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The effect of scalar and vector fields on the character of the cosmological singlarity is investigated. 
The fields may either be graVitational (in the sense of the Brans-Dicke ideas) or extraneous physical 
fields which are sources of an ordinary gravitational field. It is shown that in the presence of only a 
scalar field the gravitational equations possess a monotonic power-law aysmptotic general solution 
near the singular point in place of an oscillating form. However, if a vector field is included on the 
basis of five-dimension geometry concepts, the general solution becomes oscillatory again. 

1. INTRODUCTION 

I N the papers by Lifshitz and the authors [1-3J , devoted 
to problems of relativistic cosmology, it is pointed out 
many times that the asymptotic character of the general 
solution of the gravitation equations near the cosmo­
logical singularity is determined by Einstein's equations 
already in empty space. Allowance for the energy­
momentum tensor of matter results in only small cor­
rections to such a first approximation. We have con­
fined ourselves there to the energy-momentum tensor 
corresponding to an ideal liquid, and used the ultra­
relativistic equation of state near the singularity 
(E = 3p), a natural procedure from the physical point of 
view. 

In the present paper We study the changes produced 
in the character of the cosmological singularity by the 
presence of a scalar massless field, and then examine 
the situation when a vector massless field exists be­
sides the scalar one. The method and need for including 
the vector field are dictated by simple geometric con­
siderations. We note that the question of the physical 
nature of the introduced field does not have an unam­
biguous answer in this case. These fields can be taken 
to be either gravitational (in the sense of the Brans­
Dicke ideas), as well as extraneous physical fields that 
serve as sources of an ordinary gravitational field. The 
choice of a particular interpretation reduces only to the 
choice of the interaction constants, the values of which 
do not play any role in our investigation: 

We shall show that in the presence of only a scalar 
field, the general solution of the Einstein equations is 
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significantly altered near the singular point. Instead of 
a vibrational regime that would occur without the scalar 
field (see[2,3J) we now obtain a simple power-law 
asymptotic variation. On the other hand, the addition of 
the vector field again returns our solution to an oscilla­
tory regime, although of somewhat more complicated 
form in comparison with that described earlier[2,3] . 

Finally, we note that from the formally mathematical 
point of view these results become particularly· clear if 
we turn to a formulation of the theory in terms of five­
dimensional geometry, which is admissible in the pres­
ent case. 

2. EQUATIONS OF GRAVITATIONAL AND SCALAR 
FIELDS AND THE BEHAVIOR OF THEm GENERAL 
SOLUTION NEAR THE SINGULARITY 

The sought equations follow, as usual, from the 
variational principle1) 

(2.1) 

where Lcp is the Lagrangian of the scalar field. The 

1)We use a system of units in which the speed of light and the Ein­
stein gravitational constant are equal to unity. If the scalar and vector 
fields have their own coupling constants, the latter are assumed included 
as factors in the potentials of these fields. We note also that we write 
the metric in the form -ds2 = gikdxidxk, where gik has a signature 
(+++-). The Latin indices i, k, /, and m run through the values I, 2, 3, 
and 4, while the Greek ones run through I, 2, and 3. 
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simplest form of the scalar- tensor theory corresponds 
to the Lagrangian 

(2.2) 

which generalizes the Lagrangian of a real Klein­
Gordon field with zero rest mass to include the case of 
curves space. The Lagrangian (2.2) corresponds to the 
energy-momentum tensor 

and to the following system of field equations: 

(2.3) 

(2.4) 

(2.5) 

One might inquire here concerning the relation between 
the theory based on (2.4) and (2.5) and certain other 
published formulas of the scalar- tensor theory. Let us 
note two examples, one of which is the well known 
Brans-Dicke theory[4]. Another variant was proposed 
by Tagirov and Chernikov[5] and is characterized, in 
particular, by the fact that the contraction of the energy­
momentum tensor vanishes for a field with zero rest 
mass. It turns out, however, at least so long as we are 
conSidering the fields purely classically, that all three 
variants are equivalent in the sense that they can be 
derived from one another by a conformal transformation 
of the metric (accompanied by a definite transformation 
of the scalar potential). A confirmation of this fact is 
contained in the next section of our article. 

The search for the asymptotic form of the solution 
of (2.4) and (2.5) should be started, as usual, with a 
consideration of the particular case when the metric 
and the scalar potentials depend only on the time. In 
this case it is easy to obtain the following exact solution: 

-ds' = -dt' + t'P'dx' + t'P'dy' + t'P'dz', (2.6) 

cp=qInt; (2.7) 

p, + p, + pa = 1, P.' + p,' + p,' = 1- q'. (2.8) 

Here Pl, P2, P3 and q are constants, and it follows from 
(2.8) that the parameter q can vary in the range 

- ('I.P· .;;; q';;; ('laP'. (2.9) 

It is convenient to represent the exponents in the fol­
lowing parametric form (see also[6]): 

-u 
p. =. 1 + u + u' ' (2.10) 

p,= 1+u [u- U-1(1_(1_ B')"')]' 
1 + u+ u' 2 

p.= 1 +u [1 + u-1 (1-(1- ~')"')]; 
1 + u+ u' 2 

2_ 2(1+u+u')'q' 
{3 - (u'-l)' . 

(2.11) 

At q = 0 this yields Kasner's solution with the usual 
representation of the exponents (see[2J , Sec. 2), accur­
ate to the substitution u - l/u. 

It follows from (2.10) and (2.11) that the exponents 
remain here, too, invariant against the transformation 
of the parameter u - 1/ u (at arbitrary q): 

p,(lln) =p.(u), p,(l/u) =p,(u), p,(llu) =p,(u). (2.12) 

We can therefore confine ourselves to an examination of 
the region -1 :5 u ~ 1. It is seen from (2.10) that the 
region of admissible values of the parameters u and q 
is determined by the inequality 

"'= 2(1+u+u')'q''':::1 (2.13) 
I' (u'-1)' ~. 

This region is shown in the figure (shaded). It is easily 
seen that in this region, where the sequence of the ex­
ponents is Pl:5 P2 :5 P3, the exponents vary (as functions 
of the parameters u and q) in the ranges - % :5 Pl:5 %, 
o :5 P2 :5 ~3' )13:5 P3 :5 1. A qualitatively new element in 
the properties of Pl, P2, and P3 (in comparison with the 
Kasner case) is that all three can take on positive 
values (for example, this is the only possibility when 
q > l/ft and q < -l/ft). This fact, as can be easily 
seen, causes also the general solution of (2.4) and (2.5) 
to have a simple asymptotic form near the singularity. 
It is easy to verify that at positive Pl, P2, and P3 the 
general solution that is asymptotic as t - 0 (in the 
synchronous system) takes the form 

-ds' = -dt' + (t'P'I"I~ + t'P'm"m~ + t'P'n"n~)dx·dx~, 
<p = q In t + <po, 

(2.14) 

where Pl, P2, P3, and q are subject, as before, to the 
conditions (2.8), but are now functions of three spatial 
coordinates. Similar functions are the three-dimen­
sional vectors 1, m, and n and the quantity cpo. 

Indeed, the wave equation (2.4) 

1 . 1 
-~(l'-g<pr +~(l'-g g.~ <P.~)." = 0 

l'-g l'-g 

the principal terms are those with the derivatives with 
respect to time, which also are made to vanish iden­
tically by the solution (2.14) and which are "potentially" 
of order lje. On the other hand, the unaccounted- for 
terms (containing differentiatiOl~ ~ith respect. to ~he 
spatial variables) are of order t pC\' In t, WhiCh is 
smaller than e (inasmuch as all p < 1), and can indeed 
be discarded. As to Eq. (2.5), eve~ything necessary for 
their analysis is contained in[lJ. A simple analysis, 

A 

u 

D 

Region of admissible values of the parameters u and q. The bound­
ary of the region is made up of pieces of plots of the equations q = 
± (u2 - I )/y'2(1 + u + u 2 ). The closed curve of the center is a plot of 
q2 '" -2u(2u2 + 5u + 2)/(1 + u + U2)2, and divides the entire shaded re­
gion into three parts: in the part BODe the sequence of the exponents 
is PI .;;; P2 .;;; P3, in the central part P2 .;;; PI .;;; P3, while in the region 
ABFD we have P2 .;;; P3 .;;; PI· 
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similar to the one given there. shows that the equations 

are identically satisfied by the solution (2.14) in the 
principal order C2 • The terms of principal order are 
again those containing the time derivatives. On the 
other hand, the order of the terms Pg and gf3lJ.cp, f.L cP 'a 

is smaller than t-2 and come into play only in the ap­
proximation that follows (2.14). (We recall that if one 
of the exponents p Cl were to be negative, it would be 

precisely in P g where terms of order larger than C2 

would appear.) 
The remaining equation 

is automatically satisfied in order (In t)/t, by virtue of 
relations (2.8), and reduces in order l/t to three rela­
tions between the arbitrary three-dimensional functions 
contained in the solution (2.14). Taking also into account 
the possibility of arbitrary three- dimensional coordin­
ate transformations, we can easily find that there re­
main in the solution six physically arbitrary three­
dimensional functions, i.e., as many as there should be 
in the general solution of (2.4) and (2.5). 

To complete the analysis we must answer also the 
following question: is the situation with three positive 
exponents PI, P2, and P3 a necessary stage in the evolu­
tion of the solution with arbitrary initial data? By 
themselves, relations (2.8) admit also of the possibility 
that one of the exponents is negative. It is easy to show, 
however, that when one specifies initial data corre­
sponds to such a "quasi- Kasner" case, further evolu­
tion of the metric will consist of a series with a finite 
number of oscillations, described by alternation of 
similar "quasi-Kasner" epochs with the exponents 
transformed in accordance with a definite law. The end 
result of this series of transformations in the general 
case is precisely a set of positive exponents PI, P2, P3. 
The oscillations then stop and the solution acquires a 
monotonic asymptotic form (2.14). The foregoing can be 
proved by a direct investigation of Eqs. (2.4) and (2.5), 
but it can be more easily obtained by considering a more 
general case, which will be investigated later on. We 
shall dwell on it at the end of Sec. 4. 

We note, finally, a formally mathematical cause of 
such a strong influence of the scalar field on the charac­
ter of the singularity, from the point of view of a hydro­
dynamic analogy. It is easily seen that the tensor (2.3) 
can be written in the form of the energy- momentum 
t?nsor. of an ideal liquid with an equation of state E = P 
(m WhiCh case the "velocity" is ui = cP .i/(- cP .kCP;k )1;2 

and the "pressure" p = -%CP.kCP;k), and the ~ave equa­
tion (2.4) would then be the c~nsequence of the "equa­
tions of hydrodynamics" (the equation of state p = E was 
proposed earlier by Ya. B. Zel'dovich[7]). The conclu­
sion that the matter plays a very minor role near the 
Singular point is based on the analysis given in[l ] (see 
Sec. 3). This analysis is valid, however, only for an 
equation of state satisfying the condition p ~ 2E/3. By 
repeating a similar analysis for the equation of state 

E = p we see that the components of the energy- momen­
tum tensor T 44 turn out to be of order t-2 , i.e., of the 
same order as the left- hand side of the Einstein equa­
tion R44 - % g44R. This means that the influence of 
matter of this type can no longer be neglected near the 
singular point. This is precisely the situation in the 
scalar- tensor theory considered here. 

3. INTRODUCTION OF A VECTOR FIELD IN ADDITION 
TO THE SCALAR ONE 

The contemporary state of large regions of the 
universe is characterized, as is well known, by a high 
degree of isotropy. Under such conditions, as noted by 
Dicke, [8J it is meaningless to introduce into the theory 
a vector field for the purpose of obtaining noticeable 
cosmological effects. Such a field, when averaged over 
large regions of the universe, will single out a pre­
ferred direction on cosmological scales, something in­
compatible with the observed isotropy. The situation is 
entirely different during earlier stages of development, 
when the universe can be essentially anisotropic. In the 
investigation of cosmological effects near the singular 
point, there are no longer any grounds for disregarding 
the possible existence of a vector field in addition to the 
scalar field. It is difficult at present to say anything 
concerning the form of this field, concerning its sources 
and the character of its interaction with the gravitational 
and scalar fields. However, even the introduction of the 
scalar field alone suggests one of the admissible ways 
of introducing the vector one. This way is based on the 
possibility of USing the five-dimensional geometry, 
which has been in use in the literature since Kaluza's 
time [ 9J. This theory has been usually discussed from 
the point of view of a unified geometrical description of 
the gravitational and electromagnetic fields. We wish to 
call attention here to a different interpretation: it can 
be understood also as a scalar-vector-tensor theory of 
gravitation in the spirit of the Brans-Dicke ideas. 

We shall show first that the Brans-Dicke theory it­
self is none other than a particular case of five-dimen­
sional geometrical theory. Indeed, by adding to the 
four-dimensional space-time one more spacelike dimen­
sion and introducing the five-dimensional metric tensor 
jss' jsk' hk we obtain a formal expression for the inter­
val 

-ds(:) = j" (dx') , + 2j" dx' dx' + j" dx' dx'. (3.1) 

The components of the metric are chosen to be indepen­
dent of the variable xS : 

j" = j,,(x'), j .. = j,,(x'), j .. = j .. (x'). (3.2) 

We ~onsider no~ t.he particular case when js\t = 0, 
and write the remammg components jss and j·k m the 
bm 1 

j55 = AZ, jill. = B2g1Jt7 

where the quantities A and B will be assumed to be 
functions of a certain scalar function cp(xi): 

A = A(<p), B = B(<p). 

The five-dimensional interval now takes the form 

-ds(~) = A'(dx')' + B'g .. dx' dx'. 

(3.3) 

(3.4) 

(3.5) 

Writing out Einstein's equations in empty five-dimen-
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sional space for the metric (3.5), we obtain 

A' A' .• (A'B')' 
p,,== --[-<P\ + ___ m .• m;'] =0 

B' A ' AB' 'Y, 'Y , 

(AB') , A". B" A'B' B" 

(3.6) 

(3.7) 

p,.==R,,-----<p .... - (-+2--2---4-) m.·m. AB' " A B AB B' '1',''1',' 

[ B' ;1 BN B" A'B' 
-g .. -<PI + (-+-+-) m.lm;l] =0 B' B B' AB 'Y, 't' • 

(3.8) 

Here Pss ' Psk' Pik are the components of the five-dimen­
sional Ricci tensor, the primes denote derivatives of the 
functions A and B with respect to their argument cp, and 
all the covariant 4-tensor operations pertain to the ten­
sor gik, from which the four-dimensional Ricci tensor 
Rik in formula (3.8) is constructed. 

The Einstein equations, as is well known, follow from 
the variational principle 

Il Sl'-jpd5x=0, 

where j is the determinant of the five-dimensional me­
tric tensor and P is the construction of the five-dimen­
sional Ricci tensor. Since, however, the metric does 
not depend on the fifth variable, the variational principle 
reduces to the form 

Il S p l'-jd'x=O. (3.9) 

For a metric in the form (3.5) we have 

- B' A' . 
pl'-j = {R - (6 B + 2--:4 ) <P::- (3.10) 

B" AU A'B' -
-(6S +2 A +4 AB ) <P;/<Pil}AB'l'-g. 

Here R is the contraction of the four-dimensional Ricci 
tensor and g is a four-dimensional determinant. 

It is clear that any change in the form of the functions 
A(cp) and B(cp) is equivalent to a certain conformal trans­
formation of the four-dimensional metric g'k accompan­
ied by a transformation of the function cp: 1 

~ = ~(<p'), g .. = g'",f(<p'). (3.ll) 

In o~her words, it suffices to make only one concrete 
choice of the functions A and B, and all the other possi­
bilities can already be obtained from it by the indicated 
transformation. It is easily seen that the equations (2.4) 
and (2.5) investigated in Sec. 2 are obtained from 
(3.6)- (3.8) by choosing 

A=exp[('/3)"'~], B=exp(-6-"'<p), (3.12) 

and it is seen from (3.9) and (3.10) that this case corre­
sponds to the variational principle 

Il J (R - <Pi' <pi' + ('I,) 'I, <Pi~') l' ~g d'x = 0, (3.13) 

which coincides with (2.1) and (2.2) if one notes that the 
last term in the parentheses in (3.13), multiplied by .r-:g; 
is a four-dimensional divergence and can be discarded. 

The equations of the Brans-Dicke theory[4] corre­
spond to the following choice of the functions A and B: 

/-I = (1 + 2", 1 3),", 
(3.14) 

From (3.9) and (3.10) we obtain for this case 

S [ "'<P .• <pi' .• ] -
Il R<p--'-,p--(3-/-I)<p:. r-gd'x=O, (3.15) 

i.e., after eliminating the divergence we obtain the ini­
tial Brans-Dicke Lagrangian (without ordinary matter). 

If, finally, we require satisfaction of the conditions 

A' B' l'6 + <P 
A= 6_ cp Z I B=-~' 

then we obtain from (3.6)-(3.8) the equations 

(3.16) 

<p:Z =0, R,,= (1_1/6<P')-I('/3q:i'~i._1/3<P<Pil;._1/6gik<Pil<Pil). (3.17) 

These equations are the same to which the scalar- ten­
sor theory reduces in the form proposed by Tagirov 
and Chernikov[S]. 

We see thus that apparently any reasonable form of 
the scalar-tensor theory admits of a simple five-dimen­
sional geometrical treatment. However, if we do use 
geometrical language, it is most natural to choose a 
variant in which the component jss, and only this com­
ponent, is connected with the scalar field, While the 
components jik are the metric gik of four-dimensional 
space- time. This obviously corresponds to the choice 

A = <P, B = 1. (3.18) 

Equations (3.6)-(3.8) then yield 

(3.19) 

and from (3.9) and (3.10) it follows that the theory in 
this form corresponds to the variational principle2 ) 

(3.20) 

It will be shown later on that it is precisely this 
form which is most convenient for us, since the synch­
ronous reference frame of the five-dimensional space­
time (j44 = -1, j4S = 0, j4(Y = 0) is here simultaneously 
synchronous for the four-dimensional space- time 
(g44 = 1, g4Q' = 0). 

To introduce a vector field in addition to the scalar 
~ield, it suf~ices now to as.sume that the components jsk 
In the metrIc form (3.1) dIffer from zero. Using the 
notation 

j" = <p', j5k = <p'A. 

and introducing a four-dimensional metric gik such that 

g", = j" - <p'AA., (3.22) 

we note that Einstein's equations Pss = 0, Psk = 0, and 
P ik = 0 take the following form: 

R 1 . 1 'F I 11!.=-CP;i<k+-CP liF./t, 
(f 2 

F., = AI, • - A., I, 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

where all four-dimensional tensor operations (as well 
as the construction of the tensor R-k) pertain to the 

t . 1 
me rIC gik' 

2) When varying with respect to gik we obtain from (3.20) Rik­
YzgikR)'P - 'P'i'k + gik'P'/;/ = O. On the other hand, variation with respect 
to 'P yields si~plY R = O. As a result we get the system (3.19). 
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After calculating the five-dimensional Lagrangian 
r-r p for this case, we can readily show that Eqs. 
(3.23)-(3.25) can be obtained also from the four­
dimensional variational principle 

6 -f (RqJ - II, 'p'F" Fik) l' -g d'x = 0, (3.27) 

which does not call for the use of five-dimensional 
geometry concepts at all. 

We note finally that a conformal transformation of 
the metric with simultaneous replacement of the scalar 
potential, in the form 

g;A = g'", exp(.-('/,)"'qJ'), <p = cxp«'/,) 'l'qJ') , (3.28) 

enables us to obtain from (3.27) the variational principle 

b J [R' - '1'/ '1";' - '/,F;.Fik exp(6"'qJ')]V -g' d'x = 0, (3.29) 

which corresponds to a generalization of the scalar­
tensor geometry, taken in the form (2.1)-(2.5). (All the 
tensor operations in (3.29) pertain to the metric g:k') 
On the other hand, if we make the transformation 1 

(A = const) 

(3.30) 

then it follows from (3.27) that 

6 J (R'qJ' - 3"-("-2- 2) QJ;.:;';' - ~ QJ'''-'') FikF") l'-g' d'x = 0. (3.31) 

Such a variational principle corresponds to a generaliza­
tion of the theory taken in the Brans-Dicke form. Here 
3A(A - 2)/2 is the coupling constant w, so that we have 
two solutions for the coupling constant A: 

A = 1 ± (1 + 200 / 3) 'I.. (3.32) 

4. OSCILLATORY APPROACH TO THE SINGULAR 
POINT IN THE SCALAR-VECTOR-TENSOR THEORY 

To investigate the asymptotic character of the gen­
eral solutions of Eqs. (3.23)- (3.26) near the singularity, 
it is indeed most convenient to use the language of five­
dimensional geometry. We introduce first in five­
dimensional space a synchronous reference frame 
satisfying the conditions 

(4.1) 

(4.2) 

The requirement (4.1) can be easily satisfied by making 
use the leeway in the choice of the gauge of the vector 
potential Ai' From the geometrical point of view, on the 
other hand, the gauge transformation Ai = Ai + cP i is 
none other than the transformation of the compon'ents of 
the five-dimensional metric tensor j5k = j55Ak (accord­
ing to the notation in (3.21)) under the action of a coor­
dinate transformation of the form 3 ) 

x' = x" + «l>(x'). (4.3) 

By choosing the function cP(xk) it is always possible to 
see to it that A4 = O. On the other hand, satisfaction of 

3)The only permissible coordinate transformations are those that 
leave all the metric components jss, jsk, and jjk independent of the 
fifth variable xS. 

(4.2) is obtained by one four-dimensional coordinate 
transformation. 

We agree to assume throughout this section that the 
first four Latin indices a, b, c, and d run through the 
values 1, 2, 3, and 5 (unlike the Latin indices i, k, l, and 
m, which take on the values 1, 2, 3, and 4). Then the 
five-dimensional metric takes the form 

'-dst,) = -dt' + jOb dx" dx'. (4.4) 

Further, we investigate the behavior of the components 
jab(t, xJ1.). After they are found, it will be easy to obtain 
the scalar and vector potentials in accord with (3.20), 
and also the four- dimensional synchronous metric from 
(3.22). 

The character of the general solution of Einstein's 
equations for the metric (4.4) near the cosmological 
singularity is sought in full analogy with the investiga­
tion of the four-dimensional case in [2,3J. We shall 
show now that the addition of one space-like dimension 
does not change the qualitative character of the solution 
near the Singularity. We again encounter an oscillatory 
regime that differs from the one in the four-dimensional 
case only in quantitative details. 

First, in the five-dimensional case (and generally in 
an n-dimensional case) there exists an exact Kasner 
solution4) for the metric (4.4): 

-ds,;, = -dt2 + t", dx,2 + t'" dx,' + t2" dx,' + t'·,dx,', (4.5) 

s, + s, + s. + s, = s,' + sa' + sa' + s,' = 1. (4.6) 

On the basis of the complete geometrical analogy with 
the four-dimensional case, one should expect the sought 
general solution to be described by an alternation of 
Kasner epochs accompanied by a definite transformation 
of the exponents sa and by rotations of the Kasner axes. 
Accordingly, we seek the first approximation of the 
general solution in the form 

where the four-dimensional vectors la' ma , na , and qa 
do not depend on the time. The 4- tensor components of 
Einstein's equations Pab = 0 for a metric of the type 
(4.4) are given by 

1 --0'- jk ')' = - 2I1 b 
l'-j " . ", 

(4.8) 

where kab = Bjab/Bt and IIab is the Ricci tensor con­
structed in accordance with the metric jab' 

If we neglect the right hand side of (4.8), we obtain 
the solution (4.7), in which 

(4.9) 

The vectors la' ma , na , and qa are so normalized that 
their moduli are of the order of unity, while the orders 

4) This solution is equivalent to the solution (2.6) - (2.8). This can 
be easily verified by making the transformation (3.28) after sub­
stituting in it <{! = t5 5 and gik = t2S " t 2 s" t 2S" -1). As a result we get 

q/ = (3/2) '/l s51n t, glk' = (thj+,q\ t 2s2+ aS, (l83+~j, _t85), 

Transforming now to the synchronous reference frame (in which g~ = 
-1), we obtain the solution (2.6) - (2.8), and the Kasner exponents sa 
are expressed in terms of the parameters PI' P2' Pl, and q as follows. 

" = 2q / (6'" - q), Sa = (6'''Pa - q) / (6'/' -. q). 
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of the components jab are assumed to be included in the 
time- dependent factors and in the coordinate- independent 
constants ao, bo, co, and do in ~4.9). A simple analysis, 
similar to that presented in [3 ,shows that the neces­
sary and sufficient conditions for the applicability of the 
solution (4.7) and (4.9) follow already from an examina­
tion of the diagonal projections of (4.8) on the directions 
of the vectors la' rna' na , and qa' In terms of such 
projections, the smallness of the discarded tensor n~ 
in (4.8) is formulated for the diagonal projections in 
the form 

(4.10) 

and for the diagonal ones in the form 

(4.11) 
nq~ad/t', ITmq~ bd/t', IT"q~ cd/t'. 

It turns out that to satisfy the inequalities (4.10) it is 
necessary to satisfy the following 12 inequalities (as 
against three for the four-dimensional caser3 ]): 

~(a'b, a'c, a2d, b'a, b'c, b'd, c'a, c2 b, c'd, d'a, d'b, d'c) ¢: 1. (4.12) 
A 

This notation means that each of the terms in the paren­
theses, when multiplied by k/A, should be much smaller 
than unity. Here 1/k denotes the order of magnitude of 
the distances over which the metric varies significantly, 
and A denotes the product aobocodo, so that 

l' -; ~ abcd = At. (4.13) 

Examination of the conditions (4.11) does not intro­
duce anything new now, since all the conditions (4.11) 
are automatically satisfied if the inequalities (4.12) are 
satisfied. Moreover, they are satisfied even if one of 
the inequalities in (4.12) is violated (for, example if 
ka2b/A ~ 1).5) It follows therefore that in the investiga­
tion of (4.8) in the region where the solution (4.9) ceases 
to hold because one of the inequalitites in (4.12) is vig­
lated, all the off-diagonal projections of the tensor na 
can be neglected as before. As to the diagonal projec­
tions of this tensor, it is necessary to take into account 
in them only terms of one kind: if, for example, the 
term ka2 b/A in (4.12) increases with decreasing t and 
reaches at some "critical" instant tcr a value on the 
order of unity (but all the remaining terms in (4.12) 
still remain small), then it is necessary to take into ac­
count in the components n;, n ~, and n~, in addition to 

the principal terms, only terms of the type 
a').' 

IIII=~1 

where A is given by 

a').' 
fin 11 = - 2c2d 2 ' 

). = (Zo," - 10,0) nOq' 

a'l.A,2 

ITq' = - 2c'd' ' 
(4.14) 

( 4.15) 

5) The conditions (4.11) can be violated only if at least two of the 
inequalities (4.12) are violated. This special case is connected with a 
certain form of small oscillations and will not be considered here (cf. 
the analogous situation in [3]). On the other hand, violation of one of 
the inequalities (4.12) is an obligatory element in the evolution of the 
solution (4.7) - (4.9). Indeed, it follows from (4.6) that at least one of 
the exponents Sa must be negative. Assume that this is SI and let the 
order of the exponents be such that SI < S2 < S3 < ss. Then ka~b/A ~ 
t 2', +'2, and it is easy to verify that this term increases as t .... 0, since 
S2 + 2s, is negative. 

(na and qa are the components of the vectors reciprocal 
to na and qa)' As to the component n ~, it does not con­
tain terms similar to (4.14), and can therefore be dis­
carded as before. 

Thus, Eqs. (4.8) for the metric (4.7) now become 

1 a').' 1 
--[abcd(lna') ']'= ---, --[abcd(ln b'),], = O. (4.16) 
abcd c'd' abcd 

1 .. a').' 1 a').' 
--[abcd(lnc') 1 =-.--; --[abcd(lnd')']'=--. 
abcd c'd' abed· c2d' 

It is necessary to add to these equations also the equa­
tion P44 = 0 in the form 

(4.17) 

We note now that in order for ka2 b/A to be the prin­
,cipal term among all those listed in (4.12), it is neces­
sary to satisfy the inequalities 

(4.18) 

The solution of (4.16) and (4.17) must therefore satisfy 
also this requirement. Without dwelling on the details, 
we present the final result. The solution of these equa­
tions describes the alternation of two Kasner epochs. If 
the asymptotic form of the solution during the initial 
epoch (at t »tcr) is 

with 

a'=a.'(tlt.)"', b'=b.'(tlt.)"', 

c' = c.'(t I t,.)"', d' = d.'(t I 1.)"', 

s, < s, < S3 < s, (s, < 0), 

then we obtain in the final epoch (at t « tcr) 

a' = a.12 (t It.) "", b' = b." (t It.) ,.,., e' = e." (t It.) ",', 

d' = d." (t It.) ',,'. 

The instant tcr is defined here by the formula 

t; =4(28, +s,)'c.'d.'1 ).'a.', 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

and the new exponents s~ are expressed in terms of the 
old ones as follows: 

, St +S2 
Sl =-----, 

1 +8, + 28, 
, 8, 

8 2 = , 
1 +8, +28, (4.23) 

, 8,+8,+ 2s, 
83 = , 

1 +s, + 28, 

The quantities ak, bk, ck' and dk in the final epoch 
are given by 

a.' =a.(1 + 8,+28,)'(, b.' = b.(1 +8,+28,)''', 

e.' = e.(1 + 8, + 28,)"', d/ = d.(1 + 82 + 28,)"'. 
(4.24) 

In addition, we note that to satisfy the condition (4.18) in 
the region of interest to us, we must stipulate 

( 4.25) 

It is easily seen that under the condition (4.20) the new 
exponent si will be positive and s~ negative. Thus, the 
function a will decrease during the final epoch (with de­
creasing time), and the function c will begin to increase. 
(But the exponent s~ has the same sign as S2.) 

It is easy to show that in addition to the change of the 
functions a, b, c, d, the Kasner axes are also rotated 
during the course of the alternation of the epochs. If the 
metric in the initial epoch is (4.7), then in the final 
epoch 
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-ds(!) = -dt' + (a'I:I.' + b'm.'m.' + c'n:n,' + d'q:q,')dx· dx·. (4.26) 

A simple analysis similar to that in [3J shows that the 
rotation of the axes is described by the formulas 

la' = la, ma' = ma + atla, 

na' = nO. + (J2ma + (J3la, q/ = qo. + C1&ma + (hJal 
(4.27) 

where aU the coefficients a are of the order of unity 
and can be found exactly by determining the corrections 
that must be introduced in (4.7) when account is takenb 
in (4.8) of the off-diagonal projections of the tensor ITa' 
We shall not make these calculations here. 

If we wish, we can return to the usual four-dimen­
sional form of the theory, described by Eqs. 
(3.23)-(3.27). If we are interested in the evolution of 
the scalar, vector, and tensor potentials cp, Ai> and gik' 
then it suffices to return to formulas (3.21) and (3.22), 
from which it follows that 

qJ' = a'l,' + b'm,' + c'n,' + d'q,'; 

A. = (a'I,I. + b'm,m. + c'n,n. + d'q,q.) / qJ', A. = 0; 

g.~ = a'I.I~ + b'm.m~ + c'n.n~ + d'q.q~ - qJ'A.A~, 

g .. =-1, g .. =O. 
(4.28) 

In conclusion we point out that during the course of 
the described oscillatory regime the negative Kasner 
exponent turns out to be connected an infinite number of 
times with each of the functions a, b, c, and d. That 
particular Kasner epoch during which the negative ex­
ponent belongs to the function d (d increases) will ob­
viously over go over into an epoch during which a posi­
tive exponent will be connected with the function d 
(d decreases), and the reason for this transition is the 
fact that the expressions 

(q •.• - q •..• )I·m·, (q •. , - q •.• )I'n·, (q •.• - q •.• )m'n·, (4.29) 

i.e., expressions of the type A (4.15), which playa role 
in the onset of the oscillations, differ from zero. It is 

therefore easily seen that in the absence of the vector 
field Ai we have 

I, = m, = n, = 0, q. = 0 (4.30) 

And all the quantities (4.29) vanish identically. Under 
these conditions, that open during which d increases will 
be the final stage of the evolution of the solution. Such 
an evolution to a monotonic asymptote near the Singular 
point in the absence of a vector field thus proves the 
statement made at the end of Sec. 2, that the asymptotic 
solution of (2.4) and (2.5) always takes the form (2.14) 
with positive exponents Pl, P2, and P3' 
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