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The behavior of the kinetic coefficients on variation of the magnetic field is studied under conditions 
when simple and mutual dragging of electrons by phonons must be taken into account. The degree of 
Fermi degeneracy of the electrons is arbitrary. It is pointed out that an exact solution of the set of 
kinetic equations can be obtained in the case of a strong magnetic field. A solution of the system of 
equations for weak and intermediate magnetic field strengths is derived by iteration with respect to 
the mutual dragging parameter 5 m. The laws of variation of the kinetic coefficients in a magnetic 
field thus derived can be used to separate the contributions of simple and mutual phonon dragging 
of electrons to the charge flow. 

STARTING with the work of L. E. Gurevich[l], who was 
the first to point out the importance of taking into ac­
count the influence of the non- equilibrium character of 
the phonon subsystem on the electron subsystem in 
thermoelectric phenomena, the effect of dragging of 
electrons and phonons continues to remain an object of 
both theoretical and experimental research. The pur­
pose of such research is to obtain the kinetic coefficients 
(the electric conductivity, the thermal conductivity, the 
thermoelectric power, the Hall and Nernst coefficients, 
etc.) and to separate the diffusion contribution from the 
contribution due to the electron-phonon dragging effect. 
Each of these contributions is determined by electron 
and phonon times that are characteristic of the consid­
ered concrete situation, and consequently can serve as 
a source of information on the effective relaxation 
mechanisms. 

The development of the theory of the dragging effect 
in thermoelectric phenomena was continued by 
Herring[2] and by ter Haar and Neaves[3]. In these 
studies[1-3], the influence of the non-equilibrium char­
acter of the distribution function of the phonon on the 
electron subsystem was taken into account. Parrot[4J 
Appel[sJ and ter Haar and Neaves[6J were the first to 
formulate the problem symmetrically with respect to 
the electron and phonon subsystems, and treated the 
kinetic equations for the electron and phonon distribution 
functions as a system of two integral equations. Ter 
Haar and Neaves[6] replaced the lower integration limit 
q/2 (q is the wave vector of the phonon) in the integrals 
with respect to the electron wave vector k by zero. As 
noted by Parrot[4] , they obtained as a result an incor­
rect dependence of T pe (the relaxation time of the 
phonons on the electrons) on q and overestimated the 
contribution of the high- energy phonons to the kinetic 
coefficient. This remark by Parrot applies also to 
Appel's work[sJ. Parrot[4J took into account the so­
called mutual dragging, Le., the non-equilibrium char­
acter of the phonon subsystem, which is due to the non­
equilibrium character of the electron subsystem and 
affects the electrons in turn. 

The most important means of acting on the electron-

phonon coupling itself is to vary the temperature. When 
the temperature is varied, one dominant scattering 
mechanism is replaced by others, and the contributions 
of the diffusion and dragging to the kinetic coefficients 
are altered. However, an analysis of the temperature 
dependences of the kinetic coefficients with the object 
of separating this contribution is quite complicated pre­
cisely by virtue of the indicated temperature-dependent 
dynamics of the process. This raised the question of 
the possible use for this purpose of variation of the 
charge and heat transport processes with changing mag­
netic field in a stationary temperature regime. The 
first results were obtained by V. Gurevich and 
Obraztsov[ 7J , who took into account the influence of 
electron dragging by phonons on the thermomagnetic 
effects in semiconductors. Natadze and Efros[BJ solved 
this problem for degenerate semiconductors in a strong 
magnetic field. A theory of electron dragging by phonons 
in semimetals was constructed by L. Gurevich and 
Korenblit L9 ,loJ, who solved the system of kinetic equa­
tions for phonons and of Fermi-degenerate electrons 
exactly for an arbitrary value of the magnetic field[9J . 

In this paper we investigate the system of kinetic 
equations for phonons and electrons in the case of an 
arbitrary degree of Fermi degeneracy, and in magnetic 
fields of arbitrary strength. It is assumed here that it 
is possible to introduce relaxation times for both the 
electrons and the phonons. Quantum effects are dis­
regarded. It is our aim to determine the behavior of the 
kinetic coefficients in a varying magnetic field under 
conditions when it is necessary to take into account 
simple and mutual dragging of the electrons by phonons. 

1. KINETIC EQUATIONS FOR THE DISTRIBUTION 
FUNCTIONS OF THE ELECTRONS AND PHONONS 

We consider an isotropic conductor placed in a con­
stant homogeneous magnetic field H (the direction of 
which is taken to be the z axis) and a constant electric 
field E directed perpendicular to H (along the x axiS). 
In addition, a certain temperature gradient V'T is main­
tained along the x axis. The system of kinetic equations 
for the distribution functions of the electrons F = F ok 
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+ fk and phonons N = Nag + gq' which consist of equili­
brium Fermi and PlancK parEs (Fok and N ) and non­oq 
equilibrium increments to them (fkand gq)' takes the 
form 

( e - ~ ) of.. e of. f. V S evE---vVT -+-[vHI-+-+-- dqlC I'g (1)* 
T oe eli ok 'fe (2n) 'Ii q q 

woN. gq ICql'VS 
-qVT-oT +---2 ,. dk{(N •• +1-F •• _q )f. 
q 'fp n,,· 

(2) 

- (N .. + F •• ) fk-q}{j (e. - ek-q -liCiJ q) = O. 

Here e, E, and !; are the charge, energy, and chemical 
potential of the electron (hole); v = n-10 E/o k; W q = wq is 

the frequency of a phonon with wave vector q; VI is the 
speed of sound in the conductor; I Cql2 is a function char­
acterizing the electron-phonon interaction, T is the 
temperature in energy units, V is the volume of the 
crystal, T e and T p are the relaxation times of the elec-

trons and phonons. 
The sum of the last two terms in the left- hand side 

of (1) is the collision term, and the term in integral 
form takes into account the non-equilibrium character 
of the phonon distribution function. Herring[2] separa­
ted in similar manner the collision term due to the non­
equilibrium character of the electron distribution func­
tion. 

We seek the non-equilibrium parts of the distribution 
functions of the electrons and phonons in the form 

(3) 

(4) 

The vector h = H/H indicates the direction of the mag­
netic field. After performing the required calculations, 
we obtain two pairs of integral equations for the coeffi­
cients A, B, AE , and BE from[3]1l 

(5) 

To' < 'fp ) ) + CiJII- -<AE>' ; 
'tep 'tpe 2 

(6) 

2 2 ,( Te Te < Tp ) 'fo' < 'fp ) ) A=(1+CiJH'fe)- -8+- -<A), -CiJH- -<B\ , 
m Tep 't pe 2 'tep 'tpe 2 

(7) 

z , '( 'fe' Te < Tp ) 'fe' < Tp ) ) B=(1+CiJH'fe )- CiJH-8+- -(B), +CiJH- -(A>, 
m 'tep 'tpe 2 -rep 'tpe 2 

*[vHl =v X H. 

( 
(Tp>, ) 

8=T-' e-~+mw'-- , 
'fep 

(8) 

(9) 

1) Since the end purpose of the present paper is the calculation of the 
charge fluxes, do not present the expressions for the coefficients a, b, 
aE and bE, which we use only during the intermediate stages of the 
calculations. 

- of - of 
(X\ = S X_a kdk / S-· kdk, 

q/2 De q/2 ae 
(10) 

2k '" 

<Y>, = S Yq'dq / S q'dq, 
• 0 

(11) 

W H = lelH /mc is the cyclotron frequency. The finite 
lower integration limits (in (10)) and upper limits (in 
(11)) are the consequence of the energy and momentum 
conservation laws in electron-phonon scattering. We 
have introduced here the relaxation times Tep and Tpe 
for the scattering of electrons by phonons and of phonons 
by electrons, respectively, 

-,_ mwVIC.I' S- of. 
Tpe -- nli' T kdk, 

q/2 e 
(12) 

mV .. 
Tep- 1 = 2nli'k' I q'IC.I'N,q dq. (13) 

From expression (3) for fk' with allowance for the fact 
that the coefficients in it are determined in (5)- (8), we 
can calculate in principle all the kinetic coefficients of 
interest to us. If the expression for the current density 
is written in the form 

j, = Gi/.E,. -1\,,' V,.T, (14) 

then the components of the electric conductivity tensor 
a ii' and of the thermal magnetic tensor f3 .. , are deter­
mined by the following expressions (we r~lcall that the 
driving forces act in the xy plane and consequently all 
fluxes flow in this plane) 

Gr< = n.e(AE )., 1\ .. = n.e(A)., 

G.y = noe(BE )" ~.y = noe(B)" 

where the averaging symbol ("')3 denotes 

z> -';, S- 'I of. < ,=-z. dtt 'Z-, 
o ot 

B 
t=­

T' 

(15) 

(16) 

Zo = !; o/T is the dimensionless chemical potential, !; 0 is 
the chemical potential at T = 0, and no is the electron 
(hole) concentration. 

The very form of Eqs. (5)- (8) and relation (9) is 
such that it is possible to determine in natural fashion 
the characteristic parameters of the "Simple" and 
"mutual" dragging. We define as simple dragging the 
dragging of electrons by phonons that are taken out of 
equilibrium by the temperature gradient. In (7) and (8), 
the simple dragging is described by the term of (9) in 
the form 

(17) 

(18) 

We have introduced the simple-dragging parameter 
Os (18), by multiplying and dividing the left-hand side 
of (17) by (T pe )2' It follows from (17) and (18) that sim-
ple dragging reaches a maximum if the phonons are 
scattered predominantly by electrons, i.e., op ~ 1. The 
coefficients of op in (17) is given by 

"iW2 D. liZ 2 
r<Tpe>'Tep ' =(2k')-1 f q'F.-' ( s! ) dq. (19) 
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In the case of strong Fermi degeneracy of the electrons 
we have 

(20) 

and for nondegenerate electrons this quantity is 
~ nM/no (nM = 2mT/1i2)3/2), i.e., it can be much larger 
than unity. 

In just as obvious a manner we can introduce the 
mutual dragging parameter 

(21) 

Mutual dragging is dragging of electrons by phonons 
that are taken out of equilibrium by the electrons them­
selves. Thus, the mutual dragging exists also in the 
absence of a gradient V'T acting directly on the phonons 
and, as seen from (21), is realized in the case of pre­
dominant scattering of electrons by phonons and of 
phonons by electrons. 

2. SOLUTION OF THE SYSTEM OF EQUATIONS (5)-(8) 

In this section we present solutions of the system 
(5)-(8) for the cases of a) strong Fermi degeneracy, 
b) strong magnetic field, c) weak mutual dragging, 
om « 1. 

a) In the case of strong Fermi degeneracy of the 
electrons, the averaging (10) can be easily carried out, 
owing to the singularity of the Fermi distribution 
(aFo/aE ~ O(E - 1:», as a result of which the system of 
integral equations reduces to a system of algebraic 
equations and can be solved exactly [ 9J. Unlike [ 9J , we 
first apply the averaging (16) to the left-hand and right­
hand sides of (5)-(8), and obtain immediately equations 
for the quantities that enter directly by the expressions 
for the components of the electric conductivity tensor a 
and the thermomagnetic tensor {3 (see (15». We present 
the final result 

(22) 

The subscript F denotes that in the corresponding quan­
tity, which depends on the electron wave vector k, it is 
necessary to replace k by k F . For example, 

2kp 2kF 

(i) = S q,..2...dq / S q'dq. 
Tpe 2F 0 'fpe 0 

Tep( Tp ) {j P=- -
m TepF 'fpe 2F' 

b) Another important case when the system (5)- (8) 
can be solved exactly is that of a strong magnetic field, 
wHTe » 1. We assume that the coefficients AE , BE' A, 
and B depend on H in the same manner as without mu­
tual dragging, i.e., 

Discarding terms that are small relative to the param­
eter (wHT ef2 , we find that the system (5)- (8) reduces to 
the system 

_. _, ( S Te ( Tp ) ) A=WH Te --WH- -<B>, , 
m -rep 'fpe 2 

(23) 

in which B and BE have already been determined. From 
this we obtain ultimately 

AE=--':'(Te-'-Tep-'( ~) ), 
mroH Tpe 2 

A = _1_(Te-'S - Tep-' ( .:!!....<S>,) ) , 
mWH 'fpe 2 

B=S/mWH, BE=e/mWH. 
(24) 

The solutions of (24) satisfy the initial assumption con­
cerning the character of the decrease of AE , ~, A, 
and B with increasing magnetic field. 

We take special notice of the fact that the solution (3) 
with the coefficients (24) is valid for arbitrary Fermi 
degeneracy of the electrons (in particular, for nonde­
generate electrons) and for arbitrary values of the 
dragging parameters. 

c) The mutual-dragging parameter om is always less 
than unity by virtue of its very definition (21). This cir­
cumstance permits an iteration solution of the system 
(5)-(8) when an exact solution is impossible. A solution 
by iteration with respect to ° m is obtained in obvious 
fashion and yields in the lowest-order approximation 
in om 

A - Te(1+ ")-'(s+ 1 (TP ( leS » -- CJ)H'fe - - '0 
m -rep Tpe 1 + WH To , , 

3. GALVANOMAGNETIC AND THERMOMAGNETIC 
KINETIC COEFFICIENTS 

In this section we present expressions for the mag­
netoresistance Pxx' the Hall coefficient R, the trans­
verse magnetothermoelectric power a xx, and the Nernst 
coefficient Q, obtained by solving the kinetic equation of 
the preceding section. 

a) In the case of strong Fermi degeneracy of the 
electrons we have 

p= = (J, -, [ 1 _ -reF ( ..2... > ], 
TepF Tpe J2F 

R = (n,ec)-', 

noe2TeF 
O()=--, 

m 

mw' ( <lp>,) 
u= = e-'<S>, = -- -- . 

eT 'tep 3 

The Nernst coefficient Q vanishes accurate to order 

(26) 
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T/i;. In the case of predominant scattering of ~honons by 
electrons we have Tp - Tpe and O'xx = 4/3e[8, as a re­
sult of simple dragging. 

b) In a strong magnetic field, for an arbitrary degree 
of Fermi degeneracy of the electrons, we have 

( ( 'l'P) ) n,e'('I'e>' 
P .. = CJo-1 'l'e-1-'I'ep-l ~ 2 ,('I'e)" CJo= m ' 

R = (noec)-" a..~ = e- 1<S)., 

Q=(eHwH)-I{<S),( 'l'e-1-"tep-1( ::», (27) 

- ( 'l'e-1S - "t ep- I 
( ::e <S)I),) J . 

c) Since an exact solution of the system (5)-(8) exists 
for a strong magnetic field, it is meaningful to use the 
iteration solution only in weak magnetic fields. In par­
ticular, as H - 0, we have 

(0) -1 ( ( "te ( 't p ) ) ) Pxx =CJo l-<'te>' - -<'I'e)1 , 
"rep '(pe 2 3 

noe2 <'I'e)' CJo = ----"-­
m 

R(O) = (noec)-1 <'te),-' {<'I'e'), + (~ (2 <'te'\ ) 
'tep 'l'pe 2 

+ 'to' ( "tp < ») 2 <'te'), ( 'te ( 'tp ) ) } - - 'e 1 - -- - - <'te) 1 
't'ep 'fpe 2 3 ('te)g "rep "fpe 2. 3 ' 

(0) <,eS>, { ("t ('t ) ) ax< =-->- 1 + <'teS>,-1 _e -p <'1'.8)1 
e("tes "rep 'tpe 2 3 

-<'e>,-1 (~(.2E.<'I'e>l) ) }, 
"rep 'fpe 2 3 

(28) 

Q(O) = noe (p;~) H-I <B), - R(O) a~) <AE ),}, 

where Band AE are defined in (25). 
In addition, there exist for all lhe kinetic coefficients 

corrections that depend on the dragging parameter and 
are proportional to H2. They can be easily obtained 
with the aid of (25). For example, the correction to the 
resistance is given by 

(2) WH' {< ) < ') < ') 2 
PZX=Oo<Te>e2 'tea Te 3- te 3 

( , <'1'0'),' ) ( 'l'e ( 'l'p ) ) - 2<'I'e>,-3-- - -<'te)1 
<"te>' 'tep 'l'pe 2' 

+ <'I'e>, (2~ (~<'I'e>l) +'I'e(2£.<'I'o'>l) ) 
'rep 'fpe 2 'fpe 2 3 

-2<'1'.'), (~(2!..<'I'o'\) +'1'e(2..<'I'e\»} (29) 
't'ep t'pe 2 't'pe J2. 3 

When comparison is made with experiments, expres­
sions of this type are made more concrete by making 
definite assumptions concerning the character of the de­
pendence of the relaxation times on the energies (wave 
numbers) of the electrons and phonons. For example, 
if the electron relaxation time T e does not depend on the 
electron energy, then for nondegenerate carriers we 
have R(O) = R(OO), whereas O';ci F O'~) (owing to the 
presence of dragging). It is interesting to note that for 
nondegenerate electrons all the terms proportional to 
~/T cancel out in the difference 0'(00) - 0'(0) (see ex-
pression (9) for S). xx xx 

4. DISCUSSION OF RESULTS 

The expressions presented in the preceding section 
for the kinetic coefficients enable us to draw certain 

general conclusions concerning the study of the effec­
tive dragging with the aid of an inVestigation of kinetic 
phenomena in a magnetic field. As follows from (22), in 
the case of strong Fermi degeneracy and one type of 
carrier, the kinetic coefficients are generally indepen­
dent of the magnetic field. The electric conductivity 
contains a contribution from the mutual dragging, and 
the thermoelectric power, neglecting the corrections 
for incomplete degeneracy, is governed entirely by sim­
ple dragging. 

In the case of nondegenerate carriers, and also in 
the case of intermediate degeneracy in a weak magnetic 
field, the dragging effect makes a contribution to all the 
discussed kinetic coefficients (mutual dragging contri­
butes to pxx and R, and mutual and simple dragging con­
tribute to O'xx and Q), with the dragging contributing 
both to the values of the kinetic coefficients at H = 0 
and to the coefficient of H2, which describes the change 
in the magnetic field. 

On going to strong magnetic fields, the Hall coeffi­
cient ceases to depend on the dragging, and only simple 
dragging contributes to O'~~). Thus, in these cases the 
magnetic field can serve, as it were, as a separator of 
diffusion effects from dragging effects. On the other 
hand, in the case when the dragging effects make an ap­
preciable contribution, one can hope they separate the 
contributions of the simple and mutual dragging to the 
thermomagnetic effects. 

Naturally, the necessary condition remains a suffi­
ciently reliable separation of the diffusion contribution 
to the charge fluxes, for which purpose it is necessary 
to treat simultaneously the aggregate of all the kinetic 
phenomena, in a manner similar, for example, to that 
used earlier[ll,12] 
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