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A kinetic theory of the dispersive properties of longitudinal oscillations in an inhomogeneous-plasma 
layer located in an external high-frequency (HF) electromagnetic field is developed. The range of 
external-field frequencies close to the natural frequencies of the electron surface or volume Lang­
muir oscillations is studied. The cases of transparent and opaque plasma layers are considered. 
Threshold values of the HF field intensity are found and the near-threshold increments are deter­
mined. It is shown that the buildup of the ion-sound waves takes place throughout the plasma, 
despite the fact that the surface electron and localized Langmuir oscillations exist in small regions 
of the plasma layer. It is found that volume ion-sound oscillations can be excited in an opaque plasma 
when the thickness of the plasma layer considerably exceeds the dimensions of the skin layer. The 
effect of inhomogeneity on parametric instability in a strong HF field is studied. 

1. The theory of parametric resonance is at present 
sufficiently developed only for the case when the plasma 
can be regarded as homogeneous and unbounded [l-510 

Under experimental conditions, however, the interac­
tion of high-frequency (HF) electromagnetic fields with 
a plasma may essentially depend on the nature of the 
inhomogeneity of the charged particle density distribu­
tion. In the present paper we investigate the parametric 
excitation of volume and surface quasi static waves in a 
layer of an inhomogneous plasma located in an HF 
field whose intensity vector is parallel to the plasma 
boundary. We determine the threshold values of the 
intensities of the external field beginning from which 
the plasma becomes unstable during a parametric reso­
nance at surface electron oscillation frequencies 0 The 
increments of the above-threshold instability are also 
determined. 

It is found that the volume ion-sound oscillations 
interact with the surface electron oscillations, in 
particular, when the oscillation interaction region, 
limited bv the extent of localization of the surface wave, 
is smaller than the thickness of the layer. Despite the 
fact that generation of ion sound takes place only in the 
region of localization of the surface wave, the drift of 
the ion-sound oscillation from the region of interaction 
of the waves leads to the growth of the amplitude of the 
ionic sound throughout the plasma. An analogous situa­
tion is realized in the case when the thickness of the 
plasma layer considerably exceeds the penetration 
depth of the external HF field. 

We also consider the case of localized Langmuir 
oscillations, when the density profile has a minimum 
at the middle of the layer. It is shown that the ratio of 
the threshold HF field intensity (for the buildup of the 
Langmuir and ion-sound oscillations) in an inhomogen­
eous plasma to the corresponding value for the case of 
uniform density distribution is equal to the square root 
of the ratio of the characteristic dimensions of the 
localization of the ion-sound and Langmuir oscillations. 
At the same time, for an aperiodic instability, during 
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which there is a buildup of the Langmuir oscillations 
and the spatial charge separation waves of zero fre­
quency, the magnitude of the threshold external-field 
intensity turns out to be coincident with the value cor­
responding to the case of a homogeneous plasma. Such 
a coincidence is connected with the fact that the spatial 
charge separation waves are not natural waves and 
grow only in the region of localization of the Langmuir 
wa ves. The threshold external-field intensity for the 
excitation of the aperiodic instability may then turn out 
to be considerably smaller than the corresponding 
value for the periodic instability, even in the case of 
strong nonisothermy when the electron temperature is 
considerably higher than the ion temperature. 

The effect of plasma inhomogeneity on parametric 
instability in a strong HF field is also elucidated. It is 
shown that the presence of spatial dispersion of the 
surface waves in an inhomogeneous plasma leads to the 
broadening of the range of frequencies of the external 
field in which instability with respect to the buildup of 
the surface waves becomes possible. At the same time 
the unique damping of the surface waves, which is con­
nected with the plasma inhomogeneity, leads to a situa­
tion in which the parametric instability may turn out to 
be dissipative even in the case of large values of the 
intensity of the external field. 

20 Let us consider a quasineutral-plasma layer of 
thickness d, bounded by a medium of permittivity E:oll 

We shall assume that the electron density ne( z) in­
creases rapidly to the value ne(a) in a transition 
region of dimension a (a « d) close to the plasma 
boundaries; in the rest of the region the plasma will 
be assumed to be mildly inhomogeneous with a charac­
teristic dimension of the inhomogeneity: 

L = (8 In n,(z) /.?zl ,~a)-t :;;::;d. 

The vector of the external electric field Eo( z) sin wot 

1)It i~ assumed that the space-time dispersion of the permittivity €o 

is insignificant. 
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is assumed to be directed along the boundary of the 
layer. 

Being interested in the question of plasma instabil­
ity with respect to the buildup of high-frequency sur­
face and low-frequency ion-sound oscillations when the 
plasma is located in a HF electric field, we shall study 
the evolution in time of small initial perturbations of 
the electromagnetic fieldo In doing this we shall assume 
that the component of the wave vector of the oscilla­
tions along the plasma boundary kll satisfies the con­
dition a-I» kll » L- I. This corresponds in the ab­
sence of the HF field to slowly decaying surface 
waves(61. Under the assumption that the plasma Debye 
radius rD is small in comparison with the dimension 
a of the transition region for high-frequency surface 
oscillations, the thermal motion of the particles turn 
out to be insignificant. This permits us to describe the 
surface waves on the basis of the equations of a cold 
plasma. 

To investigate the low-frequency ion-sound ciscilla­
tions we used the kinetic equation with the collision 
integral in the form suggested by Landau. Since the 
spectrum of the ion-sound oscillations whose wave­
length is large compared to the dimension a of the 
transition layer is determined by the volume effects, 
we can in studying low-frequency perturbations neglect 
the presence of the transition region close to the bound­
aries. We shall, furthermore, assume that no absorp­
tion of the plasma particles takes place at the bounda­
ries. This satisfies any boundary condition that as­
sumes the vanishing of the normal component of the 
particle fluxes at the boundaries z = 0, d. An example 
of such a boundary condition is the simplest condition 
used below that the particles be reflected specularly 
from the plasma surface. 

The intensity Eo of the external field is assumed to 
be relatively small, so that the amplitude rE 
= eEo/mew~ of the electron oscillations in the external 
HF field is smaller than the wavelength ~ = l/kll of the 
oscillations under study, and the frequency of the ex­
ternal field Wo is assumed to be close to the natural 
frequencies of the symmetric w~+) or antisymmetric 
wk-) quaSi-static (kllc» wk±) surface waves(712). Here 

,~) ( 1±exp{-klldI2} )'h (2.1) 
Ws =wL.(a) 

1 + e. ± (1 - e.) exp{ - klld/2} 

wL.'(a) = 41le'n.(a) 1m.. (2.2) 

In the case of low-frequency instabilities (I w + i y I 
« wo) being studied, only the amplitudes E(O) and E(±) 
in the expansion of the electric field of the perturba­
tions in terms of the harmonics of the frequency of the 
external field do not turn out to be small. 

Depending on the relation between the thickness d 
of the layer and the depth I = c( wp - w~>-1/2 to which 
the external field penetrates into the plasma, two 
cases are possible; first, the case of thin layers, when 
the penetration depth of the external field considerably 
exceeds the dimensions d of the layer and, secondly, 
the case of opaque-for the HF field-layers (Z« d). 
Taking into account the condition kll rE « 1, as well 
as the closeness of Wo to the natural frequencies of 

2)We shall write below wLe, Li (a) as wLe, Li. 

the surface oscillations (2.1), we can derive for the 
amplitudes of the electric field at the plasma bounda­
ries the following expression: 

kllE,n) (z = 0, kll' W + nw,) ± ~E,n) (z = d, kll' 00 + nw.) 

= _ 8-' W k '\1 Sdv'\1 41le.F.(t = 0, V, k,)kll ' (2.3) 
( , II) 4...l 4...l k' ,n) (k ) (+ - k ) D'±)" 

v a" e v w nwo '.IV n 

k; = k ll' + k,;, k" = 1l'V / d, 

where to the plus sign corresponds summation over 
even v (symmetric modes), and to the minus sign sum­
mation over odd j/ (antisymmetric modes). Here 

D(±)= 1 + 2e.Wn '\1 {. __ k_II ' ___ n'w.'k,;}. (2.4) 
n and ~ k;e,n) (kv) c2kv' ' 

an = (k ll' - w.'n'e. / c') V"~ w. = 1, 

~S S ~ W n ... = 1 + - dze(w + nw., z) - e.k ll 
e., ce(w+nw.,z) 

1+e.[a ] - -'-k- --In e(w + nw., z) ; 
2Eo II 8z t=a 

w+iy-+w; 

where ~EfP)(kj/) == iiEa( w + nwo, kj/) is the partial con­
tribution of particles of the type a to the longitudinal 
permitti vity to (ll) (kv) == E (w + nwo, kj/); the function 
Fa(t = 0, v) is, up to quantities proportional to the in­
tensity Eo of the external field, the initial perturbation 
of the distribution function of the a-type particles. 

As can be seen from (2.3), to solve the initial prob­
lem and elucidate, in particular, the question of plasma 
stability with respect to the buildup of the waves under 
conSideration, we must find the solution of the disper­
sion equation :S( w, kll) = 0, which describes the para­
metric connection of the low-frequency oscillations 
with the frequency w, and of the high-frequency oscilla­
tions with the frequencies Wo ± w. In the case of thin 
plasma layers, when the external HF field can be as­
sumed to be uniform, we have for the quantity :s ( w, k ll ) 
two expressions, describing respectively the connec­
tion between the even or odd surface waves and the 
ion-sound waves: (2.5) 

Here, /jEt 0) ( w) and E( wo) are the permitti vities of a 
cold plasma. 

When the plasma is opaque to the HF field (I «d), 
but the quasi -static condition (1t« t) is fulfilled, the 
surface waves are excited close to only one of the 
plasma boundaries. The circumstance that the region 
of localization of the surface waves, where the inter­
action of the oscillations occurs, is considerably 
smaller than the depth of penetration of the external 
HF field into the plasma, turns out to be important in 
this case, for it permits us to consider the HF field as 
a uniform field near one of the plasma boundaries. The 
symmetric and antisymmetric modes then turn out to 
be coupled. Such a coupling is due to an exponentially 
small difference in the frequencies of the symmetric 
and antisymmetric surface waves (2.1) when klld » 1, 
the expression for :S(w, kv) having the form 

8 (00, kll) = 8+ (w, kll) + 8_ (w, kll) - 1, (2.6) 

where we must set Dr; = D~-i. 
Notice that in accordance with the above-employed 
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condition of indistinguishability of the frequencies of 
the symmetric and antisymmetric surface waves, the 
expression (2.6) for E( w, k ll ), correctly describes the 
variation in time of the electric fields only for suf­
ficiently small times t < T == wLe exp (k ll d). We shall 
henceforth assume that the characteristic time of de­
velopment of parametriC instabilities for this case is 
smaller than T. Such an interval of time T corre­
sponds to the appearance of beats of frequency equal 
to the difference between the frequencies of the sym­
metric and antisymmetric surface modes (2.1) and, 
consequently, to the appearance of a surface -wa ve 
field also near the boundary to which the HF field does 
not penetrate. 

3. Let us turn to a discussion of the possibility of 
exciting surface and volume waves in specific cases. 

A. Let us consider first of all the case of the 
parametric resonance of the external field at the fre­
quency w~+), (2.1), of the symmetric surface electron 
oscillations. In the limit Wo« wLe x (1 + £ 0>-1/2 the 
wavelengths of the excited oscillations considerably 
exceed the dimension of the layer (k11d « 1), while 
Wo ~ wLe x (k ll d/ 2£0)1/2. At the same time from the 
condition that the surface waves be quasi-static follows 
the inequality d « c/ wLe. This means that we must in 
the given frequency range use the dispersion equation 
(2.5), which corresponds to the case of uniform ex­
ternal field. The excitable low-frequency ion-sound 
oscillations possess a discrete frequency spectrum 
W = ws(k2n): 

'k' • '(k ) = (Ou m rD. 
fJ), m 1 + k",2rD /, ' km 2 = k l1 2 + Xm

2• (3.1 ) 

Here the wave number Km is determined by the equa­
tions 

for the symmetric and antisymmetric vibration modes, 
respectively. In the absence of the HF field the damp­
ing constant of these oscillations is determined by the 
usual expression (see, for examplepl) (3.2) 

Assuming that ys « W, and that W differs slightly 
from the frequency of the ion-sound oscillations, we 
write the quantities entering into (2.5) in the following 
form: 

D <+L V. + V - i6w 
• - V.+V+iA-i6(O' 

_1_+_. _1_=_. w.~ 
D'~: D':l ~'-«(O+iy+i'V)" 

1 {(+l Sa (+l } 'V=2 (On e.klln dzOle(wn ,z)]+v" , (3.3) 
o 

( klld )'{' 
~ = Wo - WLe -- • 

. 28. 

In accordance with these expressions, it follows the 
dispersion equation (2.5) that the smallest value of the 
threshold field intensity (and the maximum increment) 
is attained for n = O. In the case when y « Ws, we ob­
tain for the maximum increment the expression 

6(0 =0, _ 'V+Y.+[ (V.-'V)'+ (kllfE) , d ]'{' (34) y---- ---(OO{J)Li , 

2 4 168. rD' • 

corresponding to the condition of disintegration into 
surface and ion-sound waves: 

( kud )'{, 
(0. = WLe - + (0. (k ll )· 

28 0 
(3.5) 

Only oscillations with frequencies wand Wo - ware 
then effectively excited. 

The condition y « Ws leads to the following limita­
tion on the frequency of the external field: 

2 a d 2 

V'i + n8. Wo S d • [( ) 1 2 (0. 80rD. 
- --,- Zu 8 (Oo,Z < (0«--, --. (3.6) 

2 (OLe d 0 (0,. d 

We obtain from (3.4) the following expression for the 
threshold intensity of the HF field: 

E: tlu: 4 d 'V'Y. 
4rtncTe = -;:-;;;; (UO(OLi 

(3.7) 

In the case when the condition y« Ws, (3.6), is not 
fulfilled, but the frequency W slightly differs from 
ws(km ) (Ow« w), the instability becomes undamped. 
We then obtain from Eq. (2.5) the following expression 
for the increment: 

=_ + (kllfg)' kd w'~'Vw«' (308) 
y y. 168. II (~' + 'V')' 

and for the corresponding change in frequency 

6w= Y'+Y(~'+'V'). (3.9) 
2(O.~ 

It can be seen from formula (3 08) that the maximum of 
the increment 

31'3 2 rne2 W07WLi2 

V=-Y'+T2 8 o 7-;;;,.''V' (3.10) 

and the minimum of the threshold intensity of the HF 
field 

(3.11 ) 

are attained at ~ = y/ [3. 
Notice that the condition that the oscillations should 

be quasi-static, kllc » wo, imposes the following 
limitation on the frequency of the external field: 

VT • d 
w,~WLe--· (3.12) 

c rD, 

The approximation Ws » Ow used leads, as can be 
seen from (3.7), to the following inequality: 

'V (V. +y) ~w.'. (3.13) 

B. When d « l surface oscillations of short wave­
lengths (klld» 1) are non resonantly excited as the 
frequency Wo of the external field increases and ap­
proaches wLe( 1 + £0)-1/2. Let us, however, in this case 
consider not too short wavelengths: 

kll'd'<' n'(2n~ 1)iP, (3.14) 
rD. 

which corresponds to the values Km = 21Tn/d. Then out 
of the quantities entering into (2.5) ~,y, and £ ( wo) 
will differ from those given in (3.2) and (3.3)0 These 
quantities will, in the present case, have the form 
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Since the frequency of the ion-sound oscillations is 
considerably smaller than the damping constant (3.15), 
the parametric excitation of the oscillations is, in the 
case under consideration, accomplished under un­
damped conditions. Close to the threshold of the insta­
bility, the spectrum of the excitable low-frequency 
oscillations slightly differs from the ion-sound spec­
trum and is given by formula (3.9). The threshold 
value of the intensity of the external field and the max­
imum value of the increment are respectively given by 
the formulas 

(3.17 ) 

313 rE ' wow,' 1 
Ym== -Y,+--·--, -,---. 

16 rD, 'I klld 
(3.18 ) 

To such dependence of Eothr and ymax on klld may 
be compared a simple physical picture. The field of a 
surface wave is localized near the plasma boundary 
over a distance of the order of 1/kll . It is precisely in 
this region that the interaction leading to the excitation 
of ion-sound oscillations occurs between the surface 
mode and the external HF field. Outside the region of 
interaction of the waves the ion-sound oscillations at­
tenuate with the decrement ys (3.2). The growth con­
stant r of the ion-sound oscillations for the case when 
the dimension of the region of interaction of the waves 
is of the order of the dimensions of the layer (see 
(3.10)) has the form 

(3.19 ) 

Thus, by building up near the plasma surface in a 
region of the order of 1/kll and attenuating in the re­
maining plasma layer of thickness d (d » 1/k ll ), the 
ion-sound oscillations, as is easy to understand, at­
tenuate on the average (grow) with the effective decre­
ment (increment) 

Y = -V, + r I klld, (3.20 ) 

which corresponds to the formulas (3 0 17) and (3.18). 
Finally, notice that in the range of frequencies of 

the external field being considered, the excitation of 
the antisymmetric ion-sound oscillations does not 
differ from the buildup of the symmetric modes. In 
the case of an opaque plasma (d » l), when the fre­
quency wLe( 1 + Eotl/2, Eq. (2.6) is to be used in the 
study of parametric instability. This equation de­
scribes the excitation of both the symmetric and anti­
symmetric ion-sound modes which, it turns out, grow 
in intensity everywhere in the plasma, in spite of the 
fact that the plasma is opaque to the external HF field. 
Taking into ac count the fact that the frequencies w 
close to Ws (3.1) are the solution to the dispersion 
equation in the limit (3.14) of interest to us and that the 
damping constant of the surface waves y (3.15) con­
siderably exceed the frequency Ws, we obtain from 
the dispersion equation (2.6) the expressions (3.17) and 
(3.18) for the growth constant and the value of the 
threshold intensity of the external field. Notice that 
the assumption y » wLe exp (-klld), used in the deri­
vation of the dispersion equation (2.6), leads, for suf­
ficiently short-wave-Iength oscillations when klld 
» In (wLelys), to an exponentially small difference 

between the threshold intensity of the HF field and the 
value given by (3.17). 

C. At still higher frequencies of the external field 
when 

a parametric resonance is realized on the antisym­
metric surface wave (2.1). For such a range of ex­
ternal-field frequencies, 

and the condition that the surface wave should be of 
quaSi-static nature leads to the inequality d « l, which 
implies the transparency of the plasma to the external 
HF field. Substituting into the dispersion equation (2.5) 
the value of t::.., y, and E (wo) given by the formulas 

(-) , kll'dn Sa 1 
~ =000-00, , Y=WL,eO -- dz6[e(wo,z)] +-V'i' 

4 2 
o (3.21) 

e (000) = _ eok211 d, _1_ + _1_ = _ e",: II d _w-,o,-t._~-:-
D~1. D';l 2 t.2 - (<0 + iT + iT)" 

we obtain the following expression for the increment of 
the instability: 

(k II rE)" k II w01<o[.t. 
i = -. i. + 2lI.n+l d2 (t.2 + 1')' . (3.22) 

The correction to the frequency is, in this case, de­
termined by the formula (3.9) into which the expres­
sions (3.21) should be substituted. 

It can be seen from (3.22) that the maximum value 
of the increment 

(3.23 ) 

and the magnitude of the threshold intensity of the ex­
ternal HF field 

(3.24) 

are attained at the wave numbers determined from the 
condition t::.. '" yl (3. It can be seen that the value of the 
intensity of the threshold field increases with the num­
ber of the mode of the excitable low-frequency oscilla­
tions. 

4. In the present section we shall show that the 
above-investigated effect connected with the localiza­
tion of the interacting waves appears not only in the 
case of parametric resonance at surface-wave fre­
quency, but also when the frequency of the external 
field is close to that of the localized plasma waves. 
Such a localization arises, for example, in the case 
when the dependence of the density on the coordinates 
inside the plasma layer has the form 

[ (Z-d/2)'] 
na(z)=na(O) 1+ b' . 

(4.1 ) 

We shall, for simplicity, assume that the character­
istic dimension b of the inhomogeneity inside the 
plasma layer exceeds the thickness d of the layer, and 
that the dimension a of the transition region near the 
plasma boundaries will, as before, be much smaller 
than d. Then, as follows from the results ofr9], in the 
absence of the HF field there exist in such a plasma 
layer trapped natural Langmuir oscillations the poten­
tial of whose electric field has the form 
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(4.2) 
'l'n(Z) =Anexp(-s'/2)Hnm. s= (z-dI2) (3b'rv;)-"·. 

Here, An is the oscillation amplitude, Hn ( ~) is a 
Hermite polynomial of the n-th order, kll is the com­
ponent of the wave vector in the plane perpendicular to 
the z axis, the corresponding wavelength * = 1/kll 
being assumed to be considerably smaller than the 
characteristic dimension of the oscillations of the 
functions >{In(z), i.e., kll(3b2rbe)l/4» (2n + 1)1(2, 
while the quantum numbers n are such that the charac­
teristic region of localization of the Langmuir oscilla­
tions does not exceed the thickness of the plasma layer: 

(2n + 1) ,/, (3b'rv.') 'I. ~ d. 

The expressions for the frequency and the damping 
constant of the Langmuir oscillations then have, in the 
absence of the HF field, the form 

W n' = w.'( 1 + 3k ll'rv,' + 3'1. (2n + 1) rv. / b), 

wp ' = ,wL.'(d / 2) + (i)L,'(d /2). 

1 ( n ) 'f, ul p . [3 1] ),=-v,,+ - ---exp ------
2 8 kll'rv: 2 2kll'rv.' . 

(4.3) 

Owing to the condition d < b, the spectrum of the 
ion-sound oscillations is described by the formulas 
(3.1) and (3.2), while the potential of the field of the 
oscillations of amplitude Bm have, in the absence of 
the HF field, the form 

Il>(r, t) =Xm(z)exp{ikllr-twt-y.t}, 
(4,4) 

In the presence of a HF electric field whose intensity 
vector is oriented along the boundary of the layer and 
whose frequency Wo is close to the plasma frequency 
wp, there arises a parametric coupling between the 
Langmuir and the ion-sound OSCillations, the increment 
of the decay-parametric instability being given by the 
following expression 

_ 1 (kllr.), ( ) 
(y+y.) (y +Y)=-16 ~k' ,wow.Anm, 4.5 

II rD!t 

d 2 d 1 d 1 

Anm= [Sdz'l'n(zhm(z)] [Sdz'I'.'(z)] - [S dZXm'(Z)] - . (4.6) 
o 0 0 

The expression (4.5) differs from the corresponding 
expression for the case of an unbounded homogeneous 
plasma of coefficient Anm, whose maximum with re­
spect to the number m 

max Anm = 2 (3b'rD .') 'I. / d 

is attained at n = 0; for n» 1, we have for Anm 

max Anm ~ 1.27 . 2 (3b'rv.') '1./ n'/'d. 

(4.7) 

It is not difficult to see from the expressions (4.5) and 
(4.7) that the maximum threshold value of Eothr, which 
is equal to 

_E_:_, t_hr_ = 16),y. 
Wow. 727:(3:7b"""'r-D'"""')-;;"'" ' 

d 
(4.8) 4nn,T, 

exceeds the corresponding value for the unbounded 
homogeneous plasma by a factor equal to the ratio of 
the dimensions of the regions of localization of the ion­
sound and Langmuir oscillations. In the more general 
case. the region of interaction of the waves may turn 
out to be smaller than the characteristic dimensions of 
the localization of the oscillations, as obtains when the 

number of the Langmuir modes n » 1. In this case the 
coefficient Anm is proportional to the ratio of the 
square of the characteristic dimension of the region of 
interaction of the ion-sound and Langmuir modes to the 
product of the localization lengths of these oscillations. 
In the case of an aperiodic instability, during which 
Langmuir oscillations and the charge-separation waves 
of frequency w = 0 are excited, the expressions for 
the increment and minimum value of the threshold in­
tensity of the external field 

E:thr 4v., 
4n(n,T, + n,T,) =--;;;:- (4.9) 

coincide with the corresponding values obtained for the 
case of an unbounded homogeneous plasma[41• Such a 
coincidence is connected with the fact that the oscilla­
tions with the frequency w = 0 are not natural oscilla­
tions and have a potential configuration that coincides 
with the distribution of the field of a Langmuir wave. 
It becomes clear from comparison of the expressions 
(4.8) and (4.9) that in an inhomogeneous plasma the 
minimum threshold intensity of the HF field for the 
excitation of a decay-parametric instability consider­
ably exceeds the corresponding value Eo thr for the 
buildup of an aperiodic instability when 

y. /'w. > (3b'rD .') 'I. / d. 

5. In conclusion let us consider the effect of plasma 
inhomogeneity on the vibrational spectrum and para­
metric instability in strong fields when the thermal 
motion of the particles can be completely neglected. 
Let us first discuss the spectra of the slowly decaying 
short-wavelength surface waves (k ll d » 1) for the case 
when the external-field frequencies are considerably 
higher than the plasma frequency wp. In this case the 
existence of both high-frequency and low-frequency 
surface waves of frequency 

Q ' '{ 1 w.' kll as dz =Ws ---,-, +--- ---[eo'-e'(ws,z)] 
4kll c 1+eo o e(w •• z) 

(5.1 ) 

+2~1I [ !z Ine(ws,z) L~J 

and damping constant 

neo2 S ( ) )'=Ws 2(1+eo) kilo dz/j[e(ws,z)]. 5.2 

turns out to be possible. 
For the low-frequency oscillations whose frequency 

is considerably smaller than the plasma frequency, we 
should for Ws and E( w, z) use the expressions 

w'=~'1-I') ) WL,'(Z) ( ') (5.3) s 1+eo( o. e(w,z =1--w-'- 1-/0 , 

whereas for the high-frequency oscillations these quan­
tities have the form 

WL.'(Z) 
e(w,z)=1---. 

w' 
(5.4 ) 

Here, I n is an n-th order Bessel function whose argu­
ment is kll rE. The HF field does not up to terms pro­
portional to the ratio of the electron and ion masses 
change the spectrum of the high-frequency surface 
waves. Therefore, for such waves the second and third 
terms in the curly brackets in formula (5.1), as well 
as the damping constant (5.2), can be found from the 
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dispersion equation obtained by Stepanov[6], while the 
last term corresponds to the Romanov(10] correction 
connected with the plasma inhomogeneity in the ab­
sence of the HF field. 

As an overtone SWo of the frequency of the HF field 
approaches Ws (5.4), there develops a parametric 
resonance leading to the growth (with increment y) of 
the low-frequency (with frequency w) and high-fre­
quency (with frequency W ± swo) surface oscillations. 
The dispersion equation for the increment y and fre­
quency W has in this case the form 

(w+iy)'-I.' WL;' SW,~ (5.5) 
1+£, ~'-(w+iy+iy)' O. 

Here, to = SWo - n, where n is given by the formulas 
(5.1) and (5.4). 

The dispersion equation (5.5) differs from the equa­
tion obtained in[ll] by the allowance of the small cor­
rections to the frequency Ws which determine the 
spatial dispersion of the high-frequency surface waves, 
as well as by the allowance for the damping of the sur­
face oscillations. The consequence of the dependence 
of the detuning to on the wave number is that the values 
of the maximum increments, which coincide with the 
values found in[ll], are attained in a relatively broad 
range of external-field frequencies. Thus, for example, 
in contrast to the sharp-boundary case, considered 
in[lll, an aperiodic instability, whose increment exceeds 
the corresponding value for a periodic instability, turns 
out to be possible not only for SWo < ws, but also in the 
range of external-field frequencies where SWo> Ws' 

For values of the detuning SWo - Ws such that W 
and y « y, the instability becomes dissipative in char­
acter. The solution to the dispersion equation (5.5) in 
the case of a periodic instability then has form 

Correspondingly, we obtain for the inc rement of the 
aperiodic instability the following expression: 

=(_ . WL,' -I' SW,~ )"" 
y 1 + E, ' ~'+ y' ' ~ < O. 

It should be noted that in the case when the charac­
teristic dimension of the inhomogeneity of the transi­
tion region is large compared to the Debye radius, the 
thermal motion has an insignificant effect on the spectra 
of the oscillations studied. The opposite limiting case 

of a homogeneous plasma with a sharp boundary has 
been studied in our paper[12]. 

Notice, finally, that the expressions for the incre­
ments of periodic and aperiodic instabilities during 
resonance at the frequency of the volume Langmuir 
oscillations differ from the previously obtained expres­
sions(13,14] only by the allowance made for the discrete­
ness of the natural frequencies of the Langmuir oscilla­
tions. 

The authors express their profound gratitude to 
Y. P. Silin for valuable hints and a constant interest in 
the work. 
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