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In nematic liquid crystals, along with ordinary disclinations in which the director lies in a plane per­
pendicular to the line of the disclination, there may exist, in principle, disclinations with a "volume" 
structure. Which type actually occurs depends on the relation between the elastic moduli Kll , K22 , 
and Ka3 of the substance: when K22 > Y2Kll + Y2K33 the "plane" disclination is stable, and when 
K22 < Y2Kll + Y2Ka3 the "volume" disclination is stable. The stability of disclinations with various 
Frank indices n is studied. It is shown that when the moduli are almost equal only disclinations 
with n = ±1 are stable. A "plane" disclination with n = 2 is stable only under the conditions K22 
> 2K33 and Ka3 < Kll • For disclinations with high indices the "plane" structures are certainly 
stable when K22 ~ Kll, K33 , and the "volume" structures are stable when K33» K22 , Kll . 

1. INTRODUCTION 

ONE form of violation of the uniformity of the struc­
ture of a nematic liquid crystal is by so-called "dis­
clinations." A disclination is a singular line, analogous 
to a dislocation line in an ordinary crystal, close to 
which the direction of the mean orientation of the mole­
cules (the direction of the director) changes sharply. A 
theory of disclinations was constructed by Oseen and 
Frank[l] for the case of equal elastic moduli Kll, K22 , 
K33 of the liquid crystal, and by one of the authors[2] 
for arbitrary K. However, only one of the possible 
types of structure of disclinations was conSidered, 
namely, it was assumed that the director always lies in 
a plane perpendicular to the disclination axis (we shall 
call such a type a "plane" disclination). In fact, how­
ever, the equations of the theory also have solutions in 
which the director does not lie in one plane ("volume" 
disclinations). The first to study disclinations differing 
in structure from the disclinations of Oseen and Frank 
was, apparently, de Gennes. In his theory of Grandj ean 
terraces[3], he introduced disclinations with the direc­
tor lying in a "vertical" plane, i.e., in a plane passing 
through the singular line. However, the plane structure 
of such disclinations is to some extent an accidental 
Circumstance, and is connected with the equality, as­
sumed in the work of de Gennes, of the moduli Kll 
= K22 = K33. Below we shall show that, whereas the 
"plane horizontal" structure (Le., the structure of the 
type considered in(1,2]) is an exact solution of the equili­
brium equations for arbitrary Kii, the "plane verti­
cal" structure for unequal K becomes essentially 
three -dimensional. 

Another aspect of the theory of disclinations not in­
vestigated until now is the question of their stability. 
It is immediately clear from the fact that the energy of 
a plane disclination is proportional to the square n2 of 
its Frank index (cf.[l,2]) that all disclinations with in­
dices I n I 2: 2 are at best metastable with respect to 
decay into a certain number of disclinations with I n I 
= 1. In practice, however, in many cases, disclinations 
with I n I 2: 2 are found to be unstable to small pertur-
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bations, Le., the extremal points corresponding to them 
are saddle points on the energy surface. 1) In particular, 
there are cases when any disclination with an even 
index can be converted in a continuous manner into the 
uniform state, with the energy of the structure decreas­
ing monotonically to zero over the whole path. Ana­
logously, any disc lination with an odd index can be con­
verted continuously into a disclination with n = ±1. The 
latter is stable with respect to transition to the uni­
form state, by virtue of the topological law of conser­
vation of the "parity" of the index in a rotation about 
the singular line, with the condition n - ±n. The situ­
ation remains the same when volume disclinations are 
included in the treatment. Here also, there are cases 
in which a plane disclination is a saddle point and can 
be converted into a volume disclination, and vice 
versa. 

The investigation performed below shows that, for 
almost equal values of the moduli Kii, only the 
"elementary" disclinations with n = ± 1 are stable; the 
plane disclination is stable when 

K22 > '/,(K l1 + K,,), (1 ) 

and the volume disclination is stable when 
K,,<'/,(Ktt+K,,). (2) 

The plane disclinatioll with n = 2 becomes stable only 
when 

K22 > 2K", K" < K l1 • (3 ) 

Finally, plane disclinations with high indices become 
stable when K22 ~ Kll , K33. Analogously, volume dis­
clinations with large n are certainly stable when K33 
» K ll , K 22 . 

Below we consider separately the case when Kll , 
K22 , and K33 are close in magnitude and the case of 
arbitrary moduli. 

2. THE CASE Kll ~ K22 ~ K33 

The general expression for the energy associated 
with nonuniformity in the orientation of the director n[l) 

l)We take the opportunity to express our thanks to Yu. A. Drelzin and 
A. M. Dykhne, who drew our attention to this situation. 
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F = 'I, ~ dV{K" (div n)' + K22(O rot n)' + K,,[n rot oJ'}, (4)* 

is simplified substantially in the case of equal moduli 2) : 

F=~ JdV{(::)'+(:;)'+(::n, (5) 

where K == Ku = K22 = K33 • A disclination (with the 
singular line coinciding with the z-axis) is a self­
similar solution of the variational problem with the 
functionals (4) and (5); this solution depends only on 
x/y, or, which amounts to the same thing, on the azi­
muthal angle X in the cylindrical system of coordinates 
r Xz. Transforming to this system. we obtain from (5) 

K d ,. d • 
-J~dzJdx(~)-. 
2 l' 0 dx 

Hence, the free energy per unit length of the disclina­
tion is expressed in the form 

K R'· dn' 
t=21n~rdX(dx)' (6) 

where, as always (cf.[l,21), the logarithmic integral 
over r has been cut off on the large-distance side at a 
length R equal in order of magnitude to either the dis­
tance between neighboring disclinations or the dimen­
sions of the vessel, and on the short-distance side at 
the interatomic distance a. 

The extrema of the functional (6) can be found 
rapidly from a mechanical analogy: f coincides with 
the integral of the kinetic energy (X is the time) of a 
point with mass Kin(R/r) moving over a sphere of 
unit radius. The trajectories in this case are great­
circle circumferences, and the period of the motion is 
determined by the uniqueness condition[l,21; n( 271) 
= ±n(0). Thus, in the case of equal-moduli, the dis­
clination is established in such a way that the director 
n can rotate in any plane passing through the coordi­
nate origin. If this plane coincides with the equatorial 
plane, we have an ordinary "plane horizontal" disclin­
ation[l,21; if it coincides with one of the meridional 
planes, we have the above-mentioned "plane vertical" 
disclination of de Gennes[31. If we introduce the coordi­
nate system ~1) ~ with the ~-axis perpendicular to the 
plane in which the director lies, the periodicity condi­
tion gives the usual formulas[ll: 

nx . nx 
n,= cos-2-, n,=sIDT' nt =0, 

(7) 
nn' R 

t=T K1n -;;-, 

where the integer n is the Frank index. 
We now proceed to investigate the stability of the 

solutions (7). We note first of all that the mechanical 
analogy cannot be used in studying the stability; inas­
much as, in mechanics, only the extremal points have 
physical meaning, whereas in the theory of liquid crys­
tals any field of directions n( X) satisfying the period­
icity condition retains a physical meaning. The ex­
tremal states are distinguished only by the fact that, in 
principal, they can be stationary. Actually, of the ex­
tremal points (7), only those states which correspond 
to an absolute (and, correspondingly, local) minimum 

*[n rot nJ == n X curl n. 

2)To avoid misunderstandings, we note that the integrand in (5) 
differs from that in (4) by a total derivative. 

of the functional (6) are stationary stable (or meta­
stable) states of the functional (6). The extremal 
points corresponding to maxima or saddle points of (6) 
are non-stationary and should go over, after a short 
time, into states with lower energy. Therefore, to 
solve the problem of the stability of the solution (7) we 
must consider an arbitrary vector field n of the form 

-n/2~e~n/2 (8 ) 

and determine the sign of a functional that is quadratic, 
near the extremal point (7), in the small declinations 
e and rp 1 = rp - n X/2 . 

Substitution of (8) into (6) gives 

1 R" 
t=-Kln- J (S"+ cos' Sq/')dx 

2 a. 

or, to within squares of the declinations from the ex­
tremal point, 

,. 

(9) 

f, = 'I. J dX(S" - <P."S' + cp,"). (10) 
• 

For brevity, we have omitted the constant factor 
Kin (R/a) and, here and in the following, we denote 
derivatives with respect to X by a prime; according to 
(7), rpo = nx/2. The functions e and rp 1 must satisfy 
the periodicity condition: 

cp,(x+ 2n) =cp,(x), S(x+ 2n) = (-1)"6(x)· (11) 

The variations of the functional (9) associated with 
change of rp are always positive, and it is therefore 
sufficient to treat changes of the variation e only, for 
which 

1 2n Z 

f, = 2" ~ dX (S" - -;- 9' ). (12) 

It can be seen immediately, that for even n, when, 
according to (11), e is a periodic function of X, the 
functional (12) does not have a well defined Sign. In 
particular, it is negative for any variation e that does 
not depend on the angle X. This circumstance is 
directly connected with the fact that, as one can easily 
convince oneself, for even n, the conical field of direc­
tions 

n, = cos tto cos ~ n. = cos A. sl'n ~ , 2' .. V· 2 nt = sin tt. 

with constant ,,"0, is not extremal but has a lower energy 
than the extremal plane solution (7). Moreover, since 
the energy of the field with constant ,,"0 is proportional 
to cos2,,"0, there exists a continuous transition, with 
monotonically decreasing energy, from any disclina­
tion with an even index (,~o = 0) to the uniform state 
(,,"0 = 71/2). 

In the case of odd n, it is necessary to investigate 
the functional (12) in more detail. We shall make use 
of a standard method and expand the integrand in (12) 
in eigenfunctions e>.(X) of the Euler operator: 

~!!:...-!!:..=-AS L""~2 (S"-~4 ii'S'). (13) dx as' as ' 
Then 

J dx L (S, 8') = 'I, I> J dx 8,', 
, 

and the positive-definiteness of the functional coincides 
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with the condition that the eigenvalues of (13) be posi­
tive, In our case, Eq. (13) is the one-dimensional 
Schrodinger equation 

0" + (" + '/,n')S = 0 (14) 

with the periodicity conditions (11). The eigenfunctions 
and eigenvalues have the form 

mx 
S,=AsinT' 

m2 -n' ,,=---4 ' 
(15) 

where, if n is even, m runs over all the even values 
(m = 0, ±2, ±4, .•. ), and if n is odd, m runs over the 
odd values (m = ± 1, ± 3, ... ). It can be seen that only 
when n = ± 1 are all the eigenvalues ;\m non-negative. 

Thus, for equal moduli Kll , only the "elementary" 
disclinations with n = ±1 have been found to be stable. 
These disclinations are also stable under more general 
"non-self-similar" perturbations 8(r, x' z) (see 
Appendix 1). It is interesting to note that the instability 
of disclinations with other n to non-self-similar per­
turbations corresponds, in the terminology of the eigen­
value problem of the type (14), to the quantum-mechan­
ical collapse of a particle to the center. 

An interesting manifestation of the instability of a 
disclination with n = 2 is the non-singular solution, 
found by Cladis and Kleman, [4] of the problem of the 
structure of a liquid crystal poured into a long cylindri­
cal vesseI3). If the surface of the vessel is prepared in 
such a way that the director must be tangential to the 
surface or perpendicular to it (Fig. 1), the obvious 
solution of the problem is the "plane" disc lination with 
n = 2. However, the tendency of the director to leave 
the plane of the disclination and become parallel to the 
axis of the cylinder, which makes the disclination un­
stable, also leads to the result that there exists a non­
singular solution of the problem, which now, of course, 
ceases to be "self-similar". Choosing the axes ~ 1/1:: 
in (8) to be along the coordinate axes xyz, we write 
(5) in the form 

F=I/,J dV {(V8)'+cos'S(Vcp)'}. 

The corresponding Euler equations have the form 

M+ sinO cos S(V(jJ)' = 0, 

~cp - 2(VO V(jJ)tg S = O. 

(16) 

If we assume that cp depends only on X, and 8 only on 
r, the second equation goes over into cp /I = o. The 
boundary conditions on the surface of the cylinder 
(r = R) give 8(R) = 0 and cp(R) = X. Therefore, 
cp = X + const is a solution of the problem, and for 8 ( r) 
we have the equation 

-- r- +sinScosS=O. 1 d ( dS) 
r dr dr 

Investigation (cf.[4]) shows that this equation has 

FIG. I 

3)We are grateful to Dr. Kleman for sending a preprint of this work. 

solutions satisfying the conditions 8 (R) = 0, 8 (0) 
= rr/ 2, Le., close to the axis of an unstable disclina­
tion with n = 2, the director is indeed parallel to the 
z-axis. One can also convince oneself that the energy 
of such a state is completely independent of the radius 
R of the vessel, Le., it is much lower than the energy 
given by formula (7) for a disclination with n = 2. 

Returning to disclinations with n = ± 1, we note first 
of all that their stability when Kll = K22 = K33 is neu­
tral, inasmuch as the corresponding minimum eigen­
value, according to (15), is equal to zero. Actually, 
therefore, the stability criterion is now sensitive to 
small differences between the molecules. It is possi­
ble, in principle, to investigate the stability by the 
same general method when 

a = K" / K" - 1. ~ = K" I K" - 1 

are not equal to zero, by investigating the signs of the 
eigenvalues of the corresponding Euler operator. How­
ever, to determine the stability criterion in the approx­
imation linear in the small parameters O! and {3, we 
can make use of simpler considerations (the equiva­
lence of the two approaches is proved in Appendix 2). 

We recall, first of all, that when O! = {3 = 0 the en­
ergy of the disclination does not depend on the orienta­
tion of the plane in which the director lies. The de­
generacy is lifted, however, for non-zero O! and {3. We 
shall calculate the disclination energy as a function of 
the angle of inclination 8" of its plane to the equatorial 
plane. In the zeroth approximation in O! and (3, the 
solution in the system ~ 1'/ I:: associated with the plane of 
the director has the form of (7) with n = ± 1. For our 
calculations, the director in the "stationary" coordi­
nate system xyz is also conveniently represented in 
the form of (8): 

nx = cos 0 cos cp, n. = cos 0 sin(jJ, n, = sin o. (17) 

Then, in the zeroth approximation in O! and (3, we have 
for the angles 8 and cp 

sin eo = sin O· sin(nx I 2), tg(jJo = cosS' tg (nxl 2). (18) 

The energy of the disclination is now equal to the sum 
of the expression (9) and an expression linear in O! 

and {3: ,. 
'I, r dX {a(e" + cos' S(jJ") cos' e sin'1jl + ~ (0' cos 1jl + cp' sin", sin e cos O)'}, 

J 
o (19) 

where zp = cp - X is the azimuthal angle of the director 
in the natural system of coordinates (see Fig. 2). Since 
the solution (18) is itself an extremal point of the en­
ergy (9) for equal moduli, the required linear correc­
tion to the energy is given by the integral (19) with the 
unperturbed angles 8 0 and CPo (18). This gives 

!:J.f I f = '/,a(1 + cos' e') + ~ sin'O' 

for both values n = ± 1. (Here f is the unperturbed 
energy (9), f = rr/4.) 

y 

x 

I 
I 
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FIG. 2 .r 

(20) 
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It can be seen from formula (20) that the correction 
~ f to the energy is a monotonic function of the angle 
e* for values 0 < e· < 1T/2. At the points e· = rr/2 
and e· = 0, the correction takes the extremal values, 
equal to a and a/2 + (:3 respectively. Therefore, for 
p> a/2, which coincides with the condition (1), the 
"plane horizontal" disclination is stable and all the 
others are absolutely unstable. In the opposite case, 
(:3 < a/2 (the criterion (2)), only the "plane vertical" 
disclination is found to be stable. 

In the region of its stability, in the same linear ap­
proximation in a and (:3, the "vertical" disclination 
ceases to be plane and acquires the "volume" struc­
ture mentioned in the Introduction. To determine it, 
it is necessary to solve the corresponding variational 
problem. We shall assume that, in the zeroth approxi­
mation in a and (:3, the director lies in the yz-plane, 
and describe the field n by the formulas (8) with {;; = x, 
~ = y and 1) = z: 

nx = sin a, ny = cos e cos!p, n, = cos a sin!p. (21) 

In the zeroth approximation, cpo = nX/2 and eo = O. 
According to (4) and (21), the energy of the system can 
be written in the form of a sum of the expression (9) 
and the functional 

,. 
'I, Idx {y[ a' (cos a sin X + sin a cos!p cos X) +!p' cos a sin !p cos xl' 

o 

+ I) [ a' sin !p cos X - !p' cos a (cos a sin X + sin a cos !p cos X) ],}, 
(22) 

where, in place of the constants a and (:3, we have in­
troduced the quantities 

v = K" / K" - 1, 6 = K" / K33 - 1. 

which are more convenient in our case. 
We shall seek corrections e and cp 1 that are linear 

in y and 6 and satisfy the boundary conditions (11) 
(with n = ± 1). The corresponding equations have the 
form 

5y. 26 - y . 5y . 
n!p," + - smx + --sm 2x + - sm 3x = 0, 

32 4 32 

a"+~a= 3y-26 sin~+ 66-5y sin~. 
4 16 2 16 2 (23 ) 

The periodic solution of the equation for cp 1 is given 
by the formula (n = ± 1) 

5y 26-y 5y 
n!p, = - sin X + --sin 2X + --sin 3X. 

~ 16 ~8 
(24) 

The solution of the equation for e that satisfies the 
condition e (2rr) = - e (0) is not uniquely determined in 
the approximation linear in y and 6. To the solution 
~ sin (3 X/2), ~ sin (5 X/2) of the inhomogeneous equa­
tion, we can add a solution of the homogeneous equa­
tion, of the form 4) sin ( X /2). As always in problems of 
this type, the coefficient of sin (X/2) can be determined 
only in the next approximation in y and 6, from the re­
quirement that resonance terms ~ sin (X/ 2) cancel in 
the equation for e2. The corresponding calculations 
are trivial but very cumbersome, and so we give only 
their result: 

4)The addition of the solution of the homogeneous equation that is 
proportional to cos (X/2) gives only a rotation of the plane of the discli­
nation about the z-axis, as can be seen from (21), and can therefore be 
eliminated by a rotation of the coordinate system. 

6'_. y.I)_29/"y' ~ X 26-3y . 3X +5y-66 . 5)( (25) 
O(X)=' sm-+---sm- ---sm-

8 (26 - y) 2 32 2 96 2 

The first term in (25), proportional to sin (X/2), cor­
responds, as is easily seen, to a rotation of the plane 
of the disclination through a certain angle from its 
initial "vertical" position e = O. The presence in ad­
dition to this term of two higher harmonics makes the 
structure of the disclination essentially non-planar. 
Thus, a "plane vertical" disclination exists only in the 
degenerate case when the elastic moduli are equal. 

The first term in (25), describing the rotation of the 
plane, has a singularity when y = 26 or, in another 
form, when we have the relation K22 = %( Kll + K33 ) be­
tween the elastic moduli. According to what was 
stated above, this equality corresponds (for almost 
equal moduli) to a stability change; in the zeroth ap­
proximation in y and 6, the change in the structure 
consists of the rotation of the plane of the disclination 
through an angle 1T/2. Close to 'Y = 26, the angle of 
rotation also remains finite in the first approximation, 
Le., that with which the observed singularity is asso­
ciated. We shall not refine the formula (25) close to 
y = 26 here, since this problem is only of academic 
interest. 

3. DISCLINATIONS FOR ARBITRARY Kll , K22 , AND 
K33 

It has been established above that, for almost equal 
Kll, K22 , and K33 , all disclinations with Frank indices 
not equal to ± 1 are unstable. They become stable to 
small perturbations only when there are sufficiently 
large differences between the moduli. We begin by in­
vestigating plane disclinations. Following the standard 
method, we must find the eigenvalues of the Euler op­
erator; the sign of these determines the stability. 
Since the exact solutions for a plane disclination with 
arbitrary Kll , K22 , and K33 are known[2], the problem 
can be solved, in principle, for each n. In practice, 
however, the exact solutions are so complicated that it 
is possible to obtain an answer in analytic form only 
for n = 2. In this case (cfY]), there exist two exact 
solutions: the first solution corresponds to the director 
lying along concentric circles, and the second to the 
director lying along radii passing through the disclina­
tion line (see Fig. 1). Using the formulas (9) and (19), 
we write the expression for the second variation of the 
energy: 

1 ,. 
In = 2K I dx {K,,!p," + (K" - K,,) !p,' + (K22 - 2K,,) 9' + K"a"}. 

" 0 

1 ,. 
12Il = 2K I dx {K,,!p," + (K" - KIl ) ,p,' + K22 9" - KilO'}, (26) 

II 0 

where cp 1 = cp - cp I II for the cases I and II respec­
tively. It follows i~mediately from (26) (the boundary 
conditions for n = 2 permit constant cp 1 and e) that the 
radial alignment of the director is always unstable and 
the alignment along the circles is stable for K22 > 2K33, 
Kll > K33 (criterion (3 )). 

Disclinations with large indices become stable for 
yet larger K22 , and as K22 - 00 all the plane disclina­
tions become stable. The Simplest way to convince 
oneself of this is by writing the expression proportional 
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to K22 (n . curl n? in the natural components nr, nX and 
nz of the cylindrical coordinate system: 

(27) 

A plane disclination (nz = 0) is an extremal point of 
the positive functional (27), making the latter vanish. 
Therefore, for very large K22 - 00, the plane disclina­
tion corresponds to the lowest energy value and, con­
sequently, is stable. 

The situation with the volume disclinations is more 
difficult, since we are unable to solve the variational 
problem for arbitrary Kll , K22 , and K33 . A general 
solution can be found only in the limit K33 - 00. The 
corresponding energy K33 (n x curl n)2 in the natural 
components is proportional to the integral 

K ?on 

-" S dxnx'[(n,-n/)'+(nx'+n,)'+n."l. (28) 
2 0 

The positive functional (28) has an extremum at nx = 0, 
at which it vanishes. Therefore, by analogy with ttie 
case of a plane disclination in the limit K22 - 00, for 
large K33 volume disclinations with any index n for 
which nX = 0 are stable. In such disclinations nr(x) 
and nz( X) are constant in each "vertical" half-plane 
X = const. The corresponding "current lines" (tangen­
tial to the field n) 

are a family of parallel straight lines, lying in the 
"vertical" planes. The angle of inclination nz/nr de­
pends on X, i.e., varies from plane to plane (Fig. 3). 

To determine the dependences nr(x) and nz(X), it 
is necessary to take into account the energy of the 
disclination in the next approximation, i.e., the func­
tional (27) and the expression proportional to 
Kll (divn)2: 

,. 
'I,K" S dx(n, + nx')'. (29) 

o 

Substituting 

nr = cos J,t, nx = 0, nT = sin J,t, 

into the functional given by the sum of (27) and (29), we 
obtain 

2n 

'I, S dx {K22J.t" + K" cos' J.t}. 
o 

Since (30) does not contain X explicitly, there exists 
the "energy" integral: 

'I,K22J.t" + '12K" sin' ~t = c. 

(30) 

Hence it follows that X can be expressed in terms of JJ. 
by means of an elliptic integral of the first kind: 

FIG. 3 

(31) ( K" )'" S" J(=±x - ----~ 
KlI 0 (l-x'sin'v)'I.· 

dv 

where in place of C we have introduced the new con­
stant / = Kll /2CK22 . Correspondingly, the depend­
ences on X of the projections nr and nz of the direc­
tor are given by the elliptic cosine and sine: 

n,=cn (~yKlI). 
x K22 

n. = sn (~ y Kit ). 
x K" 

(32) 

The periodicity condition JJ. ( 2n) = JJ. ( 0) + nn leads to 
the following formula connecting K with n: 

1t = xl nl (K" I K .. ) V'K(x). (33) 

where K( K) is a complete elliptic integral of the first 
kind. 

The formulas (31)-(33) give a complete solution of 
the problem for any n. However, in view of the fact 
that they correspond only to the limiting case K33 
» Ku , K22 , we shall not give a detailed study of them 
here. 

4. CONCLUSION 

We have seen above that, depending on the relations 
between the moduli K, two different types of disclina­
tion are possible: plane[l,2] and volume disclinations. 
The literature is comparatively poor in experimental 
data on the magnitudes of the elastic constants of 
nematic liquid crystals. Therefore, it does not appear 
possible to reach a more general conclusion on which 
type of disclination is the most common on the basis of 
these data. In those cases for which there are reliable 
data, the elastic moduli satisfy the inequalities K33 
> Kll > K22 . For example, for p-azoxy-anisole[5,61, 
K33 :Kll :K22 = 2.1:1 :0.7, and for p-n-methoxybenzyli­
dine-p-butylaniline (MBBA)[6,7] these ratios are 
1.1: 1: 0.5. Thus, only volume disclinations can exist 
in these substances. 

We express our thanks to Yu. A. Drelzin, A. M. 
Dykhne, and S. P. Novikov for discussion of the ques­
tions considered here. 

APPENDIX 1 

Stability of Disclinations Under Non-self-similar 
Perturbations 

In the general case, the stability is determined by 
the quadratic expansion of the functional (16): 

f'=~S dV{(V<p,)'+(ve)'- ;:' e} 
In place of (V<Po?, for <Po = nx/2 we have substituted 
its expression in cylindrical coordinates, n2/ 4r2. As 
for self-similar perturbations also, the changes of f2 
for the variation <p 1 are positive. The Schrodinger 
equation analogous to (14) and corresponding to the 
Euler operator for f2 has the form 

M + (A. + n' I 41"') e = o. 

Its solution satisfying the periodicity conditions (11) 
has the form 

where the parity of m is the same as the parity of n. 
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For R, we have the equation 

~...c: (r dR) + (A _ k' + n' - m' ) R ~ 0 
r dr dr 4r' 

and, for n = ± 1, the function R( r) has the form 

R(r) = J.(xr), 8' = m' -1, m = ±i, ±3, ... , 

where J s is a Bessel function. In this case, A = / + k2, 
and the stability of the disclination is conserved. For 
other n there exist also, along with solutions of the 
same type as for n = ± 1, solutions of the form 

R(r) = K±ia!xr) , cr' = n' - m' > 0, 

where Kia is a Macdonald function. These solutions 
correspond in quantum mechanics to the collapse of a 
particle to the center. As is well known (cf., e.g.,[BJ), 
in this case there exist arbitrarily low energy levels A. 

APPENDIX 2 

The equivalence of the standard and energy ap­
proaches used in this paper is based on the fact that 
the "dangerous" perturbation giving the zero eigen­
value and having, according to (15), the form 
e = e'f. sin (nX/ 2) gives, principally, only a rotation of 
the ~Tj-plane (see formula (8)) in which the director 
rotated for a = (3 = 0, through a small angle e'f., i.e., 
the "dangerous" perturbation basically desc ribes the 
transition from one of the solutions of the type (17), 
(18) to the other. Since, according to (20), all disclina­
tions apart from "plane horizontal" and "plane verti­
cal" disclinations are certainly unstable, it is suffic­
ient to investigate only these two extreme cases. We 
begin with the "horizontal" disclination. To desc ribe 
the field n, we make use of the formula (17) and ex­
pand the energy, i.e., the sum of the expressions (9) 
and (19), to squares of the small quantities e and cp 1 

= cp - cpo, where cpo is the exact solution of the plane 
problem for a, (3 ". 0 (cfYJ). As a result, for the sec­
ond order terms we obtain an expression of the type 
f2 + 6.f2, where f2 is given by formula (10), and all 
terms linear in the small quantities a and (3 are 
collected in 6.fz. These arise both from the expansion 
of the expression (19) close to eo = 0, CPo = nx/2, and 
from the expansion of the second variation of (9) in a 
series in a and p. As before, the structure is again 
stable with respect to the variations cp I even in zeroth 

order in a and (3. It is also clear that the eigenfunc­
tion for the "dangerous" eigenvalue has the form 

0= 0' sin (nx / 2) + O(u, ~), 

where O(a, (3) are terms linear in a and (3. It is clear 
that, to calculate the energy (the eigenvalue A) to the 
same linear order in a and (3, it is sufficient to calcu­
late the integrals in 6.f2 with the functions cp I = 0 and 
eo = e* sin (nx/2). The answer, naturally, is propor­
tional to A e*2. By noting now that according to (18), on 
rotation of the plane through an angle (/f. we also have 
eo = e'f. sin (nX/2) and cp I ~ e*2 - 0, we conclude that 

>c e * 2 should coincide to within a numerical factor with 
the corresponding term of the expansion of (20) in a 
series in e*, inasmuch as both represent the correc­
tion to the energy of the "horizontal" disclination that 
is linear in a and (3 and due to the rotation of the plane 
of the disclination through an angle e*. 

This completes the proof. It can also be carried 
through without difficulty for a "vertical" disclination, 
by repeating the above, word for word, for the energy 
defined now by the formulas (9) and (22) and for the 
director n described by formula (21), and replaCing 
a and (3 by y and (j, and e'" by rr/2 - e*. 
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