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The effect of collective relaxation of nonequilibrium photoelectrons on the conductivity of semiconduc­
tors in quantized magnetic fields is studied. It is assumed that photoelectron production occurs in the 
lower Landau band and that the photoelectron concentration considerably exceeds that of thermal elec­
trons. It is shown that for wp » Tit, T~l (wp is the photoelectron plasma frequency, TR the photoelec­
tron lifetime in the conduction band, and T E the energy relaxation time for acoustic phonons), the 
photoelectron distribution function is mainly determined by collective processes. The latter results 
in considerable broadening of the energy range of the photoelectrons and this in turn leads to a sig­
nificant increase of the conductivity in weak electric fields and to decrease of size of the region in 
which the conductivity is negative. 

1. INTRODUCTION 

COLLECTIVE effects, as is well known, are decisive 
in the dynamics of relaxation processes in a rarefied 
plasma (see, e.g.,[1-3]). In a solid-state plasma these 
effects usually have little effect on the relaxation of the 
non-equilibrium electrons, this being due to their in­
tensive interaction with the impurities, lattice vibra­
tions, and pair collisions. In a number of cases, how­
ever, the collective relaxation, as will be shown in the 
present paper, can be Significant at short lifetimes of 
the electrons and in an electron plasma of a semicon­
ductor. We note that if the radiation source is mono­
chromatic and generates in the conduction band strongly 
non-equilibrium photoelectrons, the aggregate of such 
photoelectrons can form in quantizing magnetic fields 
two (or more) streams moving opposite to each other. 
Indeed, in sufficiently strong magnetic fields, such that 

( 1) 

where Wc is the cyclotron frequency and T is the elec­
tron-momentum relaxation time, the energy spectrum 
of the electrons, in the case of quadratic and isotropic 
dispersion, is given by 

(2) 

Here N is the magnetic quantum number, p is the elec­
tron momentum along the magnetic field, and m is the 
effective mass. If the energy Eg of the produced photo­
electrons satiSfies the relation fiwc/2 < Eg < 3fiwc/2, 
then the photoelectrons are concentrated in the lower 
Landau subband (N = 0). The produced photoelectrons 
then have a longitudinal momentum ±po 
= ± [2m( Eg - % fiw C)]1/2, i.e., they form two equal-

density beams, that moving opposite each other with 
velocities ± qo = ± po/m. If these beams are strong 
enough, their presence can lead to two- stream instabil­
ity. It is natural to expect the instability development to 
cause a considerable transformation of the electron 
distribution function, not connected with the interaction 
with the phonon or with pair collisions with the thermal 
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electrons. This in turn affects the conductivity due to 
the non-equilibrium photoelectrons in quantizing mag­
netic fields. 

We consider in this paper the collective relaxation 
of strongly nonequilibrium photoelectrons and its influ­
ence on the conductivity in quantizing magnetic fields 
(condition (1) is satiSfied). We confine ourselves to the 
case n »nT' where n is the concentration of the non­
equilibrium photoelectrons and nT is a concentration of 
the thermal electrons. Under such conditions, as shown 
by Elesin[4], a number of interesting effects appear, 
particularly an absolute negative conductivity; the pos­
sibility of collective relaxation resulting from the two­
stream instability is disregarded. 

2. TWO-STREAM INSTABILITY 

Assume that the photoelectrons are produced under 
the influence of a monochromatic source only in the 
lower Landau subband. The time T E of relaxation of the 
electron energy by the acoustic phonons, as shown in[5], 
greatly exceeds the lifetime TR' i.e., if we disregard 
instability, the produced photoelectron beams remain 
monoenergetic during the lifetime of the electron in the 
conduction band. It should be noted that, unlike the usual 
situation in a plasma, collisions with impurities and 
phonons, as well as pair collisions, transfer the elec­
trons from one beam to another by virtue of the energy 
conservation law and the quasielasticity of the scatter­
ing. This process occurs within a momentum relaxation 
time T « TR' T E" Thus, an effective equalization of the 
concentrations of the two beams takes place within a 
time T. 

Since n » nT by assumption, and the concentration 
of the thermal electrons in real semiconductors is not 
too low (nT <: 1011 cm -3), it follows that the plasma fre­
quency of the photoelectrons wp = (41Te2n/mK)1/2 (K is the 
dielectric constant of the lattice) can greatly exceed the 
recombination frequency VR = TR (vR ~ 1010 sec-1[5]). 

Taking into account the smallness of the parameter 
vR T « 1, we obtain a dispersion relation for the quasi­
neutral system, the electron distribution function for 
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which represents two beams moving opposite to each 
other with velocity ± Uo. Since the electrons move along 
the magnetic field in classical fashion, assuming that 
the characteristic length of the perturbations are much 
larger than the magnetic radius L = (cl1/eH)1/.l (this is 
in fact equivalent to the assumption I1wp « Eg ~ llwd, 
we use the equation for the electron distribution func­
tion with respect to the longitudinal momenta or veloci­
ties in the lower Landau subband (the equation for the 
density matrix (N = 0 I piN = 0) == f(p) = f+(p) + L(p) in 
the Landau representation) and the Poisson equation: 

iJ/± iJ/± e iJj± at + v--o;- mE,Tv~ -v[/±(v)- f,(-v))- \'R/± + G, (3) 

divE~ 4~e [no-L(f++/-)dvl. (4) 

Here 11 = T -1, L(v) are the distribution functions of the 
photoelectrons -in the beams, v = p/m, the term G 
describes the photoelectron generation, and no is the 
denSity of the immobile compensating charge; the z axis 
is directed along the external magnetic field. 

We consider first processes occurring within a time 
much shorter than the characteristic recombination and 
generation times. Consequently, when determining the 
behavior of a specified initial distribution function we 
can neglect the last two terms of (3). Taking into ac­
count the a-like character of the distribution function 
f+(v), we obtain from the zeroth and first moments of 
(3) the hydrodynamic equations for the system of two 
beams: 

where 

(5) 

(6) 

In the derivation of (5) and (6) we took into account the 
conservation of the absolute value of the electron mo­
mentum in the collisions, which has led in natural fash­
ion to the appearance of a term describing the equaliza­
tion of the electron concentrations in the beams (the 
term in the right- hand side of the continuity equation) 
and to the absence of friction force in the equation of 
motion. 

Linearizing the system (4)-(6), we obtain dispersion 
relations for the potential perturbations in which the 
electric field is directed along the external magnetic 
field, since such perturbations have the largest incre­
ment 

w.'[ w' + k'uo' + 2ivw J( w' - k'uo' + 2ivw)-' = 1. (7) 

In the approximation conSidered, this equation can be 
derived also directly from (3) and (4). 

If 11 = 0, the last equation goes over into the ordinary 
dispersion relation for the instability of two identical 
beams moving opposite to each other: 

w.' /2(", - kuo)' + w.' / 2(w + leuo)' = 1. (8) 

The solution of Eq. (8) takes the following form: 

00' [ 00']'" 00' ~ k'uo' + ; ± 2k'uo'w.' + ~ , (9) 

When k2~ < w~ we have w2 < O. Therefore, since the 

perturbations were chosen to be proportional to 
exp(ikz - iwt), instability can build up in the system. 
The maximum increment is y = wp/v'B and is reached 
at k = f378 wp/Uo. 

We consider now the influence of collisions on this 
instability. To this end, we analyze Eq. (8). When 
y ~ wp » 11, the collisions cannot stabilize the insta-

bility. We call attention to the fact that the instability 
remains regardless of the ratio of wp to 11. Indeed, at 

the stability limit (1m w = 0), equating the real and 
imaginary parts of (7) separately to zero, we have 

(w - kuo) (w + kuo)' + (w + leuo) (w - kuo)' = 2ww.', (10) 

(w' - k'uo') , - 4v'w' = w,'(w' + k'uo'). (11) 

It is interesting that the collision frequency does not 
influence the stability limit. By determining the fre­
quency at the stability limit from (10) and substituting 
it in (11), we obtain the same instability condition as in 
the case when there are no collisions. 

The development of an instability of this type leads, 
as usual, to the appearance of a scatter of the photo­
electron velocity in the region Ivl < Uo. If the instability 
increment is much less than the frequency, a plateau is 
formed on the distribution function in velocity space. 
We can therefore expect the broadening of the beam dis­
tribution functions in velocity space to lead to stabiliza­
tion of the instability when the collisions are taken into 
account. 

Allowance for the broadening of the distribution 
functions changes the dispersion relation (7) into the 
following: 

w.'[w'+k'uo'-k'b.'+2ivw) (12) 
= [(Ul- kuo)' - k'~'J( (00 + kuo)' - k'~') + iv(oo - kUo)[ (w 

+ kuo)' - k'b.') + iv( 00 + kuo)[ (00 - kuo)' - k' ~2] _ 4'11'00', 

where t:. is a quantity characterizing the velocity scat­
ter. 

At the instability limit we have from (12) 

k' = 'w.' / (uo' _ ~2). (13) 

Thus, the instability takes place at u~ > t:. 2 (k2 > 0), and 
the limit is independent of the collision frequency, as 
before. Therefore, in such a formulation, the instability 
ceases at It:. I ?: Uo, and the stable distribution function 
of the photoelectrons takes the form of a plateau at 
Ivl :::s Uo; the height of the plateau, owing to the slowness 
of the generation and recombination processes, is de­
termined by the initial concentration. The characteris­
tic time required for the establishment of such a plateau 
is of the order of l/wp « TR, i.e., the assumptions 
made are valid. 

It is interesting to note that an instability of this 
kind was numerically simulated by Dowson[6] , who has 
shown that within a time ~ l/w the two beams produce, 
as a result of the instability, aPplateau in the velocity 
interval from - Uo to Uo. The height of the plateau was 
determined by the law of electron-number conservation, 
and the energy of the noise was equal to the difference 
between the energies of the final and initial states. 

When recombination is taken into account, the broad-
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ening of the distribution function should stop somewhat 
sooner, namely at 

Such effects were taken into account by Ryutov[,7] , 
who has shown that the broadening of the distribution 
function stops when the velocity becomes of the order 
of Z; Ik, where v is the frequency of the momentum or 
concentration relaxation. 

Thus, allowance for two-stream instability and for 
the associated collective relaxation within a time ~ 1/wp 
leads to an effective broadening of the distribution func­
tion. Therefore, when finding the stationary state it is 
necessary to take this effect, Le., it is necessary to 
include in the balance equation terms that describe the 
collective relaxation, analogous to the diffusion terms 
in the quasilinear theory[l-3]. 

For an exact determination of the form of the distri­
bution function, it is proposed to use the method of one­
dimenSional numerical simulation, which in the present 
situation can describe the phenomenon fully, unlike the 
usual cases in a plasma, when the problem is as a rule 
not one-dimensional. 

3. THE PHOTOCURRENT 

Let us calculate now the density of the static conduc­
tion current perpendicular to the magnetic field, taking 
into account the arguments advanced above concerning 
the character of the photoelectron distribution function 
in the presence of intensive collective relaxation. We 
assume that the electrons are scattered by impurities 
and acoustic phonons. Recognizing that the conduction 
current perpendicular to the quantizing magnetic field 
is due to migrations of the centers of the Larmor orbits 
of the electrons upon scattering, and that the photoelec­
trons populate only the lower Landau subband, we can 
write 

j,=e Lr (X.-x.')f(p)w.P"p· 
h,p,k',p' (14) 

where Xk is the coordinate of the center of the electron 
orbit (the x axis is directed along the static electric 
field), Wkpk'p' is the probability of transition of the 

electron from the state (N = 0, Xk , p) to the state 
(N = 0, Xk" p') when scattered by an impurity or by a 
phonon. If we neglect the small inelasticity of the scat­
tering, the transition probability is 

(15) 

Here V is the amplitude of the scattering potential, 
F = eEoL, Eo is the intensity of the static electric field, 
q = (qx' qy' qz)' and ql = (qx' qy). The appearance of 
the exponential in (15) is due to the characteristic of the 
wave functions on the electrons in a quantizing magnetic 
field. 

Substituting (15) in (14) we obtain, following standard 
calculations and transformations, 

(16) 

cD(F,y)= 

SOO deiT(e) 0 
[de + Fy) F' y> 

" 

SOO defT (e) 
y<O 

[e(dFy)F' 
-I'll 

where 5' (E(p)) = f(p), E = p2/2m, y = Lqy. 

(17) 

To determine the qualitative picture of the influence 
of the collective relaxation on the conductivity, with 
allowance for the results of the preceding section, we 
can assume that 

iT (e) = iT = const 
iT(e) = 0 at 
Eo = E, - 1/2nw" 

at B1 ~ e ~ eo, 
e < el~ e > eo; 

E, ~ eo(vRI wp )", 

Taking this into consideration, we obtain after calculat­
ing the function <I>(F), y the following expression: 

- -- £/./0' ---

-[ SOO l'eo+l'e,+Fy -S', l'Eo+l'Eo+Fy ) 1= 2iT ye-Y'/z In - dy + yc-Y'/-ln dy . 
_',I" l'e,+l'e,+Fy -',1" l'-Fy (18) 

We consider next two ranges of static electric fields: 
1) F« El and 2) El « F « Eo. 

In the first range, recognizing that the Significant 
interval for the integration in (18) is Iyl ~ 1, we can 
expand the integrand in powers of FIEo and F/El' After 
expanding and calculating the integral we get 

(19) 

We have put VR, « wP ' and have therefore neglected 

terms of order El/Eo. It is seen directly from (19) that 
since the right- hand side is negative the conduction cur­
rent is directed opposite to the static electric field, Le., 
absolute negative conductivity is obtained (I ~ -Eo). 

In the second range, the expreSSion can be granted 
in powers of FIEo and El/F. In this case, integration 
yields 

(20) 

Thus, the conductivity becomes positive in relatively 
strong electric fields. 

It follows from the results that the intensive collec­
tive relaxation at wp » lJR' by appreciably transform­
ing the distribution function, changes Significantly the 
shape of the current-voltage characteristic. First, the 
absolute value of the conductivity in weak electric fields 
much larger in the case of collective relaxation than the 
conductivity for a a-like distribution function (see[4]). 
Comparing the conductivities for equal concentrations 
of the photoelectrons, we obtain for their ratio 

I Icou lilII::::; Eo / 8, - (W p / v,,)' ~ 1. 
(21) 

Physically this result is quite understandable. The 
collective relaxation leads to population of the energy 
region E « Eo by photoelectrons. The density of states 
in this region is much higher than in the region where 
the photoelectrons are produced, this being due in final 
analysis to the one-dimensional character of the elec­
tron motion in the quantizing magnetic field. Their 
interaction with the impurities and with the phonons 
therefore becomes more intense. It is this which leads 
to the increase of the absolute value of the conductivity. 

Second, when wp » lJR the region of absolute nega-
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tive conductivity becomes much narrower. Indeed, ac­
cording to (20), the conductivity reverses sign in elec­
tric fields Eo ~ El/eL. At the same time, the change of 
the sign of the conductivity for a a-like distribution 
function occurs at Eo ~ Eo/eL (see[4J), i.e., in much 
stronger fields. 
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