.L' = -p', k.L' = -k'. 

We consider the amplitude in the region where 
(p + q)2 = M2 « s = (p + P1)2 and s' = (p + pi)2 ~ s·. Then 

M2 t m'M' "s', t-2m' 
a.""-, 11.""----, t=-q, a =-, II =-M' . 

s s s s s 

Leaving in the arguments of the integrand only the dom­
inant terms in the expansion in powers of sand M2, we 
obtain 

Abb(t,s,s',M')= ;s (2~)'jS dadlld'k 

A (- sa)B(~s, q')B(lIs', q') 
X~~~~~~~~~~~~~~ 

(ails - k' - ,.')'[ (a - aq) lis -(k - q)2 - ,.'1 

(A.3) 

The product ABB consists of eight terms. These 
terms will be denoted by A(S1' S2, s~), A(U1' S2, s~), etc., 
depending on whether the s- or the u-channel part is 
chosen in the amplitudes A and B. Let us consider the 
term A(Sl' S2, s~) (we set, for Simplicity, q = 0): 

A (s., s" s,') = ~_1_ AB' S --:-d-:-:ac-:d~II_d'_kc-:c-:_---:-:-_~ 
2s (2n)"i (al\s-k'-,.2)2[(a-aq)l\s-k'-,.'1 

x(- ~:,) a (!:,) b (~:,) b. (AA) 

In the {:3 plane the integrand has two cuts: -(:3s = m2(s2) 
and - (:3s' = m2(s~), and two poles: 

k'+,.' k'+,.' 1\.=--,1\,= . 
as (a - aq)s 

When Ci < 0, all the singularities are located in the 
upper half-plane, and the integral over {3 is equal to 
zero. When 0 < Ci < Ciq, the pole t(! = JJ. 2 passes over to 
the lower half-plane, and when Ci > Ciq, also the pole 
(k - q)2 = JJ. 2 (Fig. 6a) and b). Deforming the contour of 
integration in the (:3 plane to include the poles, we obtain 

A(s"s"s,')= 2~::;'iAB2 S d2k{j da 
'q 

-:-_1-,-[ (- aSlm,,)a(lIslm,')b(l\s'lm,')b] 
x (a _ aq)s (ails _ k' _ ,.')' ,~" 

+ SWda_1_[ d (-aSlm,')4(lI slm,')b(lIs'lm,')b] }. (A.5) 
, (as)' dll (a-aq)lIs-k'-,.' '~" 

The three-reggeon amplitude should have the form 
(M2)a(s/M2)b(s'/M2)b, i.e., three must be a root-type 
Singularity in Ci q. The second term in (A.5) does not 
have such a singularity and should therefore be dropped. 

Making a change of variables Ci = uqx in the first 
term, we obtain 

S b S') b C 
A(s.,s"s,')=e-;a·(M,)a(M') (M' 7' 

If q f 0, then 

C(q') 
~. 

(A.6) 

The other terms in the amplitude A(t, s, s', M2) differ 
from this term by only a phase. For example, 

I 1 1 'S dadlld'k A(s.,u"s, )=---AB . . 
2s (2n)'j (aps-k'-,.')'[(a-a.)lIs-k'-,.'1 

( as) 4 ( lis ) b ( lis' ) b 
X - mo2 - mo2 mo2 = e-i:r.bA(SI,S2,S2'). (A:l) 

Thus, the entire three-reggeon amplitude can be 
written in the form 

Abb(t,S,s',M') 
.(M')a-2b+(_M,)a-'b (S)b(l) +(_S)b(1) 

sin n(2b - a) sin nb (A.8) 

(S')b(') +(_S')b(') R(t) . (M')a(slM')b(') (s'IM')b(t) R(t) 
X sin nb s' = e-"'/' sin n (b - al2) sin' (nbl2) s' . 

Here, the coefficient R may, of course, depend in some 
unknown fashion on a and b. In this formula the factors 
[sin 1T(2b - a)] -1 [sin 1Tb] -2 have, for convenience, been 
separated out in explicit form. It is interesting to note, 
however, that in the diagram in Fig. 5 being considered 
here, the function R does not, after separating out these 
factors, vanish at a = 2b. A method for writing down 
the three-reggeon amplitude, similar to (A.8), has been 
discussed by A. B. Kaldalov (private communication). 

The phase factor of the amplitude A(t, s, s', M2) is 
determined only by the phase of the upper reggeon and 
is equal to e- i1Ta/2[15]. To obtain the cross section 
da(t, E, M2)/dtdM2 we must in the amplitude 
A(t, s, s', M2) take s' to the second sheet and then take 
the imaginary part (or the jump with respect to M2). The 
contribution to the cross section from the three-reggeon 
diagram in Fig. lh is equal to 

da(t,E,M') 1 . (b a) ;a'/'A ( M') - -""==-- = --- sm n - - e bb t S s 
dtdM' (16n')' 2 ' , , 

R(t) (M')a(sIM')2b (A.9) 
(16n's) ' sin' (nbI2) . 

We emphasize that this connection arose only because 
of the structure of the dependence of the amplitude A on 
M2, s', and s. 

If the inelastic processes are due to several Regge 
poles, then there appear three-reggeon diagrams in 
which all the reggeons are different. The structure of 
such diagrams is similar to the structure analyzed 
above. If one of the lower poles has a trajectory b and 
the other pole, the trajectory b', then the amplitude of 
such a three-reggeon diagram is obtained from (A.8) by 
replacing in the first (M2 -dependent) factor, 2b - a, by 
b + b' - a and in the last (s' - dependent) factor, b by b'. 
Two such interfering diagrams, differing by the inter­
change of band b', make the following total contribution 
to the differential cross section: 

da(b, b') da(b', b) 
--'--'--'-+--'--,,'-:::-'-

dtdM' dtdM' 

1 [sin n (b - ~) + sin n ( b' -~)] e;aa/'A", (t, s, s, M') = 
(16n')' 2 2 

n , R'(t) (M')'(sIM2)Hb' 
= 2 cos - (b - b ) --:-'-"---"--'-:--"'--::-:::7--;-::-:-:::::--

2 (16n's)'sin(nbi2)sin(nb'l2) 
(A.lO) 

If the lower reggeons have a negative signature, then 
b 
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A ( , M') = _ _ iMI,(M') "(sIM') '(I) (s' IM')'(/) R-(t) (A 11) 
b-b- t, S, S , e , • 

sin n(b - a/2) cos' (nb/2) s' 

and the cross section is connected with the amplitude 
Ab-bjt, s, S, M2) by the relation 

dcr(b-, b-) 

dtdM' 
1 . ( b a) i."I'A (t M') - (t6n,),slUn -2 e b-b- ,s,s, 

R- (t) (M') " (sIM') " 
(16n's)' cos' (nb/2) . 

The formulas (A.9)-(A.ll) lead to formula (5). 
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