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The interaction of an electron with acoustic phonons in piezoelectric crystals is investigated. It is 
shown that because of the infrared divergence the electron Green's function does not have a pole at 
E = p2/2, but has a branch point instead. As a consequence the electron density of states has the 
form p(E) ~ El 2+201/11 for small values of E, where 01 is the coupling constant. 

1. INTRODUCTION 

INTEREST in the polaron problem is due to the fact 
that the polaron represents a simple example of the 
interaction of a particle with a quantized field, and 
also because this problem is essential in order to under­
stand the motion of electrons in ionic crystals. The 
problem of an electron interacting with acoustic pho­
nons in piezoelectric crystals serves as anuther inter­
esting example of the interaction of a particle with a 
field. 

The Hamiltonian of the system has the form[l,2] 

p' ~ ( 1 ) ( 4na. ) 'f, ~ 1 H~-+ k..J a.+a.+- q+ - --=(a. + a_.+)e"'. 
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Here the unit of energy is ms2, and the unit of length 
is films; s is the speed of sound. The coupling con­
stant 01 is given by 
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where ( etjk) is an "averaged" square[2] of the piezo­
electric tensor, E is the dielectric constant, and c is 
the elastic constant. 

Only the case of zero temperature, T = 0, and small 
values of the coupling constant will be considered in 
this article. 

The problem of the spectrum of the piezoelectric 
polaron at zero temperature was first investigated by 
Whitfield et al.[2] They calculated the correction to the 
mass and the shift of the band edge in second-order 
perturbation theory. However, the treatment carried 
out in[2] is incorrect. As will be shown below, certain 
Feynman diagrams contain asymptotically logarithms 
of 11) I as E - p2/2, where 

11 = B - p' /2, 

and the effective parameter of perturbation theory be­
comes 01 In 11) I . 

The perturbation-theory series contains both powers 
of 01 and powers of 01 In 11) I. We shall assume that 
01 « 1 and we shall assemble the series in powers of 
OI ln l1)l· 

2. THE VERTEX PART 

In what follows it is convenient to transfer the com­
plete matrix element of the interaction in (1) to the 
phonon Green's function, so that 
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Do(w, k) =8na/(Ul'-k'+i6). (3 ) 

The first correction to the scalar vertex r is shown in 
Fig. 1: 

r.~i ---Do(w,k)Go(E.-W,p,-k)Go(B,-W,p,-k). 4 J ~ fi () 
2n (2n)3 

One can easily verify that after evaluating the integral 
with respect to the phonon frequency w, the remaining 
integration with respect to the phonon momentum k 
contains a region max (11) 11, 11)21)« k « 1 which 
gives a logarithmic contribution. For p« 1 the con­
tribution from this region is given by 

r, "'~lll 1 (5) 
n max(IYhl,I1')21l' 

Thus, the correction to the vertex increases without 
any limit as both of the electron end points approach 
the mass surface E = p2/2, The situation is analogous 
to the well-known problem of the infrared catastrophe 
in quantum electrodynamics, which has been discussed 
by AbrikosovYl 

The second-order diagrams are shown in Fig. 2. 
The first diagram vanishes upon replacing the bare 
electron Green's function by the complete Green's 
function. One can show that the last diagram, contain­

·ing two intersecting phonon lines, gives a contribution 
proportional to 012 In 11) I, that is, it contains a smaller 
power of the logarithm than the power of the constant 
01. This also holds true in more complicated diagrams 
containing intersections of dotted lines. Therefore, 
such diagrams will not be taken into consideration in 
the leading approximation. This implies that we do not 
approach too close to the mass surface. 
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Let us consider the corrections to the vector vertex 
r = aG- l/ ap. The bare vector vertex is given by r 0 

= -po From the structure of the perturbation-theory 
series it is clear that the equality 

r = -pro (6) 

is valid in the leading logarithmic approximation to all 
orders in 0' and for p« 1. 

Thus, the summation of the leading logarithms re­
duces to the solution of the equation for the vertex r 
shown in Fig. 3. The double line represents the exact 
Green's function of the electron which can be ex­
pressed in terms of the scalar vertex r (to within 
logarithmic accuracy) by using the Ward's identities 
aG-l/aE = r and aG-l/ap = r: 

1 ( 1 ) _'a/, 
G(e,p)= e-p'/2 e-p'/2 

(10) 

with the Green's function in quantum electrodynamics[3) 

_ pA+ m ( m' ) .,('-a,l/', 
G(p)--,--, -,--, ' 

p-m p-m (11) 

where 0' = Yl37 and ao is the ratio of the coefficient 
associated with the longitudinal part of the phonon 
propagator to the coefficient associated with the trans­
verse part. In the case of the transverse gauge (the 
Landau gauge) ao = 0, that is, the exponent in (11) is 
positive. In contrast to quantum electrodynamics, 
where there is an arbitrariness in the gauge of the 
photon propagator, in the present case the phonon 
Green's function is purely longitudinal. Therefore it is 
natural to compare formulas (10) and (11) for a gauge 
with ao» 1 (longitudinal photons). In fact, in this case 
the exponents in formulas (10) and (11) have identical 
signs. 

If the density p ( E) of electronic states is calculated 
according to the formula 

2 d'p 
p(e)=--S--ImG(e,p) (12) 

n (2n)' 

G(e, p) = G.(e, p)r-'(e, pl. (7) then for E « 1 we obtain 

We note that the supplementary vertices in the second 
term on the right hand side of the equation shown in 
Fig. 3 cancel with the same factors in the exact expres­
sions for the electron Green's functions, that is, the 
supplementary vertices rand G can remain bare. 

Since r is by assumption a slowly varying function, 
the integration over the phonon frequency w implies 
evaluating the residue at the pole of the phonon Green's 
function Do. After this, in terms of logarithmic vari­
ables the equation shown in Fig. 3 takes the form 

2 x 

r(x)= 1+~ Sr(t)dt, x=In(1/1'11J. t=In(1Ik), (8) 
n 0 

where T/ ~ T/ 1 ~ T/ 2. Solving this equation, we obtain 
r = exp { 20' X/1T }, that is 

f(e, p) =1'11-'al'. (9) 

3. THE DENSITY OF STATES 

Let us compare the Green's function of the piezo­
electric polaron, 

p(e) = p.(e)e'·I', (13) 

where po( E) = ..f2fJ 1T2 denotes the density of states in 
the absence of any interaction with the phonons. 

In conclusion we note that the coupling constant 0' 
need not be very small in piezoelectric crystals; for 
example, 0' = 0.3 in ZnO.(1) This circumstance per­
mits us to hope for an experimental verification of the 
ideas presented above. 
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