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The radiation intensity has been determined from an arbitrary source in an unbounded medium moving 
with a velocity greater than the velocity of light in the medium. All types of waves propagating in the 
moving medium are discussed, and drag on the light by the medium is taken into account when the 
latter is moving faster than the velocity of light. 

WHEN a medium is moving faster than the velocity of 
light, in addition to ordinary electromagnetic waves with 
an index of refraction N1 there appears a second type of 
electromagnetic waves with an index of refraction N2. 
The latter arise as the result of drag on the light by the 
moving medium. The regions of propagation of waves 
with refractive indices N1 and N2 are two coaxial cones 
whose solid angles face the direction of motion of the 
medium. 

The appearance of the new waves substantially af­
fects the radiation of an arbitrary source around which 
the moving medium flows. If the velocity of the medium 
relative to the source is greater than the phase velocity 
of light in the medium at rest, the radiation intensity 
depends strongly on the relative velocity of this motion 
and the structure of the source. Here a multipole expan­
sion of the radiation field, as a rule, loses its meaning. 
The motion of the medium also affects the angular dis­
tribution of the radiation intensity. 

According to the Umov- Poynting theorem [1,2J the 
rate of change of electromagnetic energy in an unboun­
ded moving medium is equal to the power expended by 
external currents!) , 

d/t)/dt = - J J.(x, t)E.(x, t)dV, (1) 

where E is the intensity of the electric field produced by 
external currents with volume density J. For a mono­
chromatic source 

Ji(x, t) =ji(X, Ul)ei·'+i;'(x, w)e-i.' 

the radiation intensity (1) averaged over a period is 
df5 Ul J dt = - 4n,lm i:(k, Ul)j" (k, Ul)Lim(k, Ul) dk. (2) 

In the case of an isotropic medium moving with velocity 
v, the Green's function Lim takes the form 

l _ 4n uiumx/(x+1)-gim+K.m 
..IWl - c2 k/' + x (k"U,,) 2 + i6 ! 

K = _1_. ( kium + k",Ui kikm) (3) 
"" x + 1 k"u" (k"ll,,) , ' 

where K = E - 1, E is the dielectric permittivity of the 
medium at rest, c is the velocity of light in vacuum, ki 

l)The Greek vector indices take on values I, 2, and 3, and the Latin 
indices values 0, I, 2, and 3. The index 0 denotes the time component 
of the 4-vector. The following summation rule is adopted: a"b" = a1 b 1 + 
a1b1 + a3b3, aibi = aobo-a"b". 
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is the 4-dimensional wave vector, gim is the metric 
tensor, and ui is the 4-velocity of the medium. The 
latter two quantities are determined by the relations 

goo = 1, gar. = -!Sara! goa = gao = 0; 

1 Va 

uO=---C-(1-_-v'-/c-'c-),-" ll.= c(1-v'/c')'/" 

The dielectric permittivity E describes the electric 
and magnetic properties, and therefore the magnetic 
permeability J.1. of the medium at rest is set equal to 
unity [ 1J. The bypassing of the poles in the Green's 
function (3) is determined by the infinitely small imag­
inary term io. For w > 0 we have 0 < O. The value of 
o changes sign together with the frequency w. The fre­
quency distribution of the energy d f5 (w) radiated during 
the entire time of action of the arbitrary source Ji(x, t) 
is given by the right-hand side of Eq. (2), multiplied by 
dw/21T. In this case the quantity h(k, w) in the variable 
arguments k and w is the Fourier component of the ex­
ternal four-dimensional current h(x, t). 

Equation (2) is the relativistic generalization of the 
radiation intensity in a medium at rest[3J . The inte­
grand in Eq. (2) is simplified if we use the charge con­
servation law kih(k, w) = O. 

We will write the denominator of the Green's func­
tion (3) in the form 

kn' + x (k"u,,)' 

= (kc - ("IV •• ) (kc + wN_ k ,,) [x(ku/ k)' - 1], 

where we have introduced the designation 
[1 + xu,' - x (ku/k)'F - xuo(ku/k) 

Nk.=~-~---~~~~-~-~ 
1- x(ku/k)' 

x = B-1 == N" - 1. (4) 

In the presence of dispersion the refractive index of 
the medium at rest N' = N' (k' , w') depends on the wave 
vector k' and the frequency w' of the radiation in the 
medium at rest. The quantities k' and w' are expressed 
in terms of the wave vector k and frequency w in the 
moving medium by the Lorentz transformation equa­
tions for the wave 4-vector. 

The first pole 

kc -(UN,,, =0 (5) 

of the Green's function (3) in the moving medium des­
cribes radiation of direct waves with vector k and re­
fractive index Nl = N 1(B), where 

N,(O)= 
[ 1 + xuo' (1 - ~'cos' e) 1'" - xu,' fl cos e 

1 - XUo' ~'cos'e 

(6) 
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Here cos 8 = k· v/kv and f3 = vic. The refractive index 
N' of the medium at rest, which enters into K, is taken 
for the corresponding fixed direction, if the medium is 
dispersive or anisotropic. At the point of the pole the 
function (4) is equal to the refractive index (6) of the 
moving medium, so that Eq. (5) goes over to the form 
kc = wN1• 

If E > 1 and the velocity v of motion of the medium 
is less than the critical velocity v2 < C2/E, then the re­
fractive index (6) is finite and positive. For velocities 
greater than light v2 > C2/E there exist directions of 
the wave vector k for which Nl = 00, if we neglect the 
dispersion of the medium at rest. The angle 80 for 
which N1(8 0) = 00 is 80 = arc cos (-1/ v'KuofJ). In this case 
the refractive index (6) is positive in the range of angles 
80 > 8 ~ o. 

The second pole 

kc + wN-ko = 0 (7) 

of the Green's function (3) refers to backward waves, if 
v2 < c2/E. The second pole (7) contributes to the radia­
tion intensity (2) for a velocity of the medium greater 
than light v2 > C2/E. In this case it describes the radia­
tion of direct waves with wave vector k and refractive 
index 

N,= -N,(n - e), 

where the function Nl(8) for any 8 is given by Eq. (6), 
and the refractive index N2 = N2(8) is determined and 
positive in the region 11 - 80 > 8 ~ O. Waves with re­
fractive index (8) have anomalous Doppler frequen­
cies[4,5J. At the pole Eq. (7) becomes kc = wN2 • 

(8) 

After the remarks which have been made, the radia­
tion intensity of transverse waves (2) is easy to convert 
to a form convenient for applications, 

d8 = s. w.'N,'(xli,u,I'/(x+ i)-liil') 
-::-;-::-;'-'--::-;-:--:-::--::-::-:-~- sin 8 d 8 

dt c'[ 1 + xUo'(1- B' cos' 8)]'1' 

+ s. w'N,'(xliiu,I'/(x+ l)-li,I') sin8de, (9) 
c3 [1 +xno'(1-lJ'cos'8) J'h 

where 8 is the angle between k and v. The modulus of 
the wave vector in h = h(k, w) is k = wN1/c in the first 
interval and k = wN2 /c in the second. The integration is 
performed over the region of angles where the refrac­
tive indices Nl and N2 of the moving medium are deter-

mined and positive. The second term in Eq. (9) arises 
only for motion of the medium faster than light. 

In the presence of dispersion in the medium at rest, 
it is necessary to represent the expression K = N'2 - 1 
as a function of the angle of integration 8, using for 
this the formulas for the aberration of light. In this 
case inclusion of dispersion in the refractive index N' 
of the medium at rest removes the infinity in the re­
fractive indices Nl and N2 of the moving medium. Exis­
tence of dispersion can also lead to the result that 
several branches of the waves correspond to a given 
frequency w [4,5J. Then the radiation intensity (9) will 
consist of integrals taken individually for each branch 
of the radiated waves. 

As follows from Eqs. (9), (6), and (8), there exist 
directions of the radiated waves for which the refractive 
indices (6) and (8) become rather large and the corre­
sponding wavelengths small. This leads to the result 
that the ordinary multipole expansion of the radiation 
loses its meaning in this case, since the next term of 
the multiple expansion may turn out to be larger than 
the preceding term. In this case the radiation intensity 
depends strongly on the structure of the radiator. 

In a magnetized plasma the refractive index N' (of 
the medium at rest) sometimes assumes extremely 
large numerical values, and therefore the effects found 
above can appear for nonrelativistic velocities of the 
plasma as a whole. 
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