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It is shown in the self-consistent field approximation that a homogeneous superstructure state in alloys 
may be thermodynamically stable with respect to formation of an antiphase domain system (formation 
of antiphase domains leads to an increase of free energy) only if all superstructure sites of the re­
Ciprocal lattice coincide with "singular" points of reciprocal space of a disordered solution, these 
points being assumed to satisfy the E. M. Lifshitz condition. In all other cases the superstructure 
diSintegrates into a set of antiphase domains whose geometry depends on the values of the external 
thermodynamic parameters, viz., temperature, composition and pressure. The respective phase states 
apparently correspond to the so-called periodic antiphases. A theoretical procedure for reproducing 
superstructures on the basis of a known star involved in ordering is discussed. Superstructures are 
set up in face- centered cubic and body- centered cubic sUbstitution and interstitial solutions which are 
stable with respect to antiphase domain formation. 

1. STABILITY OF HOMOGENEOUS SUPERSTRUCTURES 
AGAINST THE FORMATION OF ANTIPHASE 
DOMAINS 

T HE question of the stability of ordered phases was 
first considered by E. M. Lifshitz[1J within the frame­
work of the phenomenological theory of second-order 
phase transitions. E. M. Lifshitz has proposed a criter­
ion, according to which the homogeneous state of an 
ordered phase is stable against the formation of long­
period modulations of the single-particle density dis­
tribution function of the atoms, if the point group of the 
wave vectors of the star with which the second order 
phase transition is connected contains symmetry ele­
ments that cross at one poine>. The theory of[ 1J was 
subsequently developed by Dzyaloshinskii [2J. It must 
be emphasized, however, that the analysis in[1,2J is 
valid only near a second-order phase transition point 
(this question will be considered later on in greater de­
tail). It is shown in the present article that the Lifshitz 
criterion has a wider range of applicability. It can be 
used for phases that are far from a second-order phase 
transition point, regardless of the type of the phase 
transition. It then assumes the role of a criterion for 
the stability of a superstructure against the formation 
of antiphase domains (APD). Using the theoretical con­
clusions obtained in the present paper and in [3,4J, which 
are valid in the self-consistent field approximation, we 
can predict the atomic structure of all substitutional 
and interstitial superstructures that are stable against 
the formation of APD and that are possible in any par­
ticular solution. 

For Simplicity we consider ordering in a binary solid 
solution having a monatomic Bravais lattice. In binary 
solid SUbstitution (interstitial) solutions we can describe 

1) A star is called an aggregate of wave vectors in the first Brillouin 
zone, which do not differ from one another by the reciprocal-lattice 
vector and are connected with one another by the rotation and reflec­
tion transformations of the crystal. 
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the distribution of the atoms over the sites (interstices) 
with the aid of a single-particle density function of atoms 
of a single component, namely the probability n(R) for 
filling the lattice sites R by atoms of this component. 
Thus, ordering in substitutional and interstitial solu­
tions can be described within the framework of a single 
formalism[4J. For concreteness, however, we shall 
refer throughout to substitution solutions. 

The thermodynamics of such solutions can be de­
scribed within the framework of the self-consistent field 
approximation, since we are interested in caSes of sys­
tems situated far from second-order phase transition 
points, and also in cases of system with first-order 
phase transition systems, for which the self- consistent 
field approximation is sufficiently accurate[5J. In the 
self-consistent field approximation, the free energy of 
a substitution solid solution is described by the expres­
sion [3J 

fT= ~ LV(R-R')n(R)n(R')+xTL(n(R)lnn(R) 
RR' R (1) 

+(1-n(R»ln(1-n(R))), 

where V(R - R/) is the energy of mixing between the 
sites Rand R' (for interstitial solutions, V(R - R/) is 
the potential of the interaction of two interstitial atoms 
located respectively at the sites Rand R/); K is 
Boltzmann's constant; T is the absolute temperature. 
The summation (1) is over all the lattice sites. 

Stability of the homogeneous state of the superstruc­
ture means that any change in the atomic structure of 
the stable ordered phase should lead to an increase of 
the free energy. In particular, the APD should lead to 
an increase of the free energy. Since the second term 
in (1) (the entropy term) is a local function of the coor­
dinates of the lattice sites, it follows that the formation 
APD consisting of an integer number of superstructure 
unit cells cannot change its values2). We can therefore 

2) A certain entropy change connected with the relaxation of nCR) 
near the antiphase boundary (APB) is possible. But all it does is lower 
even more the free energy of the system with APD, and can therefore 
be disregarded. 
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assume that the change of free energy due to the forma­
tion of APD is determined by the change of the internal 
energy of the system 

U~+ ~V(R-R')n(R)n(R'). (2) 
RR' 

The function n(R) can be represented in the case consid­
ered here in the form of the series 

n(R) "'" ~' Q (k) exp (ikR), 
kElkjs} 

(3) 

where the prime at the summation sign means that the 
summation is carried out over all the wave vectors kj 
of the stars s making up the superstructure (over all s 
the superstructure wave vectors that enter in the first 
Brillouin zone of the lattice {R} of the sites). The sum 
includes also the term Q(O) = c corresponding to the 
value k = 0 (the structure vector of the reciprocal lat­
tice situated in the first Brillouin zone), where c is the 
atomic fraction of the given component. The coefficients 
Q(k) are the structure amplitudes in the superstructure 
sites of the reciprocal lattice {kjs} and are propor-
tional to the long-range order parameters[1,2]. Substi­
tuting (3) in (2), we rewrite the internal energy of the 
superstructure in the form 

N ' UO=2.E V(k)IQ(k)I'. (4) 
• 

The probability nAPD(R) of the distribution of the 
atoms in the system with APD can be expressed in 
terms of the probability n(R) of the distribution of the 
atoms in a homogeneous superstructure with the aid of 
the equation 

nAPD(R)= n(R + T(R»= ,E'Q(k)exP[ik(R + T(R»], (5) 

where T(R) is a vector function equal to T ct if the site R 
is situated in an APD of type ct, where ct = 1, 2, ... , z is 
the number of the lattice site in the unit cell of the 
superstructure, z is the number of atoms in the basis 
of the superstructure, T ct are the disordered- solution 
translation vectors that are not translation vectors of 
the superstructure (antiphase shifts). Formula (5) can 
be rewritten also in another form: 

where 

S.(T)= I:exP(ikT(R»exp(-i'tR) (7) 

is the structure factor of the APD system; the summa­
tion over T in (6) is carried out over all the points of 
the quasicontinuum of the first Brillouin zone. For 
APD having the form of infinite parallel plates of thick­
ness D, the structure factor Sk(T) differs from zero in a 
small region of reciprocal space near T = O. This reg­
ion has the form of a thin infinite rod normal to the 
boundary of the antiphase domains, with a length on the 
order of T ~ l/D. Substituting (6) in (4) we obtain 

U = 2~ .E'.E V(k + 't) IQ(k) 1'18.(,,) I'. (8) 
• 

Since ISk(T) 12 is localized in a narrow region of the 

order of l/D, the integration with respect to T in (8) is 
actually carried out in this region near each reciprocal­
lattice point of the superstructure. Within the limits of 
this region, the function V(kjs + T) varies little and can 
be expanded in powers of T (the expansion is actually 
carried out in powers of the parameter T /kjs ~ aiD 
« 1, where a is the superstructure lattice constant). 
Confining ourselves to the first term of the expansion, 
we rewrite (8) in the form 

U = _1_ \"'1' V(k) IQ(k) I' \"'118.(,,) I' + ~ \"'1' IQ(k) I'V. (k)A.({T(R)}), 
2N ~ ~ 2 f-' (9) 

where 
V. (k) = oV(k) / ok, 

A.({T(R)})= ~ .E ,,18.(,,) I' 

is a vector that is a functional of T(R). 

(10) 

(11) 

Taking into account the identity I) 1 Sk( T) 12 = N, we 
T 

can see that the first term in (9) is the energy (4) of the 
superstructure without the APD. The second term in 
(9) is the internal-energy change due to the APD de­
scribed by the function T(R): 

1 ' "'U=U-U'=2.E IQ(k)I'V.(k)A.({T(R)}). (12) 
• 

The internal-energy change ~ U({T(R)}) is also a func­
tional of the APD distribution. Expression (11) can be 
rewritten in a more convenient form 

Ak({T(R)}) = ;N.E ,,(18.(,,) I' - 18.(-,,) I'). (13) 

The stability of the homogeneous ordered phase against 
formation of APD means that for any APD system (any 
function T(R)) we have ~ U({T(R)}) > O. At the same 
time, it follows from (12) that we are always able to 
construct an antiphase domain system (a function T(R) 
such that ~ U < O. In fact, we choose a certain function 
T1(R) satisfying the condition 

(14) 

with the antiphase shifts of T1(R) different from the anti­
phase shifts of -Tl(R) (they cannot be equated to the 
latter by adding some superstructure-tram::1ation vec­
tor). If it turns out that ~U({Tl(R)}) < 0 for the APD 
system, then this automatically proves the instability 
of the homogeneous ordered phase. On the other hand, 
if ~ U({T1(R)}) > 0, then we can choose a new domain 
structure characterized by a function T2(R) = -T1(R). 
From (13), after determining (7) and the property (14), 
it follows that 

Ak({T,(R)}) =A.({-T,(R)}) = -A.({T.(R)}). (15) 

Substituting (15) in (12) we have 

W({T,(R)}) = "'U({-T.(R)}) = -"'U({T.(R)}) <0, (16) 

thereby proving the instability of the homogeneous state 
of the superstructure against formation of APD. 

Thus, if the expression for ~U, defined by (12), dif­
fers from zero, then the superstructure is always un­
stable against the formation of APD. In order for ex­
preSSion (13) to vanish identically, it is necessary to 
have 
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aV(k) / ak = 0 (17) 

for all the vectors {kj } in the expression (3) for the 
probability distributio~. It follows therefore that the 
necessary condition for the existence of a homogeneous 
superstructure is the requirement that the Fourier com­
ponent of the mixing energy, the function V(k) , have a 
minimum at all reciprocal-space pOints corresponding 
to the position of the superstructure vectors of the re­
ciprocallattice3 ). This criterion is valid with respect 
to any superstructure, regardless of whether the super­
structure is near or far from the ordering point. In the 
reciprocal lattice there are two types of minima of the 
function V(k). The first can be realized in arbitrary 
points of reciprocal space. The positions of these min­
ima dep~nd on the concrete form of the interaction po­
tential V(R). The second type of minimum is realized 
in "singular" pOints of high symmetry of the reciprocal 
lattice of the disordered phase. The positions of these 
minima are connected with the symmetry of the recipro­
cal lattice of the disordered phase and are therefore in­
dependent of the concrete form of the potential V(R). 
Therefore small changes of the external parameters 
cannot lead to a displacement of minima of this type. 
As shown in[2,6J, the values of the wave vectors k· 

characterizing the positions of the "Singular" POi~~S at 
which a minimum of the function V(k) is realized are 
determined from the condition that the point group of 
the vector kjs contain symmetry elements that intersect 
at one point. This condition is fully equivalent to the 
criterion formulated by Lifshitz in the phenomenological 
theory of second-order phase transitions[lJ. 

Using the foregoing, we can distinguish between two 
types of ordered phases. The first type includes those 
superstructure in which the positions of one or several 
superstructure types do not coincide with the" singular" 
points in the reciprocal lattice of the disordered phase 
satisfying the Lifshitz criterion. These superstructures 
cannot be in a homogeneous state, for any arbitrarily 
small action on the system leads to the appearance of 
nonzero values of the derivatives (aV(k)/ak)lk=k. ,and 

]s 
consequently to a loss of thermodynamic stability 
against the formation of APD. (Unlike the APD in stable 
superstructure, the APD produced in this case are 
thermodynamically stable.) The parameters of these 
distributions should apparently be quite sensitive to 
changes of the temperature, composition, and pressure. 
One can assume that the APB are periodically arranged 
with a period 21T/6.k, where 6.k is the distance from the 
superstructure vector to the point at which V(k) has a 
minimum. Many such long-period superstructures were 
observed recently[7]. 

The second type of superstructures includes those 
ordered phases in which all the superstructure recipro­
cal-lattice points satisfy the Lifshitz criterion. These 
ordered phases can be in a homogeneous state regard­
less of changes in the thermodynamic parameters of the 
system, if all these points correspond to a minimum of 
the function V(K) (see foornote 3). In fact, the conditions 

3) If the function V(k) has a maximum or a saddle point in the posi­
tions of certain superstructure vectors of the reciprocal lattice, then it 
can be easily shown that in this case, too, the homogeneous ordered 
phase is unstable against the formation of APD. 

under which the function V(k) has an extremum in the 
"Singular" points of reciprocal space are satisfied be­
cause of the symmetry of the system, and therefore 
cannot be disturbed by external actions. Since the num­
ber of non-equivalent "singular" points is limited, there 
is a realistic possibility of determining for each lattice 
the atomic- crystalline structure of all the ordered 
phases that are stable against the formation of APD. 

It must be emphasized that all the deductions arrived 
at above for monatomic crystals remain valid also for 
the case of ordering in more complicated crystals with 
bases. 

An interesting question is the relation between the 
present results and those of Dzyaloshinskil[2J . It was 

1 d d · [2J. t· conc u e In ,In par lcular, that superstructures that 
do not satisfy the Lifshitz criterion are unstable against 
changes of the star vectors k. . This conclusion is sub-

]s 
ject to no doubt near the temperature T of a second­
order phase tranSition. It cannot be ext~nded, however, 
to temperatures far from T . The reason is that the 
Dzyaloshinskii theory[2J is 'based on an expansion of the 
free energy in a series near the vectors kj . This ex-

panSion is possible near Tc ' but is known t~ be inappli­
cable far from T C' where the free energy is discon­
tinuous for all rational values of kj [8J . It can be shown, 

in particular, that in the limiting c:se near T = 00 K a 
superstructure that does not satisfy the Lifshitz criter­
ion is nevertheless stable against variations of the star 
vectors kjs that lead to "beats" in the distribution 

probability n(R). Near T = OOK, by virtue of the third 
law of thermodynamics, n(R) takes on the two values 0 
and 1. Therefore if "beats" were produced (they would 
be commensurate with n(R)), they would take the proba­
bility outside of its "physical" definition range 0 :5: n(R) 
:5: 1, which is impossible. Such a superstructure, how­
ever, being stable against the variations of k., will 
nevertheless be unstable against the formati6n of APD. 

2. DETERMINATION OF THE SUBSTITUTION AND 
INTERSTITIAL SUPERSTR UCTURES FROM THE 
KNOWN STARS 

If f 11 . II 3 J . , 0 OWIng , ,we regroup the terms In (3), gather-
ing together those corresponding to a single star, then 
expression (3) can be rewritten in the form 

n(R)~ c +.E tj.e.(R), (18) 

e.(R)=+.E (,\,,(j.)exp(ikj,R)+c.C.), (19) 

Q(kj, ) = tj.,\,.(j.), (20) 

TJ s are the long- range order parameters, the subscript 
s numbers the stars, and the subscript j numbers the 
wave vectors kj entering in the star s. Ir follows from 

(20) that the long-range order parameters are not 
uniquely defined and depend on the method used to de­
fine the coefficients y s(js)' In some cases it is conven­
ien~ to define the coefficients y sUs) in such a way as to 
satlsfy the normalization conditions [1J 

(21) 
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In other cases, they are so defined that in an alloy of 
stoichiometric composition the function n(R) assume the 
two values 0 and 1 at all 1) s = 1, i.e., such that the dis­
tribution (21) describes a fully ordered distribution of 
the atoms at all 1) = 1. 

It is shown in t~e Appendix that from the condition 
that the free energy be minimal it is possible to deduce 
the following condition: the coefficients y s(js) in ex­
pressions (19) and (20) are constants independent of 
changes in the thermodynamic parameters of the sys­
tem (temperature, composition, and pressure). Changes 
in the coefficients ysOs) can occur only jumpwise on the 
interphase boundaries, and these changes always offer 
evidence of changes in the symmetry of the solid solu­
tion. 

On the other hand, it was proved in[3] that the func­
tion n(R) must satisfy the following two necessary con­
ditions: (I) The function n(R) should assume on the set 
{R} of all the lattice sites a number of different values 
exceeding by unity the total number of the long- range 
order parameters. (II) The sum of any two wave vec­
tors kjs (including those equal to each other) in the 

distribution functions n(R) Should, accurate to within the 
structure vector of the reciprocal lattice, be equal 
either to zero or to some third vector that is contained 
in this distribution. 

To understand the meaning of the condition (I), we 
note the following. The dependence of n(R) on the 
lattice-point coordinates R means that ordering causes 
the lattice {R} of a disordered solution to break up into 
several, say t, sublattices. Each sublattice is charac­
terized by its own probability of site occupation. Thus, 
the ordered state is defined, on the one hand, by the 
concentration c with a set of long-range order param­
eters 1) S' and on the other hand by the set of t different 
values assumed by n(R) on the set of all pOints {R} 
Since the number of degrees of freedom of the system 
cannot depend on the method used to describe it, the 
number of parameters 1) s at constant y sOs) should be 
equal to t - 1 (the parameter numbered t will be the 
concentration c). The last conclusion is equivalent to 
the formulation of condition (1). 

The meaning of condition (II) can be understood by 
noting that the vectors kjs' which enter in the right-hand 

side of (18), are the principal translations of the re­
ciprocal lattice of the ordered phase. Since the vectors 
kjs are translations of a Bravais lattice, the condition 

(IT) reduces to the obvious property of any Bravais lat­
tice, namely, the sum of any two translations in a 
Bravais lattice must be equal to some third translation 
in the same lattice. 

So far we have discussed the case of ordering in lat­
tices without a basis. It can be shown that in the case 
of complex lattices having a basis, all the results ob­
tained above are valid with respect to each of the sub­
lattices of this complicated structure. In this situation, 
the procedure of determining the structure of the or­
dered phase reduces to the already considered proced­
ure of constructing an ordered distribution in a single­
atom lattice, which must be carried out for one or sev­
eral sublattices. The long-range order and concentration 
parameters ~ill then have separate values for each of 
the sublattices. They can be determined from the equa-

tions of the self-consistent field[4]. 
The approach developed here is quite effective in a 

structure analysiS of the ordered phases, particularly 
in an electron- microscope investigation of alloys by the 
micro-diffraction method. The latter yields directly the 
intersections of the reciprocal lattices of ordered 
phases with different planes. From these intersections 
one can determine the stars of the wave vectors {~s} , 

which determine the general form of the distribution 
(18), and then, using the theoretical premises described 
above, construct the distribution of the atoms in the in­
vestigated superstructure. Such an approach allows us 
to analyze the superstructures without the laborious 
procedure of determining the intensities of the ~aue re­
flections (see, for example,[19]). If we are interested 
in the atomic structure of superstructures that are 
thermodynamically stable against the formation of APD, 
then the stars that determine the translational symme­
try of the superstructures can be determined from the 
theoretical considerations developed in Sec. 1. We de­
termine below all such superstructures that can arise 
in BCC and FCC substitution and interstitial solutions. 

3. SUPERSTRUCTURES IN FCC BINARY 
SUBSTITUTION AND INTERSTITIAL SOLUTIONS 
THAT ARE STABLE AGAINST THE FORMATION 
OFAPD 

Since the ordinary FCC lattice has no basis, it fol­
lows that in FCC substitution solutions the ordered 
distributions of the atoms are described by expression 
(18). The location of the" largest" octahedral inter­
stices are also described by a simple FCC lattice 
shifted by half the side of the FCC lattice cube relative 
to the FCC lattice of the immobile "frame" formed by 
the solvent atoms. The problem of ordering in an FCC 
interstitial solution reduces to the problem of ordering 
in a model FCC substitution solution made up of the 
interstitial atoms and their vacancies, distributed over 
the FCC lattice of the octahedral interstices. The or­
dered distribution of the interstitial atoms in the FCC 
interstice lattice is described by the same expression 
(18) as the corresponding ordered distribution of the 
atoms in substitution solutions. The last circumstance 
is the reason for the existence of a definite crystal 
geometry and thermodynamic isomorphism between 
substitution and interstitial solutions. 

In the FCC lattice there are three stars satisfying 
E. M. Lifshitz's criterion[l]: 

a) (100), (010), <.901 ); _ _ (22) 
b) ('/2 '/2 '/,), ('/, '/, '/,), ('/, '/, '/,),_ ('/, '/, '/=1; 
c) ('/2 1 0), ('/, {) 1) (0 '/, 1), ('/,1 0), ('/, 0 1), (0 '1,1). 

The coordinates of the wave vectors of the stars are 
given in the usual basis of the reciprocal-lattice vec­
tors: 21Tai, 21Ta.t, and 21Taj, where ai, a:, and a: are the 
reciprocal-lattice vectors, with absolute values 11a 
(a are the FCC lattice constants) and directed along the 
axes [1001, [OlD], and [001], respectively. Thus, the 
general form of the distribution describing FCC-lattice 
superstructures that are stable against the formation of 
APD is determined by expression (18) in which only the 
stars of (22) are present: 
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3 , 

n(R)= C + 1'], r, V, (j,)e'kj,R + 1'], L, '1'2 (j,) e'kpR 
jl=l ~=t 

1 ~ . it R •. _it R (23) +21']3 L.i[V,(J,)e p +'1" (!o)e p], 

i3=1 

where R = xal + ya2 + za3; x, y, and z are the coordin­
ates of the FCC lattice point and are equal to integers 
and half-integers whose sums are arbitrary integers; 
al, a2, and a3 are the translation vectors in the [100J , 
lOlOJ, and [001) directions of the FCC lattice; {kh} , 
{kh } , and {kj) are the vectors of stars (a), (b), and (c) 

in (22). 
Using the conditions (I) and (II) above, we can con­

struct quite simply all the possible functions n(R) 
describing the substitution and interstitial superstruc­
tures that are stable against the formation of APD. 

By way of example, let us consider in detail first the 
procedure of obtaining all the superstructures that de­
pend only on one parameter TIl (determined by star (a) 
in (22)). The expression n(R) for these structures can 
be written in the form 

n(R) = n(x, y, z) = c+I'],(v,(1)e"nx+ v,(2)e"nV+ y,(3)e""'). (24) 

We note that the vectors of the star (a) of (22) satisfy 
the condition (II). Substituting in (24) all the values of 
the lattice-point coordinates x, y, and z of the FCC lat­
tice, we note that n(R) takes on four different values. 
Since the superstructure described by the distribution 
(24) depends on only one long-range order parameter TIl, 
it follows that by virtue of condition (I) the function n(R) 
should take on only two values from the set of all the 
lattice pOints. Choosing the coefficients Y 1(j) to satisfy 
the condition (I), we arrive at the following two distribu­
tion functions: 

n(x, y, z) = C + 1'],'1', [e"nx + e"nv + e"n,], 

n(x, y, z) = C + y,l'],e"n,. 

(25) 

(26) 

It is easy to verify that the distribution (25) describes 
a substitution superstructure of the C3Au type, namely, 
the probability n(x, y, z) of observing an atom of sort A 
at a point (x, y, z) of the FCC lattice takes on two values 
on the set of the lattice points: (c + 3 TI 1 Y 1) at the ver­
tices and (c - TllYl) at the centers of the faces of the 
FCC cells (see Fig. 1a). If we regard n(x, y, z) as the 
probability of the distribution of the interstitial atoms 
in the octahedral interstices, then (25) describes inter­
stitial superstructures either of the type Me4X (Me 
represents the core atom and X the interstitial atom), 
or Me4X3. The two phases Me4X and Me4X3 are equiva-

FIG. 1 

lent (anti- isomorphic), since they can be obtained one 
from the other by replacing the vacancies of the inter­
stitial atoms by interstitial atoms, and vice versa. The 
superstructure Me4X is shown in Fig. 1£. Superstruc­
tures of this type (Fe4N, Ni4N, and V4C3) were observed 
in[9,10,UJ , respectively. 

The distribution (26) describes a substitution super­
structure of the type CUAU1: the function n(x, y, z) takes 
on the values (c + TI lY 1) and (c - 111 Y 1) respectively in 
alternating (001) planes. The isomorphic interstitial 
superstructure described by expression (26) has a 
structure formula Me2X and is shown in Fig. 19. This 
phase was observed in the Ni- Fe- N system. It has a 
structure formula (Ni, Fe)2N[ 10J . The coefficients Y 1 in 
expressions (25) and (26) are chosen in accordance with 
the two mentioned methods of defining the long-range 
order parameters. It is possible to determine similarly 
the remaining superstructures that are stable against 
the formation of APD. The corresponding distributions 
are 

n(x, y, z) = C + I'],y, exp(iJt (x + y + z)), (27) 
n(x, y, z) = C+1']2V2[exp(irc(x+y+z)) +exp(irc(-x+y+z)) 

+ exp (irc(x - y + z)) - exp(iJt(x + y - z))], (28) 
n(x, y, z) =c+l']iv,[cosrc(z+2x) +sinn(z+2x)]' (29) 

n(x, y, z) = C+I'],'\'I[e"nx+ e"nv+ e"n,) + 
+ 1']''\'2[e'n1x+vH) + e'nl-x+v+,) + e'n1x-v+" + e'n1x+v-,)], (30) 

n(x, y, z) =C+I']I,\,,(e""+I'],,\,,(e'nlx+V+"+e'n1x+v-,,), (31) 
n(x, y, z) = C + I'],,\,,e"n, + l']iY, cos n(z + 2y). (32) 

The distribution (27) corresponds to a superstructure 
of the CuPt type, the unit cell of which is shown in Fig. 
1c, and its isomorphic interstitial superstructure of the 
Me2X type, shown in Fig. 1h. The distribution (28) 
corresponds to complex superstructures of the type AB 
and Me2X, containing 32 and 48 atoms per unit cell. The 
distribution (29) describes a tetragonal substitution 
superstructure, the unit cell of which is shown in Fig. 
1d. The isomorphic interstitial superstructure is shown 
in Fig. 1i. It has not yet been observed so far. The dis­
tribution (30) describes the substitution superstructure 
A7B in a substitution solution and MeaX in an inter­
stitial solution. The corresponding substitution super­
structure CuPt7 was observed in[12J , and the interstitial 
supers tructure FeaN in [9J , while its anti- isomor~hic 
interstitial superstructure VaC 7 was observed in 13J. 

The distribution (31) describes the substitution 
superstructure A3B. The corresponding superstructure 
Pt3Cu was observed in[HJ. The distribution (32) corre­
sponds to a tetragonal substitution superstructure hav­
ing a formula A3B (Fig. 1e), a tetragonal interstitial 
superstructure having a formula Me4X, and its anti­
isomorphic superstructure Me4Xk (Fig. 1j). The corre­
sponding substitution phases AbTi and Nis V were ob­
served in[15J and[16J, and the interstitial phases Ni4N3 
and V4N3 were observed in[17J andClaJ . This list of 
superstructures is complete. It includes all the substi­
tution and interstitial superstructures that can be stable 
against spontaneous decay into a system of APD. 

4. SUPERSTRUCTURES STABLE AGAINST APD 
FORMATION IN BINARY BCC SUBSTITUTION AND 
INTERSTITIAL SOLUTIONS 

Since the BCC lattice is a Bravais lattice, the dis­
tribution of the atoms in an ordered BCC SUbstitution 
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solid solution is described by the same formula (18) as 
the distrlL .tion of the atoms in FCC substitution solu­
tions. The situation, however, is more complicated if 
we are interested in interstitial BCC solutions. In such 
solutions there exist two types of crystallographically 
non-equivalent interstices, octahedral and tetrahedral. 
They form, respectively, three and two mutually-pene­
trating BCC sublattices, each of which is a primitive 
Bravais lattice. Thus, with respect to the formation of 
interstitial solutions in octahedral and tetrahedral in­
terstices, the BCC lattice is a complex lattice having a 
basis consisting of 3 and 6 sites, respectively. In this 
situation, the interstitial superstructures that are iso­
morphic to the substitution superstructures are con­
structed with the aid of the procedures described above 
(see the conclusion of Sec. 2). For brevity, we shall 
henceforth discuss only those interstitial superstruc­
tures in which the interstitial atoms occupy only one 
BCC sublattice of octahedral interstices. It must be 
borne in mind, however, that each such interstitial 
phase can be set in correspondence with isomorphic 
interstitial phases in which the interstitial atoms are 
distributed in exactly the same manner in one or sev­
eral octahedral or tetrahedral BCC sublattices. 

Each octahedral or tetrahedral interstice in a BCC 
lattice has tetragonal symmetry. Therefore each con­
crete ordered disposition of the interstitial atoms in the 
BCC sublattices can be set in correspondence, in the 
general case, with three superstructures that differ 
from one another in the direction of the tetra~onality 
axis (along [1001, [olDl , or respectively [OOlJ). These 
superstructures turn out to be crystallographically dif­
ferent if they cannot be transformed into one another by 
the symmetry transformations of the BCC lattice. 

In the BCC lattice there are three stars satisfying 
the criterion of E. Lifshitz: 
a) (111), 

b) ('/2 '/2 0), ('/,'/,0), ('/,0'/,), ('/20'/2)' (0 '/,'/,), (0 ' /, 'I,), 

c) ('/,'/,'/,), (~,'7,'7,). (33) 

Just as in the, case of the ordering in the FCC lattice, 
the coordinates of the star vectors are given in the 
usual basis of the reciprocal-lattice vectors: 21Tai, 
21Ta:t, and 21Tat. 

In analogy with the case of the FCC lattice, we can 
show that out of the stars (33 a-c) it is possible to con­
struct only six distribution functions satisfying the con­
ditions (I) and (II). These are 

n(x, y, z) = C + 'Y]''I',e''"(z+y+,), (34) 
n(x, y, z) = C +'Y]2'1'2e'"(z+y>, (35) 

n(x, y, z) =c+1]''I',[cosn(x+y+z) +sinn(x+y+z)], (36) 

n (x, y, z) = C + 1],,\,,e'2"(x+y+,) + 'Y],'\', (e'"(x+y) + e'"(x-,» , (37) 
n(x, y, z) = C + 'T)t'Ylei211{;t+V+Z) + 1'}2"vdei1t(x+II) + efn(r-y) + e ill (;e+:) 

+ e'"(Z-,) + e'"(Y+') + e'"(Y-'», (38) 

n(x, y, z) = C +T),'I',e"n(z+Y+') +'Y],,\,,sin n(x + y + z). (39) 

In expressions (34)-(39), x, y, and z are the coordinates 
of the BCC lattice points (they are either all integers 
or all half-integers). The function (34) describes a sub­
stitution superstructure of the type AB(B.), such as 
CuZn, CuBe, FeAI, CuPd, AuZn, etc. Its isomorphic 
interstitial phase has a stoichiometric composition 

g h 

FIG. 2 

(Me2X), The distribution (35) describes a substitution 
superstructure AB consisting of (110) planes filled with 
atoms of sort A alternating with (110) planes filled with 
atoms of sort B (Fig. 2a). Its isomorphic interstitial 
phase Me2X is shown in Fig. 2e. The corresponding 
phase Ta20 was observed in[19J, and the isomorphic 
hydrides and deuterides Ta2H and V2D, in which the 
interstitial atoms are arranged not in an octahedral but 
in a tetragonal sublattice, were observed in [20,21J . 

The distribution (36) describes the substitution 
superstructure B.J2 shown in Fig. 2c. Such a lattice is 
possessed by the phases NaTI, LaAI, etc. Figure 2g 
shows the isomorphic interstitial phase Me2X, The dis­
tribution (37) describes the substitution superstructure 
A3B shown in Fig. 2b. Its isomorphic interstitial super­
structure Me 4X is shown in Fig. 2f. The phase T~O 
with such a unit cell was observed in[19J . The distribu­
tion (38) describes the order phase A7B. In this phase, 
the atoms B form a BCC lattice having a lattice constant 
twice as large as the initial BCC lattice. The remaining 
points of the initial BCC lattice are occupied with atoms 
of type A. The isomorphic A7B interstitial superstruc­
ture has a formula MeaX. The interstitial atoms X in 
MeaX lie in octahedral interstices and also form a BCC 
lattice with a constant double that of the BeC made up 
by the metal atoms. The distribution (39) describes a 
superstructure A3B of the Fe3AI type (Fig. 2d). Its iso­
morphic interstitial superstructure Me4X is shown in 
Fig.2h. 

APPENDIX 

MINIMIZATION OF THE FREE ENERGY WITH 
RESPECT TO THE PARAMETERS YsU s) 

Minimizing the free energy (1) with respect to y s(js) 
and recognizing that the internal energy (2) does not de­
pend on ys(js), by virtue of the normalization condition 
(21), we obtain 

ofT = - xT E2 (R) explik;,R}oy, (j.) = 0, 
R 

2 (R) = In n (R) 
1- n(R) , 

(A.I) 

where oy s(js) is the variation of the coefficients y s(js). 
Since the symmetry of the function 2(R) coincides with 
the symmetry of the function n(R), we can represent 
P(R) in the same form (18) as n(R): 

2(R)= c+ ~~'i'.(R), 
(A.2) 

i'.(R)= L r.(j.)exp(ik;,Rl, .E Ir(j.) I' = 1. 

'. J. 
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Here 17 and ro ) are certain effective "long-range­
order p~ramete;s" and normalized Fourier coefficients 
that depend on the true long-range-order parameters Tis 
and the normalized Fourier coefficients I' s(j s). Substi­
tuting (A.2) into (A.1), we obtain 

.E r: (j,) Ilv. (i.) = 0. (A.3) 
J. 

The equality (A.3) can be interpreted as the scalar 
product (r~, 01' s) of the multidimensional generalized 
vector r; = {r s(1), r s(2), ... } and oys 

= {oYs(1), oYs(2), ... }. The vanishing of this scalar 
product denotes orthogonality of the vectors r~ and oys' 
Since the extremum of the free energy is sought under 
the additional condition (21), we get the identity 

(v:, 6V,) == 0, (A.4) 

where Ys = {Ys(1), Ys(2), ... }. 

Equation (A.4) means that the generalized vectors 
I' ~ and 01' s are also orthogonal. Since the vector 01' s 
can assume arbitrary values and remain at the same 
time in the hyperplane normal to the vector 1';' the 
equality (A.3) - (r;, oys) = 0 denotes that the vector r; 
is orthogonal to the same hyperplane, and consequently 
is collinear with the vec tor I' S' or r s = A I' s. The pro­
portionality coefficient A is equal to unity, since 
(r;rs) = (y;ys) = 1 and the right-hand side of (A.2) is 
a real function. Thus, from the condition that the free 
energy have an extremal value we get 

r. = -y. nnn r(k;,) = V(kj'). (A.5) 

Consequently, we can rewrite (A.2) in the form 

!l'(R) = C'+ E ~.(f)I' f)" ... 1]" ... ; V"Y" ... v ..... )E.(R). (A.6) 

Expanding the coefficient 'ii's(7] 1, 7]2, ... 7]s' ... ; Yl,Y2, ... 
I' S' ... ) in a series in the long- range order parameters 
7]1,7]2, ... , 7]s' ... , we separate from (A.6) the term pro­
portional to 7]~. This term is of the form 

f),'a (v,) E, (R) = f),'a(v,) ~ y, (j,) e ikj,R, (A.7) 

where a( I' s) is the expansion coefficient. 
On the other hand, the same term can be obtained by 

raising the function 7] SE s (R) to the third power and 
separating from it the terms proportional to the ex­
ponentials exp(i~s ·R). If we take the normalization 

condition (18) into account, this term can be represen­
ted in the form 

6 3 ~ [1 J ikj R 
Tj, ~ 1- :flv,(j,)I' v,(i,)e ' . 

" 
(A.8) 

In order for (A.8) to assume the same formula (A.7), 
which follows from the condition that £F be a minimum, 
it is necessary that all the moduli of the nonzero coeffi­
cients y(kj ) belonging to each star s be equal to each 
other. s 

To find the phase factors exp(iqJjs) of the coefficients 
y(kjs)' it is convenient to separate from (A.6) the term 

proportional to 7]:J1 + \ where m is the smallest possible 
natural number by which any vector of a star {kjs} 

must be multiplied in order to obtain the disordered-

phase reciprocal-lattice vector multiplied by 27T. This 
term is of the form 

(A.9) 

On the other hand, the same term can be obtained by 
raising the function 7]sEs(R) to the power m + 1 and 

separating from t)~+\Es(R))m+1 the terms propor­
tional to the exponential exp (ikjs . R). The last proced-

ure, if we take into account the already-obtained result 
IYs(1)1 = II' (2)1 = ... = IYsl, and consequently Ys(js) 

= IYsleiqJs(jS), yields 

1]:"+1 ~ [a+ ~e;m'.(i.)v, (j,) eik;,R. 

" 
(A.10) 

Expression (A.10) coincides with expression (A.9) only 
if 

rp,(j,) = nv / m (v = 0,1, ... , 2m -1). (A.ll) 

Thus, the coefficients Ys(js) = IYsl exp{i7Tvjs/m} in ex­

pression (18) are constants that do not depend, within 
the limits of the single-phase region, on the thermo­
dynamic parameters of the system, namely the tem­
perature, the composition, and the pressure. The co­
efficients YsOs) can change only jumpwise on the boun­
daries of the single-phase region. Each such change 
leads to a change of the crystallographic symmetry of 
the phase. 

We note in conclusion that all the obtained conclu­
sions remain valid also -in the general case, and not only 
within the framework of the given model. In the general 
case the function P(R) should be replaced by the func­
tion Ij!(R) = o£F/on(R) and to apply the same reasoning 
with respect to Ij! (R). 
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