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A qualitative theory is presented of turbulent pulsations in a liquid crystal layer in a stationary elec
tric field. The attenuation time of the pulsations after switching off of the electric field is estimated 

As is well known, stationary flow is produced in a 
layer of a liquid crystal (LC) following application of 
an electric field E [ll if the dimensionless parameter 
A ~ V2/K exceeds a certain threshold value Ac ~ 103 • 

Here V = El (l is the thickness of the LC layer) and 
K is the average elastic modulus of the LC. When A 

. reaches a second threshold value It > lc the stationary 
regime becomes unstable and the flow of the LC be
comes turbulent with further increasing of the field. 
The turbulent pulsations in LC at A > At have a num
ber of unique features, since the pulsational velocities 
and the orientations of the director are interrelated. 
The purpose of the present paper is to describe quali
tatively the turbulence developed in the LC (at A > At) 
and to estimate the damping time of the pulsations after 
the electric field is turned off. 

1. In the turbulized LC, the pulsational change of 
the angles determine the orientation n of the director 
are of the order of unity. Therefore the equations de
scribing the electrohydrodynamic effect do not admit 
of linearization with respect to the components n, and 
take the following form(ll 

divv = 0, 

( av, av,) Oft 1 oem' o a.,' 
p -+v.- =-p-.---EmE.-+p,E,+~, at ax, ax, 8n ax, vx. 

o 
-(e"E,) = 4np" rot E = 0, ax. 

!...-[- : (e • .E,) + 4na .. E,] = 0, ax. vt 

[nh] =r. 

(1 ) 

(2) 

(3) 

(4) 

(5)* 

Here v is the velocity of the liquid, p is the density of 
the LC, J.J. is the chemical potential of the substance in 
the electric field, and €ki and uki are respectively the 
dielectric and conductivity tensors of the LC: 

e .. = e.LtJ .. + (e" - B.L) n.n" 

a .. = a.LtJ .. + (a" - a.L)n.n,. 

Summation is carried out over the repeated indices in 
(1)- (5). Equations (1) and (2) describe the flow of an 
incompressible liquid dielectric containing extraneous 
charges with volume density Pe in an inhomogeneous 
electric field E. The stress tensor uki due to the vis
cosity of the LC contains the velocity gradients of the 
anisotropic liquid and the velocity components of the 
vector motion (see, e.g.,fll). Maxwell's equations (3) 
and (4) are applicable to a poor conductor such as a 

*[nhl =n X h. 

LC, for which it is meaningful to introduce simultane
ously conductivity and a dielectric constant(21. The 
director motion equation (5) contains the molecular 
field h and the moment of the friction force r, which 
depends on the same quantities as ukt1. The field h 
contains the contribution of the elastic forces (propor
tional to K) existing in an LC with an inhomogeneous 
distribution of the director, and also a contribution 
(proportional to €aE2, €a = €II- €1) of the electric field 
acting in an anisotropic dielectric medium. 

Since the turbulized LC is characterized by large 
values of the parameter A, it is possible to neglect the 
elastic modulus K when the pulsational motion is con
sidered. Physically this is due to the fact that when 
A > At the characteristic frequencies w of such a 
motion are much larger than the reciprocal T-;/ of the 
structure relaxation time, which is proportional to the 
modulus K, For the same reason, we can neglect the 
influence of the solid walls on the pulsational motion, 
since at large values of w the boundary conditions are 
Significant only in a thin LC layer near the solid sur
face f31. The thickness h of such a layer is of the order 
of h ~ (K/ (lW)1/2 « l, where (l is the average dynamic 
viscosity of the LC. 

The mechanism of the electrohydrodynamic effect 
is different in the characteristic frequency regions 
w < TEf ~ (41TU/ €) and w > Te\ where T e is the relaxa
tion time of the volume electric charge, and u and € 
are respectively the average conductivity and the die
electric constant of the LC. In the former case the 
mechanism is mainly connected with the anisotropy of 
the conductivity Ua = U II - U 1 ~ u/2, and in the latter 
case it is connected with the anisotropy of the dielec
tric constant €a (I €a I « €). Depending on the field E, 
the turbulent flow of the LC can be due to either the 
first or the second mechanism. 

2. We now consider the region of values of E cor
responding to pulsation frequencies w satisfying the 
inequalities Tf/ < W < Tel. Since I €al« a, it follows 
that the anisotropy €a can be neglected if the field is 
not too strong. Turbulent flow of the LC corresponds 
to a potential difference V satisfying the condition 
V = (€p/ 41T(l2)1/2 V> 1. We can therefore neglect the 
viscosity in (2), and when K = 0 and €a = 0 Eq. (5) 
contains only ratios of the viscosity coefficients. Thus, 
we have at our dis posal the parameters p, l, 
( €/ 41T )1/2 E, with the aid of which we obtain, from 
dimensionality conSiderations, the main parameters of 
the large-scale motion: 
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Z~/. 
I 

V z ~-V, 
To 

V pi' 
(J)z -., -, '(0 = -. 

To a 
(6) 

By vZ we must take here to mean the change of the 
velocity over the extent of the main Z scale, whereas 
the average velocity is equal to zero. 

The density pe of the volume electric charge, which 
gi ves rise to the large-scale turbulence in the electric 
field, is of the order of Pe ~ EE/41T1. The volume 
charge connected with the electric current does not 
playa noticeable role at scales b « Z, and the pulsa
tional motion at these scales receives energy mainly 
from the large-scale motion. The turbulence proper
ties at scales t; « Z are described in the spirit of 
ordinary turbulence theory[4], and the condition Y» 1 
actually corresponds to large Reynolds numbers Rz 
~ pvzZ/a ~ Y characterizing the "developed turbu
lence." In the considered region of fields E and 
thicknesses Z, the average dissipation q, the scale &0 
over which the viscosity begins to play any role, and 
the corresponding frequency wt;o' as well as the total 
number N of degrees of freedom, are of the order of 

( aV)'1 I V,/, (7) 
q -.. P 7' ~o -- V3/4' ffico""""" 7,' N,-....; 179-/4

• 

It is seen from (2) that the term of order peE is small 
over scales t; « Z in comparison with terms that are 
quadratic in Vt; ~ (qt;)I/S, so that the turbulence in 
question is isotropic. 

The unique feature of the turbulence in the LC con
sists, however, in the fact that in sufficiently strong 
fields the viscosity begins to influence the main scale 
Z, which becomes a function of E, a, and p. The 
reason for this is that the contribution of the dielectric 
mechanism, in spite of the smallness of 1 Ea I, is 
comparable in strong fields with the contribution of the 
anisotropic conductivity. Namely, in Eqs. (5) the term 
of order I Ea/41T 1 E2 becomes comparable with terms 
of o,!'der avz /Z ~ a 2y/ pZ2 at values Y, ~ 0-1 ~ 1 E/ lOa I. 
At V> 0-1 we find from (2) that vz ~ VI/To, and the 
main scale, according to (5), is of the order of 

/ ~ ~2/ Z ~ Z oV < Z. Accordingly, wZ ~ oV To. In this case 
there is also a flow of energy from the large-scale 
pulsations to the small-scale ones, and here 
q ~ oY4 a S/p SZ4. The smallest scale over which the 
viscosity in the Navier-Stokes equations becomes 
significant is now equal to t;o ~ z/r//4y. 

The turbulent LC flow considered above, is con
nected with the volume electric charge existing in the 
mesophase. It is necessary here to satisfy in the 
large-scale puls~tions the condi,!,ion wz < T~\ which 
takes the forms V < To/Te and V < (To/OTe//2 in the 
regions Y < 0-1 and Y> 0-\ respectively. Thus, the 
anisotropy conductivity mechanism plays a decisive 
role in the phenomenon under conSideration, if the 
electric fields are not too strong (at E < (41Ta/OE:Te)I/2). 
If the characteristic frequency of the pulsational mo
tion is much larger than T'i/, and only the dielectric 
mechanism operates, then the terms that depend on the 
electric field in the Navier-Stokes equations (2) and in 
the director equations (5) are pr<W0rtional to the quan
tity IE:a/41TIE2.Inthiscase (at V> (T%Te)I/2 
~ (1/1020)1/2) analogous estimates of the parameters 
Z, vz, and wZ yield the following orders of magni
tude: 

I 
Z~-

6'I,V' (8) 
6V' 

Ulz ~-. 
To 

We note that here the number RZ is of the order of 
unity, and consequently t;o ~ Z and wbo ~ wz, Le., 
such a motion is characterized by a single scale. The 
average energy dissipation q is of the order of 
€~E4/161T2pO!. The condition wZ» TS\ at which the 
foregoing estimates are valid, are satisfied here, for 
in this case 

T.-' ~ K I aZ' ~ {J)zpK I a' ~ {J)z 

(pK « 0!2 in nematic LC). The angles e through which 
the director is deflected from the initial direction are 
of the order of unity in the described pulsational mo
tion. It is seen from (2) and (5) that pulsations with 
e « 1 cannot occur, for then the terms that depend on 
the electric field are small in the Navier-Stokes equa
tions. 

3. Let us examine the damping of the turbulent 
motion after the electric field is turned off. The damp
ing of the pulsations in the LC includes two physically 
different processes. The first process is analogous to 
damping of ordinary turbulence. To determine the 
laws governing such damping, we can use the condition 
that the angular momentum contained in a region hav
ing a dimension on the order of Z be constant(4]. We 
note that the motion of the director makes a small 
contribution to the angular momentum (owing to the 
smallness of the moment of inertia per unit volume of 
the LC(5]), which is determined mainly by the velOCity 
and scale of the liquid flow. The frequency wZ(t) of 
the damped pulsation decreases with time t, and at a 
certain instant f" becomes a quantity of the order of 
the reciprocal structural relaxation time Ti/. At 
wZ ::. TS\ the energy of the large-scale flow turns into 
heat, since dissipation sets in, and during the time of 
the diSSipation the inhomogeneous distribution of the 
director over large scales relaxes to the unperturbed 
state. This interrupts the energy flow from the large
scale to the small-scale pulsations. An important role 
in this process is played by the elastic properties of 
the LC. The relaxation of the spatial distribution of 
the director at t > 1''' takes place within a time TS, 
which is of the order of O!Z2(t''')/K if Z(t''') « I or 
O!Z2/ K if Z(t''') ~ Z. The last case corresponds to a 
wall-layer thickness of the order of h ~ (K/awz)1/2 ~ l. 

By determining the functions Z(t) and wZ(t) in 
accordance with(41, we obtained from the relation 
wZ(t"') ~ TSI the value of f" = yt'" /To and different 
regions of values of E and l: 

{ 1 TO} 1 <V<min -, ,- ; 
yl2 Til' 

1 {Y'I' ('I"' ) 'I, } -, <V<min -, -,
yh 6"/3 6't'e 

(9a) 

(9b) 

(9c) 

(9d) 

(lOa) 

(lOb) 
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Here y = pK/cl. Formulas (9) correspond to the onset 
of turbulence in an electric field because of the con
ductivity mechanism, while formulas (10) correspond 
to the dielectric mechanism. In cases (9a), (9c), (9d), 
and (10) we have 

Rz(l') - pvz(I')Z(I') / a <1, 

and in the case (9b) we have R(t''') > 1. In cases 
(9a, b, c) and (lOa) we have T"I:/ ~ K/al2• In cases 
(9d) and (lOb) we have Tp/ ~ K/aZ 2(t"') ~ ylff', and the 
structure relaxation occurs here over dimensions 
Z(t"') ~ (at"'/p)1/2« l. 

Connected with the pulsations of the director nand 
with the corresponding pulsational change aEOik 
= €anink of the dielectric constant is the experimentally 
observed "dynamic scattering" of light. The light 
scattering stops when the electric field is turned off. 
The LC layer regains its transparency effectively 
within the time during which the pulsations over the 
scales !;:: 1 vanish. This time is of the order of 
t'" + (To/y) at Z(t*)::l, ort*/yifZ(t*)«l. Rela
tions (9) and (10) show that the quantity f* ~ yt*/ro 
depends in a complicated manner on the reduced poten
tial difference 'Y, and does not depend on the thickness 
1. At the present time there are experimental data[6) 

that reveal qualitati vely such a dependence of the time 
of vanishing of the "dynamic scattering" on the elec
tric field and on the thickness of the LC layer. 

In conclusion, I am grateful to A. I. Larkin for 
valuable remarks and discussions. 
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