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The nonlinear phase of the development of current-excited ion Langmuir oscillations of a plasma is 
investigated just above the threshold of the system. The time evolution of the amplitude of a linearly 
unstable wave is studied up to the saturation stage. It is shown that under the conditions considered 
the effective mechanism that limits the growth of the amplitude is the nonlinear drift of the frequency 
of the excited wave. The investigation is carried out for a weak-collision plasma, in which oscilla
tion buildup is due to the electron Cerenkov effect, as well as for the case of frequent COllisions, 
when inverse conductivity and electron diffusion in the current-carrying plasma become the cause of 
the instability. 

1. INTRODUCTION 

THE present work is a continuation of the papers(l,2], 
in which we investigated the nonlinear phase of the de
velopment of oscillations in the acoustic part of the 
spectrum of the ion-sound instability of a dense noniso
thermal (Te » Ti), current-carrying plasma. Here, 
the results of P ,2] are supplemented by an investigation 
of the unstable, short-wavelength, ion Langmuir oscil
lations and are generalized to the case of a plasma in 
which collisions are infrequent and weak and the build
up of the oscillations are due to the electron Cerenkov 
effect. In consequence, the theory of the ion-sound 
instability of a nonisothermal, current-carrying plasma 
near the threshold assumes a final form. 

Let us note a few distinctive features of the investi
gation. Having in mind a highly nonisothermal plasma, 
we shall, for simplicity, assume the ions to be cold and 
neglect effects due to the ion-oscillation interaction. 
Furthermore, as has already been noted, our investi
gation pertains to the case when the system is just 
above its threshold. We then have a narrow spectrum 
of oscillations excited in the plasma 1) , and we can re
strict ourselves to the study of only one mode with the 
maximum increment, neglecting mixing of the phases 
of the excited oscillations. Such an analysis neverthe
less allows us to elucidate a number of distinctive fea
tures characteristic of an unstable plasma (e.g., condi
tions of excitation, anomalous convection of the plasma, 
etcY]), and to investigate the time dependence of the 
amplitude of the unstable mode and the mechanism 
leading to its saturation. In the considered case of ex
citation of short-wavelength ion Langmuir OScillations, 
the mechanism limiting the growth of the amplitude is 
the nonlinear drift of the frequency of the excitable 
mode. 

2. PLASMA-STABILITY BOUNDARY 

According to the linear theory (see, for example,[4]), 
a current-carrying nonisothermal plasma in which the 

l)The relative width of the spectrum of the excitable oscillations 
L'Ik/k ~ y€, where € is a parameter indicating how far the system is 
above the threshold (see below). 
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electrons drift relative to the ions with velocity u is 
unstable with respect to the excitation of ion-sound 
oscillations. Under these conditions ion Langmuir 
oscillations with 

(2.1) 

and increment 

l V~; k'~::3 (:u_ 1)_ ;"for V,<kVT', 
y= 

m v, (kU ) Vi 
2M krn," ~-1 -2 forv,>kvT<' 

(2.2) 

are excited in the Short-wavelength part of the spec
trum (k2rOe » 1). In (2.1) and (2.2) wLi = ..; 41Te 2No/M 
is the ion Langmuir frequency, rDe = vTe I wLe is the 
Debye radius of the electrons, vTe = ..; Tel m is their 
thermal velocity, ve is the rate of collisions of elec
trons with ions or neutral atoms, and, finally, Vi = Vio 
is the rate of collisions between ions and neutral atoms 
in a weakly ionized plasma and Vi = % Vii k2vT/ wLi' 
the rate in a completely ionized plasma. Notice that 
the collision limit (ve> kVTe) in the case of short 
wavelengths being considered is realized in a gas with 
a very low degree of ionization, when the mean free 
path of the electrons turns out to be smaller than their 
Debye radius and ve> wLe. 

It follows from the expressions (2) that the oscilla
tions propagating along the direction of drift of the 
electrons have the maximum growth constant, the 
stability boundary for a weakly ionized plasma being 
defined by the relations 

Ulim 4 ( 3M V'') '1. 4 v, -=- -- ,klimrDe=-- for 'Ve>kVTel 
v, 3 m v, 3 ulim 

and for a completely ionized plasma by 

Ulim=~(41/ 2 M !":"':!.::....)'" kr rn =~2 
V6 4, V :t m T" tJ)Li '1m e 4 Ulirn' 

3) 

(2.4) 

Here, Vs = ..; Te 1M is the velocity of isothermal sound 
in the plasma. It follows from the formulas (2.3) that 
in contrast to long wavelength sound vibrations, short 



NONLINEAR PLASMA ION OSCILLATIONS EXCITED BY A CURRENT 683 

wavelength ion Langmuir oscillations can be excited at 
relatively small electron velocities u < vs: but for this 
to happen, the following conditions must be fulfilled: 
wLi > /lie,J M! m in the case of a weakly ionized 
plasma2) and WLi > /Iii (Ti/Te) ,JM! m for a completely 
ionized plasma. These conditions are assumed to be 
fulfilled below. 

3. EQUATION FOR THE AMPLITUDE OF A NON
LINEAR ION LANGMUIR WAVE 

Sagdeev[5) has shown that stationary nonlinear ion
sound waves can exist in a conservative system (in the 
absence of dissipation) and has studied the properties 
of these waves. Allowance for dissipation leads, in the 
presence of a current in the plasma, to the appearance 
of an ion-sound instability. Near the instability thresh
Old, when y « w, dissipation may be allowed for in the 
linear approximation. Furthermore, as follows from 
the linear treatment, in the region of short-wavelength 
ion Langmuir OSCillations, the perturbations of the 
electron density and velocity are negligibly small: 

p.1 Pi ~ V, I Vi ~ 11 k'rD! ~ 1. (3.1 ) 

This permits us to neglect the nonlinearities due to the 
perturbations of the electron component and write the 
basic system of equations describing the development 
of short-wavelength ion Langmuir oscillations in a 
nonisothermal, current-carrying plasma in the follow
ing form: 

!.!..:.+v~-~E a/ •• =~!!~Sf,vdv, (3.2) 
at ar m av No av 

:~ +(VV)V+ViV= ~E, (3.3) 

aN (3.4) -+divNV=O, 
iJt 

e. ,N-N. (35) 
-dlVE=WLi ~-. . 
M . No 

Here, fe is the perturbation of the electron distribu
tion function foe( v) (a Maxwellian distribution with 
drift3», E is the perturbation of the electric field, N 
and V are the density and hydrodynamic velocity of 
the ions and, finally, Ne = No + S fedv is the electron 
density. ColliSions are taken into account in the elec
tron kinetic equation (3.2) with the aid of the model 
collision integral [6) describing the isotropization of 
the electron distribution function when the electrons 
collide with heavy particles. 

Eliminating the quantities Nand E from Eqs. (3.3) 
-(3.5), we reduce them to one nonlinear equation 

[ {)'V , iJV iJ 
div -+WLiV+Vi-+-(VVlV 

at' at at 

+VdiV(~+(VV)V)] +(j)Li'~=O, a t at 

(3.6) 

where 

2)Notice that the indicated inequality pertains to the weak collision 
(ve < kVTe) limit. In the strong-collision case (ve > kVTe), it is necessary, 
according to (2.3), that mTe > MTi. 

3)It is assumed that the external electric field is small compared with 
the Dreicer field and, therefore, the distortion of the distribution func
tion in the collision less limit due to the appearance of "run-away" elec
trons can be neglected. 

p, = :0 S /,dv 

is the relative perturbation of the electron density. It 
is easy to obtain from the kinetic equation (3.2) the 
expression for the Fourier transform pe(k, w): 

P,(k,wl=~ ikE [1+i(-V~+~) W-uk]. 
M k'v,' 2 kVre kVre 

(3.7) 

We obtain from the relation (3.7): 

2 eE eS (a) V, Vp. = -- +- dr'Q(r - r') -+ uVI E(r' t) 
irl iVJ . dt ' , 

(3.8) 

where 
Q (R) =(231) -, S dkQ(k) eil ., 

(3.9 ) 
1 (1/ Jt V,) Q(k)=- V -;-+- . 

kVre 2 kv T • 

Taking into account (3.8) and the smallness of the dis
sipative terms, we can write Eq. (3.6) in the short
wavelength region of the spectrum in the form 

a'v av av 
grad div [WL,'V + - + Vi - + V div (-.-

at' iJ tat 

a W .' a) a'v 
+(VVlV)+_(VVlV]+_L' Sdr'Q(r-r'l (-.-+(uVl -. =0. 

at V,' dt at' 
(3.10) 

It is easy to show that Eq. (3.10) corresponds, in the 
limit /Ie > kVTe, to the standard hydrodynamic (in
ertialess) description of the motion of electrons, and, 
in the limit /Ie < kVTe, to the collisionless hydrody
namics of a nonisothermal plasma[7,8). It is this equa
tion that determines the development in the short
wavelength region of the spectrum of an ion-sound 
instability in a nonisothermal, current-carrying plasma. 

4. TIME EVOLUTION AND SATURATION OF A NON
LINEAR ION LANGMUIR WAVE 

We shall henceforth limit ourselves to the study of 
the development of a one-dimensional ion-sound insta
bility for waves propagating along the drift of the 
electrons, Le., 'V II U II V. The investigation of such 
waves is important, since, in the first place, accord
ing to the linear theory, they possess the maximum 
increment and, secondly, they are weakly stabilized by 
induced scattering on the ions[3,9). In the one-dimen
sional case Eq. (3.10) can be represented in the form 

-.-.+,wdV+v,-+v- -+V-a'v av a (av a V) 
at" at ax at ax 

a av w·' a a a'v +-.-v--~S dx'Q,(x-x') (-+u-)-=O (4.1) 
dt ,]x v/ at ax' af ' 

where 

1 S . 1 Q,(x)=2:r dk e"xQ, (k), Q,(k)=k"'Q(k). (4.2) 

In the linear approximation, it follows from Eq. (4.1) 
that the amplitude of the ion Langmuir oscillations with 
the spectrum (2.1) increases exponentially in time with 
the growth constant (2.2). It is convenient in the analy
sis of the nonlinear phase of the development of the 
instability to introduce a parameter li: which indicates 
how far the system is above the threshold: 

(4.3) 

where Ulim is given by the expressions (2.3) and (2.4). 
Near the instability threshold, when 0 < li: « 1, it is 
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natural to suppose that the main contribution to the 
profile of the excited-in the plasma-wave with the 
maximum growth constant is made by the first few 
harmonics of the mode k = klim, Limiting ourselves 
to the first two harmonics, we shall seek the solution 
of Eq. (4.1) in the form (see also the Appendix) 

(4.4) 

where VI,2(t) are slowly varying amplitudes and W is 
an unknown real frequency. Substituting (4.4) into (4.1) 
and equating the coefficients of the same exponential 
functions, we obtain 

dV, (W' - wL' ) ---;u- i~+V V,+3ikV,'V,-ik'V,'V,'/w=0, 

dV, v,3 3 (4.5) 
&+ B 2 v, +4 ikV.' -4iwLiV, =0. 

Here, y is the linear growth constant near the insta
bility threshold and p = (Q(k) - Q( 2k»/Q(k) (Le., 
f3 = 0.5 when lie < kVTe, and f3 = 0.75 when lie> kVTe). 

Introducing the dimensionless quantities Al 
= YNilv~ and T = yt, and taking into account the fact 
that near the instability threshold y ~ IIi I:: « IIi' we 
find from the system (4.5) the equation determining the 
time evolution of the amplitude of the fundamental mode 
of the ion oscillations that can be excited by a current: 

1 dA, -A 2Bv. k' 'A' (4.6) Td;- '--,-,- r14< ,. 

The solution of this equation has the form 

A,("t")={2PV< k'rD.z+(_1 __ 2BV< k'rD')e-"}-' (4.7) 
V A, (0) v' • 

where AI( 0) is the initial value determined by thermal 
noise in the plasma. We find from (4.7), in particular, 
the amplitude of the stationary, short-wavelength ion 
Langmuir oscillations·) 

A () Y roLf a 1 (4 8) 
, 00 = 2Bv, k'v,' = 2P k2rD.' e, • 

where (} = % for a weakly ionized plasma in the limit 
lie < kVTe and O! = 2 when lie > kVTe; for a completely 
ionized plasma, however, O! = Y2. The quantity A2 
= Y NU v~ is then of the order of ~ 1::2. 

Knowing the nature of the variation of the ion
velocity oscillation amplitude, we can easily determine 
the corresponding amplitude of the electric field of the 
wave. We have from the linearized Eq. (3.3) 

(4.9 ) 

where E I is the amplitude of the fundamental harmonic 
of the field. 

It should be noted that, in the short-wavelength 
limit, in contrast to the long-wavelength limit, the 
stabilization of the amplitude of the growing wave is 
determined not only by energy transfer to the higher 
damped harmonics, but also depends essentially on the 

4)Nonlinear dissipative effects limit the amplitude of the ion lang
muir oscillations (according to the lowest estimate) to [9] 

E,' ,/ m T, ("'Ll)' 
4:rr.NoTe ~ f AfT; k;: . 

This limit is higher than (4.8) provided 

T, Y m ( "'L< ) • D e<- - -
T, AI kv, 

nonlinear shift of the frequency of the oscillations. 
This frequency shift is easily determined from the 
system (4.5): 

ilw (U - COLi k 2v/ a 
-=---=2--, A,(oo)=-e. 
Uhi Wu COLi Ii 

It is due to the oscillations of the ions in the field of 
the ion Langmuir wave. The possibility of stabilization 
of the instability by the nonlinear frequency shift can 
already be seen from the relations (2.2). Indeed, since 
the increment y ~ (k'u - w), a nonlinear increase in 
the frequency decreases the increment, and can make 
it vanish when the system is just above the threshold. 

Notice also that for a fixed level above the thresh
old, Le., for the same value of 1::, the amplitude of the 
stationary ion-sound waves in the short-wavelength 
part of the spectrum is considerably larger than in the 
long-wavelength part. This is connected with the reso
nance nature of the energy transfer to the higher har
monics in the latter case. In the short-wavelength limit 
the higher harmonics of the ion Langmuir oscillations 
are not natural oscillations of the system and, there
fore, interact weakly with the fundamental harmonic. 

APPENDIX 

Going over to a coordinate Fourier representation, 
we write Eq. (4.1) in the form 

a'v. , a V.WL! ( a ) a'v. 
-ao +wLiV,+v'-a ---Q,(k) -+iku--

t- t v.' at iJt' 

+ i f dk, dk 2k,6(k, + k, - k) [V., a v .. + ~(V .. V.,) ] 
at Ot 

- Sdk, dk, dk, k,(k - k,)6(k, + k, + k, - k) v .. V., V" = O. 

Setting Yk = Y"k(t)e- iwkt , where F'k(t) is a slowly 
varying amplitude, we find 

dr. is} __ - (V, + i~w,)r. + -- dk, k, pxp {i(w, - w., - w._ • .) t 
dt 2w" 

x (w., + w.) r"r._" - _i - Sdk, dk,k, (k - k,) 
2w, 

XP'\,rh2rh-hj-112 exp{i(wh. - Wk] - Wk2 - (\)It-k l-k2) t}= 0, 

(A.1) 

(A.2) 

where yk is the linear growth constant and ~Wk 
(wk - wL)/ 2wk· Near the instability threshold we 

can limit ourselves to the consideration of the first 
two harmonics of the fundamental instability mode of 
the oscillations with k = klim and wk ~ wLi. Then Y'k 
= Yd>(k - klim) + Y2o(k - 2klim), W2k ~ 2WLi, and 
Eq. (A.2) reduces to the system (4.5). On the other 
hand, Eq. (A.2) is the more general equation and en
ables us to also investigate the weakly turbulent state 
of the system, when a large number of modes of the 
oscillations is excited, and phase mixing occurs. 
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