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A model is considered that describes the current state in granular media, and takes into account the 
threshold character of the charge transfer between granules due to the discreteness of the electric 
charge. In the case of tunnel junctions which contain metallic granules in the oxide layer, the law 
a ~ T is obtained for the tunnel conductivity. Oscillation effects related to the discreteness of the 
charge are considered. 

1. CONDUCTIVITY OF GRANULAR SYSTEMS: CHOICE 
OF MODEL 

THE flow of current in granular media is connected 
with tunnel transitions of electrons between metallic 
granules contained in a dielectric matrix. If the 
granule dimensions are sufficiently small, then the 
redistribution of charge between them, following the 
tunneling of the electrons, leads to a significant change 
in the electrostatic energy of the system. In particular, 
the increase in the energy of a single, initially neutral 
granule, which arises upon the removal or addition of 
a single electron, is equal to e 2/2€r in order of mag­
nitude (e is the electron charge, ~ the dielectric 
permitti vity, r the characteristic dimension of the 
granule) and amounts to several meV for r ~ 100 A 
and ~ ~ 10. This means that, generally speaking, there 
exists an energy threshold for the mechanism of elec­
tron tunneling, one of the manifestations of which are 
the so-called "giant zero anomalies" of the tunnel 
characteristics of certain junctions. This type of ano­
maly, first observed by Rowell and Shen, [1] is a strong 
burst of differential resistance R = dV / dI at V = O. 
This burst is symmetric relative to the polarity of the 
voltage and does not depend on the magnetic field. A 
similar anomalous behavior was observed by Zeller 
and Giaever(2] on tunnel junctions, in the dielectric 
layer of which were placed metallic inclusions of small 
size. Another characteristic feature, also evidently 
connected with the activation character of the conduc­
tivity of granular systems, is the experimentally ob­
served negative temperature coefficients of the resist­
ance. In particular, in the experiment of Zeller and 
Giaever, R(V = 0) ~ T- 1 • 

The hypothesis advanced by a number of authors [2-4] 
concerning the role of electrostatic effects in the con­
ductivity of granular systems lets us hope that the ex­
perimental data enumerated above can be explained in 
a model which takes into account the Coulomb energy 
of a system of conductors of small dimensions. 

The problem of the calculation of the current in a 
granular system can be formulated in the following way. 
We consider a tunnel junction (Fig. 1) which is a granu­
lar system placed between two massive conductors (the 
junction edges). All the conductors are numbered by 
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i=f Junction edge 
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i =2 Junction edge 

FIG. I. Schematic form of tunnel junction containing metallic in­
clusions in the oxide layer. 

the index i. For the junction edges, i = 1 and 2. If the 
tunnel coupling between conductors is weak, then the 
calculation of the current can be made by the method of 
the tunnel Hamiltonian. [5, 6] 

We write down the Hamiltonian of the system in the 
form 

H= Ho+He+ T, (1.1) 

where Ho is the Hamiltonian of the system of isolated 
uncharged conductors, 

(1.2) 
i,i 

is the electrostatic energy operator for a system of 
charged conductors, Qi. = e( Ni - Nil is the operator of 
uncompensated charge on the i-th conductor, 

Ni = .E apiapp 

(lij is the matrix of reciprocal capacitances of the set 
of conductors; 

(1.3) 

is the tunnel contribution to the Hamiltonian.[5,6] 
The space quantization of the energy of the electron 

on a conductor of small size was not taken into account 
in the formulation of the problem. The energy interval 
that is characteristic for space quantization (see, for 
example,(71), ~Esp ~ Jl/N ~ Jl(a/r)3 (Jl is the chemi­
cal potential and a is the interatomic distance), is 
much less than the electrostatic energy Ee ~ %e2/ ~r 
~ Jla/ ~r, if the size r of the conductor is greater than 
the interatomic distance: ~Esp/Ee ~ ~(a/r)2 « 1 for 
r/a> 3, if ( ~ 10. Under the condition 

;"Esp / kT ~ J.t / NkT « 1 (1.4 ) 
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space quantization can generally be neglected. The 
condition (14) is satisfied for T ?, 1 0 K for granules 
with dimensions r ~ 100 A. 

The current Ii = e < Ni) on the i -th conductor, to 
first order in the transmission, can be calculated in a 
manner similar to that used in [8]: 

t 

Ii=-4eRe \"1 \"1ITpp l·2 Sdt'([a;(t)ap(t),a;(t')ap(t')]>o, 
.l..J~ lJ I J } 1 

j=p i PiP; 

api (t) = exp[ i (Ho + H,) t lap, exp[ - i (Ho + H,) t], (1.5) 

( .... )0 = Sp {exp ~ (Q - Ho - H, + 1:. !l,N,) ... } 
; 

is the mean over the grand canonical ensemble with the 
Hamiltonian Ho + He, {3 = (kTt 1; Ili is the chemical 
potential of the i -th conductor; 

Q = - ~-'ln { Sp [ exp ~ (1: !IN, - Ho - H,) ]} 
; 

is the thermodynamic potential of the system. 
As is seen from (1.5), the currents on the conduc­

tors are functions of the chemical potentials /li. What 
is actually known in the experiment, however is the 
voltage V applied to the junction. To eliminate the 
chemical potentials of the individual granules, we use 
the conditions of dynamic equilibrium: 

d 
I,=ed/N'> =0, i*1,2, (1.6) 

which means that the charge on the granule does not 
change with time. In this case, the current through the 
junction is 11 = -h and, with account of (1.6), can be 
expressed in the form of a function of the chemical 
potentials for the junction edges, the difference be­
tween which is determined by the voltage applied to the 
junction: III - /J.2 = eV. 

Although the spectrum and the states of the system 
of conductors with account of the electrostatic interac­
tion in the form (1.2) are found automatically (inas­
much as [Ho, He] = 0), the calculation of the thermody­
namic averages is a very complex problem, even for 
such a simple system. The principal difficulty lies in 
the summation over the fluctuations of the numbers of 
particles on the conductors, which is impossible to 
carry out independently for each conductor. Therefore, 
in what follows, we shall analyze a simpler situation, 
similar to that described in[2]. 

We consider a tunnel junction in which the shortest 
distance between the metallic droplets is much greater 
than their characteristic dimensions or the distances 
between the junction edges. In this case, because of the 
strong screening effect of the junction edges, the elec­
trostatic effect of the droplets on one another is greatly 
reduced. This indicates a great decrease in the non­
diagonal elements of the matrix (l ij. Analysis shows 
that if {3e2 .4 (lij « 1, then one can neglect the electro-

J"'1 . 
static effect of the droplet on one another in the calcu-
lation of the currents. Moreover, in this limit of small 
concentration of droplets, we can neglect the tunnel 
coupling between the droplets. Then the solution of the 
problem can be carried out in two steps. We calculate 
first the current through a junction containing a single 
metallic droplet. Then this result is averaged over the 
parameters of the inclusions and multiplied by their 
concentration to obtain the total current. 

2. TEMPERATURE DEPENDENCE OF THE TUNNEL 
CURRENT 

In the calculation of the current from Eq. (1.5), we 
must recognize that since the dimensions of the junc­
tion edges are sufficiently large, the conditions 

~e'ali ~ ~e'a2i ~ ~e' / eL ~ 1 (2.1 ) 

are easily satisfied in the real situation. Here L is 
the characteristic dimension of the junction edges (for 
example, if L ~ 1 cm, T ~ 10 K, and t ~ 10, then 
(3e2/tL ~ 10.5). In this approximation, and also for the 
condition (1.4), we can calculate the current in the 
metallic droplet: 

1=- 2~-' \"1 sh['/'~(!l'-!lj)] (2.2) 
, e.l...l R.. P(x,a",!li-!lJ)' 

;=1,2 I} 

±o:o _t 

P(x, a;;, !lj) = e,I' (&~ exp[ - y (m -. x)'] ) 

x t exp[-y(m-x-'/2)'] y(m-x-'/')+'/'~(!l'-!lj) (2.3) 
m~-oo shly(m - x -'/,)+ '/'~(!l' -Ilj)} , 

where the resistances Rij of the tunnel junctions between 
conductors have been introduced;[8] 

(2.4) 

m is the integer closest to Ni - Nie: 

m =N,-N" + x, -'12 < x ~ 'f,. (2.5) 

The quantity Nie is determined by the given chemical 
potential of the drop: 

!l' = !liO(N,.,) + e' 1: a,j(N" - N,O), (2.6) 
j=l,Z 

where Ilio( Nie) is the chemical potential of the un­
charged drop as a function of the density (~Nie / r 3 ) of 
the electron gas on the drop. It is seen from (2.2) and 
(2.3) that, in the case in which the characteristic 
Coulomb energy is small in comparison with the tem­
perature (y 1/2 « 1), the expression for the current in 
the drop has the usual form (Ohm's law is valid over 
the entire range of voltages) and the conductivity does 
not depend on the temperature. The most interesting 
is the opposite limiting case, when 

y~l, (2.7) 

which holds for not too high temperatures (if r ~ 100 A, 
t ~ 10, then y ~ 100/T [OK]). In this case, the volt­
ampere characteristic of the junction is linear only for 
sufficiently small voltages V, when the conditions 

(2.8) 

are satisfied. Here the equation of dynamic equilibrium 
(1.6) is easily solved and in first order in (3Ve we ob­
tain the expression for the current flowing through the 
junction, without account of direct tunneling between the 
junction edges: 

V 
1= R +R P(a;;,x,O). (2.9) 

11 12 

Analaysis of (2.3) shows that if (2.7) holds then the 
current (2.9) is a rapidly decreasing function of the 
quantity K. Over almost the entire interval [-%, %] 
the changes of the current is exponentially small (for 
example, I ~ e-Y for K = 0). The current increases 
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sharply only near the ends of the interval (K = ± Y2). 
For K = ± %, the current is I ~ V/2(Ril + Ri2). The 
width 6K of the bursts near K = ± Y2 is equal to 

(2.10 ) 

in order of magnitude. 
The dependence of K on the potential coefficients 

aii, au, a2i is determined by Eqs. (2.5) and (2.6), 
which must be considered for V = 0 (Ili = 1l 1,2)' When 
the junction edges are made out of the same metal and 
one of them is grounded, the condition V = 0 corre­
sponds to the absence of charge on the junction edges. 
Then K is an oscillating function of only the Single 
variable aii. If we denote by am the value of ()Iii cor­
responding to K = ± Y2, then the width of the current 
bursts 6()1m for an ()I determined by Eq. (2.6), is equal 
to 

(2.11 ) 

in magnitude if the chemical potential of the uncharged 
droplet and the junctions edge differ by several fold 
(Illi - Iloi I ~ Ill). The interval between neighboring 
bursts, A ()1m = I ()1m - am+ll, is estimated from Eq. 
(2.6): 

(2.12) ~--~--

1[1, - !lo;1 

For a/r ~ 10-2 and E ~ 10, the change in a of the 
order of 0.1 % leads to the appearance of a new current 
burst. Such a change in ()I can take place from an in­
significant change in the properties of the surrounding 
dielectric (E:), and also the shape of the droplet, with­
out any essential change in the value of Ril + Ri2, 
which depends on the distances between the droplet and 
the junction edges. 

The current through the junctions which contain a 
collection of drops that are sufficiently far removed 
from one another, is obtained after averaging the 
expression (2.9) over the parameters of the inclusions. 
For a rigorous calculation of the current, it is neces­
sary to know the expression for the drop distribution 
function, and also the dependence of ()Iii on the dimen­
Sions, and shape of the droplets and on their location in 
the dielectric layer. Only qualitative remarks on the 
result of such an averaging are of importance to us. 
The averaging can be divided into averaging over the 
characteristic dimensions of the droplet, its location in 
the oxide layer and over the changes (within prescribed 
limits) of the parameter E: and the shape of the droplet. 
The result of the latter averaging will be proportional 
to the width of the current bursts (2.11), i.e., propor­
tional to {3-1 = kT. Consequently, the current through 
the junction and the conductor will be proportional to 
T. Thus the system possesses a negati ve temperature 
coefficient of resistance 

(2.13) 

Such a dependence has been observed experimentally by 
a number of authors. [2,9) 

3. OSCILLATORY EFFECTS 

It was noted in Sec. 2 of this paper that oscillations 
of the tunnel current as a function of the capacity of the 
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FIG. 2. Dependence of the free energy of the junction <'iF = F-Fmin 
on the number of particles in the droplet: a-Nie < Nib + \1,. It is seen 
that the states with Nib and Nib + I particles on the droplet are separated 
by a finite energy interval <'i 0; b-Nie = Nib + Y2. In this case, the free 
energies of states with Nib and Nib + \I, particles on the droplet are 
equal. 

metallic droplet lead to speCific temperature depend­
ence of the junction resistance. In order to understand 
the physical reason for these oscillations, we consider 
the case in which the voltage at the junction is equal to 
zero. We assume that the total number of electrons on 
both junction edge and the droplet is fixed, but an ex­
change mechanism of electrons is initiated between the 
conductors. The most probable distribution of the total 
number N of electrons between the conductors will be 
that in which the free energy of the system F is a 
minimum. We denote these extremal values of the 
numbers of particles on the junction edges and the 
droplet by N Ie, N2e, N 3e, res pecti vely. If the numbers 
of particles on the conductors differ from the extremal 
values by several units, then upon satisfaction of the 
conditions (2.1) and (2.7) the change in the free energy 
/iF will essentially be determined by the change in the 
number of electrons on the droplet: 

(3.1) 

A plot of this function is shown in Fig. 2. It is further 
necessary to recognize that the number of particles on 
the droplet can take on only integral values. Therefore, 
the most probable state will be that in which the number 
of particles on the droplet will be the integer closest to 
Nie (see 3.1)). However, in the case in which Nie = Nib 
+ Ih (Nib is an integer), there exist two values of the 
number of particles on the droplet, Nib and Nib + 1, 
with the same maximum probability. This indicates a 
singular degeneracy, in which the statistical weights of 
the states with Nib and Nib + 1 particles on the drop­
let are equal. On the other hand, the flow of current in 
the junction is connected with such processes in which 
the number of particles on the droplet changes by unity 
(we shall not consider virtual tunneling, since its prob­
ability is of second order in the transmission). In the 
case of degeneracy, these processes can take place for 
unchanged free energy of the system and, consequently, 
the conduction mechanism will be without a threshold. 
Such a situation exists also when Nie differs somewhat 
from Nib + %, but the difference in the free energies 
for the numbers of particles on the drop of Nib and 
Nib + 1 is small in comparison with the temperature. 
If Nie = Nib + % + 6 K, then it follows from (3.1) that 
the effective degeneracy takes place for 10K I :: y -1. 

If 10K I:> y-\ then the degeneracy disappears and the 
states with different numbers of electrons on the drop­
let are separated by an energy barrier. In this case, 
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conduction through the junction has a threshold charac­
ter. 

In conclusion, we consider one more oscillation ef­
fect, which arises in a somewhat different situation. 
We assume that in the single droplet case considered 
above the distance between the droplet and one of the 
junction edges (i = 2) is so large that the tunnel coup­
ling of these conductors is practically non-existence, 
while exchange of electrons between the droplet and 
the other junction edge (i = 1) is possible. If we apply 
a voltage to the junction, then initially a current is 
developed between the droplet and the nearer junction 
edge which ceases after the chemical potentials of 
these conductors become equal. Let us compute the 
charge on the droplet as a function of the applied 
voltage. 

Using (2.5), we write the equilibrium condition 
III = Ili in the form 

where 

(3.2) 

V'=f.!OI(N'e)-f.!,,(Nie), VI=e~(a,n-ain)(Nne-N,,')' (3.3) 
n=1,2 

In the case in which the junction edges are made of the 
same metal (Il 01 = Il 02) and one of them is grounded, 
the quantity V 1 is proportional to the voltage V on the 
contact: 

v, = I.V, A = (alia" - a"a,,) / (alia" - a,,'). (3.4) 

If we take (3.2)-(3.4) into account, we can calculate the 
charge Q on the droplet as a function of the voltage 
applied to the junction: 

Q(V) - (N N0) _ "'V - V, 2", A -e 1- i ----+--, 
a" y B 

+w 
B = ~ cos U e-n2m2/y -...d m , (3.5) 

It is seen from (3.5) that Q( V) consists of a monotonic 
part and a part that oscillates with V. For V = A -1 Yo, 
the charge on the droplet is equal to zero. For suffic­
iently high temperatures (y « 1) the oscillating part 
of the charge is exponentially small. The presence in 
Q( V) of an oscillating contribution leads to the result 
that the effective capacitance of the droplet C = dQ/ dV 
also contains an oscillating term. The presence of simi­
lar oscillations is the reason for the interesting effects 
which have been observed by Lambe and Jaklevic.(lO] 
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