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Scattering of fast charged particles in a single crystal is investigated as a function of the thickness. 
In a thin crystal in which the Born approximation is applicable over the crystal as a whole, the scat­
tering is proportional to the square of the coherence length, which is determined exclusively by the 
kinematics of the process. In the case where perturbation theory is inapplicable to the entire crystal, 
the scattering decreases substantially as the result of the Glauber shadow effect. In this case a dy­
namic shortening of the coherence length occurs, which depends on the coupling constant of the po­
tential and the kinematics of the process. 

1. INTRODUCTION 

IN interaction with atoms of matter, a fast charged 
particle transfers to the atom a transverse momentum 
of the order of the inverse screening radius K '" me2 Z1/3 
(n'" c '" 1), so that the characteristic deflection angles 
are ,J ~ (Kip) ~ 1. In the longitudinal direction a mo­
mentum toP11 ~ p,J2 ~ K2/p is transferred to the atom 
which decreases with increasing particle energy. 
Therefore in scattering of ultrarelativistic particles 
large longitudinal distances (toPllf1 ~ PK-2 are impor­
tant. As a result of this, in particular, the crystal 
structure of matter can manifest itself in the scattering 
even when the particle wavelength ,\ is much smaller 
than the lattice constant a, provided that the longitudinal 
transferred wavelength (p,,2r1 > a. [1,2] 
Ter-Mikaelyan[l] has discussed this effect in detail on 
the assumption that perturbation theory is valid for 
scattering over the entire crystal. The condition for 
considering the potential of the entire crystal U as a 
perturbation, as is well known, has the form (8'" piE) 

L 
a~S Uo(x,y,z)dx«:1, 

(1.1) 

where the x axis is directed along the motion of the 
particle, Uo is the potential of an individual atom, and 
L is the crystal thickness along the x axis. It follows 
from Eq. (1.1) that the condition of applicability of per­
turbation theory substantially limits the crystal thick­
ness. A discussion in terms of perturbation theoryr1] 
showed that atoms located at a length (p"Y1 scatter 
coherently, the cross section increases by a factor L/a 
in comparison with an amorphous medium, and inter­
ference effects appear due to the change in direction of 
entry into the crystal. We can expect that the relations 
found will change when we go beyond the framework of 
perturbation theory. In the opposite case, for example, 
with increasing crystal thickness, the total cross sec­
tion for elastic scattering in the crystal would become 
larger than the geometrical cross section. Actually, 
following Ter-Mikaelyan[.l], we can obtain the total 
cross section for elastic scattering in a crystal for 
particles incident parallel to one of the crystallographic 
axes 

tJ = tJo(L / a)'N.L, (1.2) 
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where a 0 is the total cross section for elastic scatter­
ing by one isolated atom and N 1 is the total number of 
atoms in a transverse plane; for 

Ze'L/ a> 1 (1.3) 

the cross section becomes greater than geometrical. 
Preservation of this situation beyond the limits of 

applicability of perturbation theory would lead to an ab­
surd result-the number of scattered particles could be 
greater than the number of incident particles. However, 
in (1.3) the results of refs. 1 and 2 are not valid, since 
in the case of (1.3) perturbation theory is inapplicable 
to scattering in the crystal as a whole[3]. Therefore it 
is of interest to investigate the electromagnetic proces­
ses in a single crystal as a function of its thickness in 
the case in which the Born approximation is inapplica­
ble. For this purpose it is convenient to use the well 
known high-energy approximation [4 ,5] , which is appli­
cable for crystals which are not too thick. The condition 
of applicability of this approximation 

(1.4) 

for high energies is weaker than (1.1). Consideration 
shows that the scattering relations for fast particles in 
a single crystal change qualitatively as we go outside 
the framework of perturbation theory[3]. This fact can 
be interpreted as follows. 

Coulomb scattering at high energies can be consid­
ered as diffraction at the Coulomb center[6]. As 
Glauber has shown in discussion of another problem [5] , 

the existence of the diffraction shadow weakens the scat­
tering by other scatterers if part of the scatterer lies 
in the region of the diffraction shadow. 

If the scatterers are located in a string along the 
motion of the particle, the superposition of the shadows 
from several "semitransparent" scatterers forms a 
"black" shadow and substantially weakens the partici­
pation in the scattering of the shadowed scatterers. The 
coherence length in which the scattering amplitudes 
from the different scatterers add effectively already 
cannot be determined by purely mathematical reasoning 
in this case, as in perturbation theory, but is determined 
by the dynamics of the process. We discuss below the 
elastic scattering of fast charged particles in a single 
crystal in the case where perturbation theory is inappli­
cable. 
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2. SCATTERING BY A DIATOMIC MOLECULE 

The main features of the effect considered are con­
veniently studied at first in the simplest example- scat­
tering by a diatomic molecule. 

Let the atoms be located at the points r = 0 and r = a, 
and the potential of the molecule have the form 

U,(r)= Ze{~exp(-xr)+--1-~.xp(- xlr- aD}. (2.1) 
r Ir-a( 

If the angle 30 between the particle momentum p and 
the molecule axis a is small and the condition 

a <;;;; ]n(-' (2.2) 

is satisfied, the amplitude of scattering by the molecule 
f2(q) can be related to the amplitude of scattering by one 
atom f1(q) by the equation[4,5] 

!, (q) = I. (q) + I. (q) exp(iq.La.L) + 2: J d's.L!' (S.L)f, (q.L - S.L) exp(is.La.L), 

p ~.~ 
where a 1 is the component of a perpendicular to p. 
Using the optical theorem, we express the cross sec­
tion for scattering by two centers 0"2 in terms of the 
single- center cross section 0" 1: 

<J, = 2<J, +2Re J d's.L!,(S.L)!,(-s.L)exp(is.La.L)' (2.4) 
p 

The real part of the amplitude for scattering by the 
atom can be represented in the form 

Re!,(q) = a.p(q'+x')-" 

and the imaginary part in view of the unitarity condition 
can be written as 

Imf«q)=-£_' Jd21!,(l.L)f,·(I.L-~)' 
4np 

Using the above, we can easily carry out the integration 
in (2.4), obtaining 

a' [1 ... ] 
<J2=2<J,+2<J,[(ax~o)K,(a)('l}.)]-<J'4exp -4(ax~.)', (205) 

where K1(X) is the Macdonald function. If the direction 
of motion of the incident particle coincides with the 
axis of the molecule ("0 = 0), then 

(2.6) 

In the Born approximation the second term should be 
dropped, and the result coincides with that obtained by 
Ter-MikaelyanE,l]. Departure from perturbation theory 
leads to weakening of the scattering, and the weakening 
increases with increasing coupling constant (JI. The 
weakening of the scattering can be interpreted as the 
result of incidence of the second atom in the region of 
the diffraction shadow from the first atom. With in­
creasing (JI the shadow becomes deeper and the scatter­
ing cross section decreases. 

In order to confirm the interpretation proposed, let 
us consider the limiting case of strong coupling-diffrac­
tion by two impenetrable spheres of radius Ro located at 
the points r = 0 and r = a, where a « pR~ and the angle 
Jo between the incident-particle momentum p and a is 
small. In this case the total scattering cross section is 

<Jtot =<J,{1+ ~ [arcsin(aR.-'sin~.)+aR.-'sin~. (2.7) 

x (1- (aR.-' sin ~.)') ''']8(1- aR.-' sin {}.)+ 8 (aR.-' sin~. -1) }, 

where 
8(x)={1, x>O <J,=2nR.'. 

0; x<o 

Thus, in the case discussed of diffraction scattering, 
the shadow effect[4J has completely suppressed the 
interference. This leads to the result that at zero en­
trance angle 30 = 0 the total scattering cross section is 
equal to the cross section for scattering by a single 
center, and the second center does not participate in 
the scattering, since it is in the region of the diffraction 
shadow. 

3. SCATTERING BY A STRING OF ATOMS 

If perturbation theory is applicable for scattering by 
an isolated atom, then the shadowing of the next atom 
is small. However, in scattering by a linear string of 
atoms the superposition of relatively weak shadows 
from several atoms can lead to a deep shadow L3J • In 
fact, for N « p/K 2a the effective coupling constant is 

NZe2 , which should lead to a substantial shadow effect 
on the scattering process. Therefore it is interesting 
to consider elastic scattering in the case of motion of a 
particle along the string axis. Let N atom s be located 
at the points Rn = na (n = 0, 1, 2, ... , N - 1) and 
Na «PK-2 • In this case the high-energy approxima­
tion [4J is valid, from which an explicit form follows for 
the amplitude of scattering of a particle by the entire 
chain of atoms: 

~ +~ 

!N(q) = ip ~ 'o(qb)b db {1- exp [ - + L U(b,x)dx ]}, (3.1) 

where Jo(x) is a Bessel function and 

where the summation is carried out over all the atoms 
of the string. The applicability of Eq. (3.1) is limited 
to not too large scattering angles 

1'} < (xl p)'''. 

It should be noted that condition (3.2) permits using 
(3.1) over practically the entire region of effective 
angles. The potential of an individual atom is the 
screened Coulomb potential, so that 

N-' 

U(r) = ~ Ir ~ Rnl exp{ - xlr - Rnll, 
2 n=O 

where (JI == Ze. 

(3.2) 

(3.3) 

Substitution of (3.3) into (3.1) and integration gives 

fn(q) = ip I I.(qb) bdb{ 1- exp [ - i 2~a K.(bx) ]} . (3.4) 

Let us discuss first the case of a rather long string for 
which 

(3.5) 

In this case we can use asymptotic methods to evaluate 
the inte~ral. In fact, using the stationary-phase 
method 7J we can calculate the explicit form of (3.4). 
Thus, for 

q Na. 
;£''''-In-<1 

x ~ 

we obtain 
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X{q-'l,[ ~ln(2NaY~)+i~]}, (3.6) 

where 'Y = eC f':j 1. 781. .. and C is Euler's constant. 
In the case 9: > 1 the stationary-phase method gives 

the following expression for the scattering amplitude. 

p ( 2Nax)'" [ q 2NaX]/ !N(q)=-i- In-- exp -i-In-- q. 
x ~q x ~q 

(3.7) 

Using the optical theorem and Eqs. (3.4) or (3.6), we 
can determine the total cross section for elastic scat­
tering by a long string of atoms for the condition (3.5), 

2n{ [ 3 sinA ]} a=~ (lnA)'+{lnA) T+2ci(1)--A- , (3.8) 

where ci(x) is the cosine integral, and 

A = 2 Z;' N [ n/21n ( 2N Z;') ] 'f, . 

The total cross section for elastic scattering (3.8) can 
be obtained also as the result of integration of the 
square of the modulus of the scattering amplitude (3.6) 
over angle. The structure of the formulas obtained is 
similar to that of the formulas for diffraction by a 
semitransparent object. This similarity confirms the 
interpretation of the results as the consequence of 
superposition of shadows from several atoms. The 
"blackness" of the total shadow (and consequently also 
the transparency of the chain) is determined by the 
parameter NO'. In the limiting case NO' »1 to which 
Eqs. (3.6)-(3.8) refer, the string becomes practically 
opaque for particles incident parallel to its axis. The 
dependence of the scattering cross section on the num­
ber of particles becomes very weak-the parameter NO' 
enters into the result only in the argument of a logar­
ithm. This is explained by the fact that the atoms at the 
end of the chain which fall in the deep shadow region 
play practically no part in the scattering. 

If the amplitudes for scattering of a particle by dif­
ferent atoms located in a segment of this string of length 
1 are effectively added, then the length l can be called 
the coherence length. For N atoms located in a coher­
ence length, the scattering cross section is 

dO"N(t}) = da,(t}) (lfa)' 

(for L = Na < l it is necessary to replace l by L), 
where a is the distance between atoms and dUl is the 
scattering cross section of a single atom. In perturba­
tion theory the coherence length is determined by kine­
matic considerations and is equal to (pJ2r 1• However, 
generally speaking, the coherence length is determined 
by the dynamic relations. In the case discussed we can 
conclude that the coherence length is shortened, l ~ a/a, 
i.e., atoms located up to the place of formation of the 
black shadow take part in the scattering. In other words, 
the length l ~ a/a represents that length in which the 
coherently scattering atoms form a potential with an 
effective interaction strength of the order of Wlity. 

It should be emphasized that the results obtained for 
the total and differential scattering cross sections 
(3.6)-(3.8) are practically independent of the specific 
form of the atomic potential-the results depend ex­
clusively on the effective interaction radius K -1. 

In the opposite limiting case, NO' « 1, the cross 
section for scattering by a string of atoms can be dis­
cussed on the basis of perturbation theory. Expanding 

the exponent in Eq. (3.4) in series, we obtain results 
which agree with ref. 1, i.e., are proportional to (L/a)2. 

In the intermediate case, aN ~ 1, the integral (3.4) 
was calculated numerically. Using Eq. (3.4) and the 
optical theorem, we can represent the total scattering 
cross section in the form 

4n ~ 
a = --;:- Re S dx xU - exp[ - i· 2AoKo(x)]), (3.9) 

x 0 

where Ao = Na/~ is a parameter characterizing the 
coupling constant. By numerical integration methods 
we obtained the following dependence of the total cross 
section on the parameter Ao: 

a 
4n/x' = Ijl(Ao). 

For Ao equal to 0.1, 0.2, 0.6, 1,2,4,8, 10,20,40, 102, 
and 103 , the numerical values of the function cp(Ao) are 
respectively 0.995 x 10-2, 0.390 x 10-\ 0.292, 0.630, 
1.41,2.58,4.15,4.74,6.86, 9.40, 13.4, and 26.9. 

It follows from the values given that for small Ao 
the total cross section is proportional to A~, and for 
large Ao it is described by Eq. (3.8). 

4. SCATTERING IN A SINGLE CRYSTAL 

Let us consider now a single crystal bOWlded by the 
planes x = 0 and x = L, assuming L «PK-2 • The number 
of atoms in a string coinciding with the direction of mo­
tion of the particle will depend on the direction of inci­
dence of the particle. Let us first consider the case in 
which the particle is incident along the crystallographic 
x axis. In this case the formulas for the cross section 
in a single crystal differ from (3.4)-(3.8) only in the 
fact that the result still involves the number of atoms 
of the crystal in the yz plane, N 1; this is due to the fact 
that scattering occurs independently in the different 
strings, since the transverse effective dimenSions, 
which are important for scattering, are determined by 
the radius of action of the potential K -1. Thus, we obtain 
from Eqs. (3.6) and (3.8) the coherent part of the cross 
section 

..:!:5!.. = NJ. 1n, (2 Na l'n) 1.'[,2p sin (t}/2) x-' In (2Nayl'-;/M I (4.1) 
dO x' ~ Y 4 sin' (t}/2) , 

n (Na -) a = 2NJ. -In' 2-yl'n . 
(4.2) 

x' ~ 

It is important that Eqs. (4.1)-(4.2) are valid only in 
the case in which we can neglect the effect of thermal 
vibrations of the atoms of the crystal lattice. This 
places an upper limit on the longitudinal dimension 
LII = Nax of the crystal by the condition 

L ~ a.x'ln'(NayY"n/~) (4.3) 
a2u2 

where l? is the mean square thermal displacement of 
the atom. As the direction of incidence of the particle 
changes, the number of atoms along the direction of 
incidence Nil varies with the entrance angle Jo. In the 
limiting case N(Jo)a »1 the cross section varies 
weakly as a fWlction of the entrance angle, and in the 
opposite limiting case N(Jo)a « 1 it varies raridly in 
accordance with the results of Ter- Mikaelyan IJ. 

As the entrance angle "0 changes, the directions 
along which the greatest number of atoms N(Jo) are 
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located alternate with directions along which a small 
number of atoms are located. Therefore the interfer­
ence nature of the scattering cross section is preserved 
as the entrance angle varies. However, the peaks in the 
scattering cross section will be substantial? smaller 
than predicted by Ter-Mikaelyan's theory[l in the case 
where N(Jo)a »1. The minima in the scattering cross 
section correspond to the case N(Jo)a « 1 and there­
fore do not change essentially. The Ter-Mikaelyan 
interference effect is preserved in pure form only in 
sufficiently thin single crystals whose thickness is limi­
ted by use of the Born approximation: L« a/Ze2. A 
detailed discussion of the interference effect with in­
clusion of the shadow effect will be given separately. 

Thus, excursion beyond the limits of perturbation 
theory qualitatively changes the nature of fast charged 
particle scattering in a single crystal. 

5. SCATTERING AT LARGE ANGLES 

The expressions obtained above for the scattering 
amplitude are valid in the region of small scattering 
angles. It follows from Eq. (3.7) that the amplitude falls 
off with increasing momentum transfer as q-l. How­
ever, this change in amplitude occurs only up to angles 
J S ..JK/p. For further increase of the scattering angle 
the effective impact parameters decrease and the am­
plitude f(q) falls more rapidly. Therefore it is of in­
terest to study the dependence of the coherence length 
on momentum transfer. We will write the expression 
for the scattering amplitude of fast particles at not too 
small angles (J >..fKTrj) in the high-energy approxima­
tion l4] 

E 
j(q)= --Sd3rexp(- iqr) U(r) 

2n 

xexp{-~[j dsU(r-n,s)+ j dSU(r+n,s)]} (5.1) 
fl 0 0 

where nl == Pl/P, n2 == P2/P. 
We will calculate the explicit form of the amplitude 

f(q) for scattering angles J > ..JK/p in the case where 
the incident-particle momentum is parallel to the axis 
of an atomic string of length L: 

j(q) = jo(q) ~ exp{ i[ :: Xa + 2;: In X;]} 

xexp{in(1+i; ~a)}{r(1+i; ~a)r, (5.2) 

where r(z) is the r function, Xa is coordinate of the 
atom at a and fo(q) is the amplitude for scattering by a 
single isolated atom. 

For effective addition of the amplitudes for scatter­
ing by different atoms, both the kinematic and dynamic 
conditions for constructive interference must be satis­
fied. Therefore the coherence length is determined by 
the lesser of the two lengths, taking into account these 
conditions, 

I - min {l.,ld}. (5.3) 

Summation over the atoms of the string permits us to 
find 

2p 
1.= 1 I" p,-p, 

1- [ze'l Ipi -p,1 ]-1 
d- a -11- n--x- . (5.4) 

As we should expect, both lk and ld decrease with in­
creasing momentum transfer. In addition, it must be 
emphasized that for Ze2 ~ 1, intense scattering occurs 
already at the first atom, giving a deep shadow, and the 
remaining atoms hardly take part in the interference. 

In the case where 2p/\Pl - P2\2 < a, scattering by the 
atoms of the string occurs independently, and if pertur­
bation theory is valid, i.e., LZe2/a < 1, then the proba­
bilities of electromagnetic processes are proportional 
to the string length L. If perturbation theory is inappli­
cable, LZe2/a > 1, then the cross section for scattering 
at large angles is proportional to the number of atoms 
located in the dynamic length (5.4), Le., 

dcr [Ze' Ipi _p,1 ]-1 
-- -In----
d{! fl x . 

(5.5) 

The expression (5.2) obtained for the scattering ampli­
tude permits a quantitative description of the shadow 
effects occurring in scattering of fast charged particles 
in single crystals [8] • 

It is easy to calculate by means of Eq. (5.2) the mean 
square deviation angle of a particle after traversal of a 
thin single- crystal layer of thickness L. For thin layers 
in the case of particle incidence along a crystallographic 
axis, L « aj3/Ze2, we have the formula 

<~'> = 4nN.l.(2Ze' / pll)' In (210Z-'h) (L / a)', (5.6) 

which agrees with the result obtained by Ter-Mikael­
yan[l] . 

For thicker layers with thickness 

afl / Ze' ~ L ~ px-' (5.7) 

the mean square deviation angle is no longer dependent 
on the thickness of the layer and is determined by the 
relation 

<~'> "'" 4nN.l.(2Ze' / pfl)'{lnln (210Z-'h)H, (5.8) 

where ~ = (13/2 Ze2)2 if Ze2/j3 « 1 and ~ = 1 for Ze2/f3 
»1. 

It must be emphasized that the use of perturbation 
theory for charged particle scattering in a siu.gle crys­
tal in the thickness range (5.7) leads to a result exag­
gerated by a factor (L/ld)2, as the result of the dynamic 
shortening of the coherence length in the region where 
perturbation theory is inapplicable. 

The results obtained refer to the case of particle 
incidence strictly along a crystallographic axis. In the 
general case of interference scattering in a single crys­
tal the effect of dynamic shortening of the coherence 
length limits the cross- section value in directions co­
inciding with the crystallographic axes. 
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