
SOVIET PHYSICS JETP VOLUME 36, NUMBER 3 MARCH, 1973 

THE SUPERCONDUCTOR-EXCITONIC DIELECTRIC PHASE TRANSITION IN A SEMIMET AL 

A. G. ARONOVand E. B. SONIN 

Institute of Semiconductors, USSR Academy of Sciences 

Submitted August 6, 1971 

Zh. Eksp. Teor. Fiz. 63, 1059-1066 (September, 1972) 

The super conducting and dielectric state of a semimetal is considered by taking account of polariza­
tion of the lattice. Lattice polarization leads to the result that the exciton gap associated with large 
band overlap is determined by the frequency of the longitudinal optical phonons and may turn out to 
be of the same order of magnitude as the super conducting gap. In the presence of different effective 
masses in the conduction band and in the valence band, a change of the pressure and the associated 
change of the band overlap lead to a superconductor to excitonic dielectric phase transition. The 
case of an impurity semimetal, where exciton pairing and Cooper pairing of the "excess" electrons 
(holes) can simultaneously exist, is also considered. It is shown that two superconducting states 
exist, with different dependences of the gap on the concentration. A first-order phase transition is 
possible between these states. 

RECENTLY there has been an appreciable increase of 
interest in theoretical and experimental investigations 
of metal-dielectric phase transitions. The model of a 
semimetal-excitonic dielectric phase transition, which 
was proposed by Keldysh and Kopaev,(1] is a widely 
known model of such a transition. A number of investi­
gations exist in which not only the properties of a pure 
excitonic dielectric are discussed, [2] but also the prop­
erties of an excitonic dielectric containing impurities. P] 
The existence of two phase-transition points in an im­
purity semimetal was predicted, [3] the impurity states 
in an excitonic dielectric have been investigated,(41 and 
it has also been shown that superconductivity can exist 
in an excitonic dielectric containing excess electrons 
or holes.r 5] 

However, the polarization of the lattice was not taken 
into consideration in any of the articles devoted to con­
sideration of an excitonic dielectric; it may essentially 
modify the nature of both the electron-hole and the 
electron-electron interactions, and it may also change 
the magnitude of the dielectric energy gap. In fact, the 
effective interaction between electrons and holes with 
allowance for the lattice polarization is given by 
41Te 2/t(w, q)q2 (€(w, q) represents the total dielectric 
constant of the crystal), and is evaluated by taking ac­
count of both the lattice vibrations and the free elec­
trons and holes. In a polar semimetal, where due to 
the interaction the frequencies of the longitudinal and 
transverse phonons do not coincide, the lattice contri­
bution to the dielectric constant becomes negative for 
Wl > w> wt, and this leads to a change in the sign of 
the potential for the interaction of electrons and holes 
in this frequency interval. At the same time the effec­
tive electron-electron repulsion is changed to an at­
traction in this frequency interval, and as is well known 
this leads to the formation of Cooper pairs. 

The change in the sign of the effective interaction 
as a function of the frequency in principle makes the 
simultaneous existence of exciton and Cooper pairings 
possible. In the present article we shall show that, de­
pending on the extent of the band overlap (pressure), 
either exciton pairing or Cooper pairing will turn out 
to be energetically more favorable, and a dielectric-
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superconductor phase transition of first order will oc­
cur at a certain critical value of the band overlap. Such 
a phase transition occurs only when the effective 
masses of the electrons and holes are markedly differ­
ent, when the masses are identical the exciton pairing 
is always energetically more favorable. The dielectric 
superconductor phase transition in an impurity semi­
metal is also considered in the present article. Here 
in the region of existence of the excitonic dielectric, 
both exciton and Cooper pairings exist simultaneously; 
this corresponds to superconductivity of the excess 
electrons occupying the conduction band of the excitonic 
dielectric. However, since a given electron partiCipates 
simultaneously in the two pairings (Cooper and exciton 
pairings), the magnitude of the energy gap associated 
with a Cooper pair depends on the phase difference be­
tween the wave functions of the Cooper pair and the 
exciton pair, that is, an unusual coherence effect exists. 

1. FORMULATION OF THE PROBLEM 

We shall consider a semimetal with two overlapping 
bands: valence and conduction bands occurring at dif­
ferent points of k-space, with effective masses ml and 
m2. In addition to the direct Coulomb interaction be­
tween the electrons, we shall also take the interaction 
of the electrons with longitudinal optical phonons 1) into 
consideration. The direct Coulomb interaction and the 
interaction with phonons already lead, even in the Born 
approximation, to the diagram shown in Fig. 1c in ad­
dition to the diagrams shown in Figs. 1a and 1b (the 
wavy lines shown in Figs. la, ib, and 1c denote either 
the Coulomb propagator 41Te 2/ t ooq2 or the phonon 
propagator). However, owing to the orthogonality of 
the Bloch functions of different bands at different points 
of k-space, diagrams that contain at least one vertex at 
which the band state of the electron changes (e.g., 
Fig. 1c) will have an additional degree of smallness in 
comparison with diagrams of the type shown in Figs. 
1a and 1b; the parameter characterizing this additional 
degree of smallness is qa« 1, where q ~ PF is the 

1)We assume that the interaction with acoustic phonons is not 
strong enough to lead to the formation of Cooper pairs. 
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momentum transfer and a-I is the distance between the 
band extrema and is of the order of the reciprocal 
lattice constant. 2) We shall therefore only consider 
vertices of the type shown in Figs. 1a and lb. Then the 
propagator of the effective interaction of electrons with 
each other (the electrons being in a single band or in 
different bands) has the form[S) 

4ne' 
D(oo,q)=. (1) 

e (00) q2 - 4ne'll (00, q) 

where 7T( w, q) is the polarization operator, and 

8(00) = 8ro(oo'-00,') / «(J}'-w,') 

is the dielectric constant of the lattice, €co denotes the 
high-frequency dielectric constant, and wl and wt are 
the frequencies of the longitudinal and transverse pho­
nons, respectively. 

Let us introduce the electron Green's functions: 

G .. a~(x - x') = -i<T ('I',a (x) 'I'.H (x') », 
(2) 

Fil<a~(x-x') = <T('I',"(X)'I'/(X/»), 

where the superscripts et. and f3 characterize the spin 
state of an electron, and the subscripts i and k charac­
terize the band states. Since the interaction does not 
depend on the spin, then the spin is conserved at each 
vertex-just as is true for the band state.3 ) Below we 
shall only consider singlet exciton pairing. This means 

that GR!(x - x') = 1Iet.{JGik(X - x'). In addition, by the 
usual method one can show (7) that in the presence of 
singlet superconducting pairing the anomalous functions 
Fik and Ftk are proportional to the matrix i, which is 
antisymmetric with respect to its spin indices: 

(3 ) 

By using the property (3) we obtain a system of 
Dyson equations for the functions G and F, which will 
now be matrices only with respect to the band indices; 
this system has the following form (the arguments of 
the functions are omitted in order to shorten the nota­
tion): 

where we have introduced the self-energy parts 
d'p' 

~,;(p)= S (2n}.F,;(p-p'}D(p'); (5) 

d'p' 
t. .. (p} = S (2n)' G .. (p-p'}D(p'}; (6) 

t." = t." = 0, p = (00, p), 

2)11= I everywhere below. 

3) Neglecting interband transitions, the physical results turn out not 
to depend on the distance a-I between the extrema in k-space. [2] We 
shall assume for simplicity that both extrema are located at the point 
k = 0, that is, in each band the quasimomentum is reckoned from the 
bottom of the band. 

which satisfy the symmetry relations4) 

t.,,(w,p) =-t.,,'(w,p), ~,;'(oo,p) =~#+(oo,p). (7) 

Here ;i( p) = (p2 - PFi)/2mi are the unperturbed band 
energies, reckoned from the chemical potential level; 
mi and PFi denote the effective mass and Fermi mo­
mentum in the corresponding bands; in order to be 
definite we assume that ml > 0 and m2 < O. In a pure 
semimetal PFI = PF2. For identical signs of the 
masses (for example, for the case of two conduction 
bands) il 12 vanishes, and the system of equations 
treated by Gellikman and Pashitskii [8] is obtained 
from (4). 

2. THE EXCITONIC DIELECTRIC-SUPERCONDUCTOR 
PHASE TRANSITION IN AN INTRINSIC SEMIMETAL 

Let us consider semimetals having equal concentra­
tions of electrons and holes. In this case the system of 
equations (4) together with the self-consistency equa­
tions (5) and (6) admit the following types of solutions: 

1. The trivial solution ~ ik = il 12 = 0 corresponding 
to the unperturbed semimetallic state; 

2. il12'" 0 and ~ik = 0 corresponding to an excitonic 
dielectric; 

3. ~ll'" 0 or ~22'" 0, and ~12 = il12 = 0, correspond­
ing to a superconductor. 

In principle solutions in which ~ik" 0 and il 12 ". 0 
might be possible. However, in the presence of equal 
numbers of electrons and holes such solutions are ab­
sent in any case if the self-energy parts differ mark­
edly in their magnitudes. This follows directly from 
the investigation of impurity superconductivity (see 
Sec. 3), when one lets the concentration of excess elec­
trons tend to zero. 

First let us consider the superconducting state in 
band I, for example. In this case the system of equa­
tions (4) has the usual form of the Gor'kov equations, 
which have the following solution for the superconduct­
ing gap ~ll: (8) 

(8 ) 

A% = a, [ :: - ( 1 + a, In :~) -'], 

m,e' pI (PP'XD}"· 
a,=---In--" oom= (9) 

4npFBro Xn m, 

Here 1/ € c = 1/ €co - 1/ € 0; € 0 is the static dielectric 
constant; KD = [2(ml + I m2!)PFe2/1fEo]1/2 is the re­
ciprocal Debye length. The solution (8) is obtained to 
within terms of the order of 

In (PF' / XD') / In ('KDPF / m~,,) ~ 1 (10) 

and differs from the formula given by Gurevich et al.[S] 
only by the expression for wm. This difference in the 
value of wm is associated with the fact that besides 
the frequency dependence of ~ ll( w), which is the same 
as in[al, we have also considered the logarithmic de­
pendence of ~ ll( w, p) and the kernel of the integral 
equation on p - PF, which thus enables us to determine 
the factor in front of the exponential to within the ac­
curacy indicated above. 

4) Just like Kopaev, [S] we assume that the exciton pair is formed 
by an electron and a hole with total quasimomentum equal to zero. It 
is possible that in an impurity semimetal it may be energetically more 
favorable if the pairs were to possess nonvanishing average values of the 
quasimomentum. This question requires special examination. 
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The expression for the superconducting gap in band 
II differs from expressions (8) and (9) only by inter­
changing the indices: 1 ~ 2. 

One can obtain an expression for the dielectric gap 
from the system of equations (7) by a similar method. 
Here we have the following result, to the same accuracy 
as described by (10): 

il = 00/ 1 + ~ exp (_~1_) 
p'" ),.. ' 

(11 ) 

". = 2a, [ ( 1 - 2a, In :: ) -, - :~]. 
Here 

a, =a,! (1 + ~), ~ = m, 1m2. 

The expression for the exciton gap differs from the 
expression for the super conducting gap by the change 
in the sign of the interaction constant a. From (11) it 
is seen that for large band overlaps the dielectric gap 
is always smaller than the frequency of a longitudinal 
optical phonon. If there is no coupling between the 
electrons and the longitudinal phonons, i.e. if ~~1 = 0, 
then expression (11) goes over into the well-known ex­
pression given infll, which is distinguishable by having 
a different factor in front of the exponential: 

il=w i+~ exp ( __ 1_) 
m p'" 2a, . 

(12) 

Since the gain in the ground state energy associated 
with pairing (both for exciton pairing as well as for 
superconducting pairing) is proportional to the square 
of the energy gap, while the temperatures of the die­
lectric -semimetal and superconductor-semimetal 
transitions are proportional to the energy gap, then in 
order to qualitatively explain the phase diagram of the 
system it is sufficient to investigate the relationship 
between the gaps for different degrees of overlap, that 
is, for different values of PF. The superconducting gap 
increases with an increase of the effective mass. In 
order to be definite, let us take m1> I m21. Then in 
order to determine the phase diagram it is sufficient 
to investigate the relationship between 611 and Ll for 
different values of PF. 

The condition for applicability of the theory is that 
the quantities .\Ll and .\~ must be positive. This gives 
the inequality 

Since the factors appearing in front of the exponen­
tials are essentially identical, it follows that ~ 11 > Ll 
if .\~ > .\Ll' Then the superconducting gap is larger 
than the exciton gap upon fulfilment of the condition 

where y = a1 In (wml wl) and only depends on PF, that 
is, it only depends on the overlap. From inequality (13) 
it follows that if i3 = 1, Le., if the masses are the same, 
then inequality (14) is never satisfied, and the super­
conducting state is metastable for any degree of over­
lap. If i3 ,.. 1, then a region Y1 < y < Y2 exists in which 
the superconducting state is the ground state, and the 
dielectric state is metastable. As follows from in­
equality (14), the critical degrees of overlap Y1 and Y2 
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FIG. 2 

are determined by only the ratio of the masses associ­
ated with given values of ~o and ~oo. Thus, the phase 
diagram (T vs. P) associated with unequal electron 
and hole masses has the form shown in Fig. 2 (we as­
sume that the overlap of the bands increases with in­
creaSing pressure). The solid lines AB and DC are 
the lines corresponding to first order phase transitions 
between the dielectric and superconducting states, but 
the solid line EBCF represents the line of second­
order phase transitions. The points Band Care 
triple points. In the region where superconductivity 
exists (below the curves BC), switching-on a magnetic 
field will lead to a superconductor-dielectric phase 
tranSition, but it does not lead to a superconductor­
semimetal phase transition since in this region the 
metastable dielectric phase will always be energetically 
more favorable than the semimetallic phase. 

Switching on a magnetic field leads to the pOints PI 
and P 2 moving closer together and to the appearance 
of a line B'C' representing a first-order phase transi­
tion between the superconducting and dielectric states; 
this line drops down with increasing values of the mag­
netic field so that for H > Hcr only the dielectric 
phase exists over the entire range of pressures. 

3. SUPERCONDUCTIVITY IS AN IMPURITY EXCITONIC 
DIELECTRIC 
In this section we shall investigate the case when 

superconducting and exciton pairings simultaneously 
exist. Mathematically this means that the system of 
equations (4)-(6) has a solution in which both the exci­
ton self-energy part Ll12 as well as the superconducting 
self-energy part ~ik do not vanish. Kopaev showed[Sl 
within the framework of the BCS theory that such a 
possibility can be realized in an impurity excitonic 
dielectric, when the numbers of electrons and holes 
are not mutually equal. Physically such solutions im­
ply that the excess electrons in an excitonic dielectric 
can be bound into Cooper pairs. It will be shown below 
that two physically different solutions exist with non­
zero values of ~ and Ll, these solutions corresponding 
to different phase differences between the complex 
functions ~ik and Ll12, that is, an unusual coherence 
effect exists associated with the fact that each electron 
simultaneously participates in the formation of both 
exciton and Cooper pairs. Therefore, the energy of the 
pairs depends on the phase difference between the wave 
functions. One of the solutions has been previously de­
rived by Kopaev.1 S1 The other solution differs from 
Kopaev's solution both with regard to the energy and 
by the fact that the interband, self-energy part ~ 12 
vanishes for different masses of the electrons and 
holes. For both solutions there is a range of values of 
the parameters where they determine the ground state 
of the system. 
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For simplicity we shall confine our treatment to the 
case when the effective masses of electron and hole 
are equal. Then 

where E, denotes the energy of the electrons in the 
conduction band, reckoned from the position of the 
Fermi level in the pure semimetal, and 15Ji. denotes the 
correction to the chemical potential due to the excess 
concentration of electrons (15Ji. > 0). If the effective 
masses of the electrons and holes are equal, then 
I ~ 111 = I ~221 = ~. 

The general solution of the system of equations (4) 
is very complicated and we shall not present it here. 
We shall only describe a procedure for finding a sys­
tem of equations for the determination of the self­
energy parts. We shall assume that the value of hik 
are small in comparison with the quantities A, ll/J-' and 
A - llJi.. In this case the corrections of order ~ik are 
essential only in the range of values of E, where at 
least one of the poles of the Green's function goes to 
zero in the zeroth approximation with respect to hik. 
Then, solving the system of integral equations for the 
self-energy parts by a method similar to the method of 
Gurevich et al.,[6J we obtain the following algebraic 
system of equations: 

Here 

1j.')..,A = '/,1,+(00,), 
~ / ').., = '/,I,[~(211,,' - A') + ~.1.'c«aH) + 2A1\"I~1Z1 cia} 

+ 1,[~1\" + ~1~121 ei"], 
-1~121/ ')..,,, = '/,I,-«(i)I) I~"I + 1,['/,I~121 (A' + 11,,') 

+ .1.~(e-ia + ei~) 0,,] - '/,I.~ (ei~ - e-'"). 

(15 ) 

and 1/i\ = 1/A~ - 1/AA. The constants AA and i\~ are 
defined by expressions (11) and (9) respectively, and 
the interband interaction constant 

')..,,,=a(1-IB~/BJ =ae~/e. 

does not, in contrast to AA and A~, contain the 
Coulomb logarithm. 

(16) 

To the quadratic approximation in ~ik the spectrum 
of the system has the form 

w±'= [6td (s'+.1.,)'I,],+A'(s), (17) 

\'(s)=~'+I~ I'±· 1 [tl.'~?sin' a+~ +I~ I's' 
i 12 611(£'+.1.,)'1, 2 12 

+21~121~tl.(Ssin a+~sin a-~_6"cosa+~cos a-~)l, 
2 2 2 2 (18) 

If E, 0 denotes the point corresponding to the minimum 
of the function w: (1;), then A = A ( E, 0) is the effective 
superconducting gap for electrons, which depends on 
the difference between the phases a and f3 which are 
related to the phases of Aik and hik: 

a =<jlu -<jl2l-1jJ2I, '~=<jl2l-<jl22+1jJ2I, ~ .. = .1.exp [-i('iJ .. +:rt/2)], 
~ .. = I~ikl exp [i(<jl",-:rt/ 2)]. 

Since A, A, and I ~ik I are by definition r~al positive 
quantities, then the phase factors ela and e li3 must 
also be real and equal to ± 1. The integral J 2 then 
vanishes because of the symmetry of the spectrum. 

The integrals Ji( WZ) and J3 are easily calculated; 
then, taking account of only the dominant term in 
Ji( wZ), we have 

1+(w)-2ln WI 
, 1- 611+(6,,'-tl.')'I.' 

(6,,' - A') 'I. 2(6,,' - tl. ') 
1\- (WI) = In -:-=-:-"':"'::,.,-,,--..:...,,--::--

6" A[611+(6I1'- tl.')'I.} , 

1 2(611' - .1.') 
I, = < In -,--...:....:--.:-~ 

6,,(6I1'-tl.,)'I. A[6,,+(6,,'-tl.,),r,1 (19) 
A=A(s.), ~.= (1\,,'-.1.')Y,. 

Substituting the expressions for J'i and J 3 into the 
system of equations and recognizing that the phase 
factors are equal to ± 1, we find that we have two 
physically different types of solutions: 

1. e'" = _ei~ = ±1, a + I~ = (2n + l)n. 

The expression for the effective gap A is of the form 

A= 2(6,,'-tl.') ex [_ 1 (6,,'-.1.')'1'6,,] (20) 
611+(6I1'-tl.')'I. p ').., 611'-')..,,,.1.'/').., . 

This case was treated by Kopaev, [5J who assumed that 
the constants A 12 and ,\~ are identical. In our model 
this equality does not hold. 

If the quantities A and 15Ji. are expressed in terms 
of the value of the exciton gap Ao in a pure semimetal 
and the concentration lln of excess electrons (see[31), 
then we obtain 

A. (6n)' [1 (1-fm/2ncr)6n/2ncr ] A=- - exp -
2 ncr A (1-A 12/A)(1-6n/2ncr)'+A,,(6n/ncr )'/A. 

(21) 
where ncr denotes the critical concentration of excess 
electrons, that is, the value for which the gap vanishes: 

The properties of this solution have been discussed in 
detail by Kopaev.[5J 

2. ei" = ei~ = ±1, a + ~ = 2n:rt 

In this case the interband self-energy part vanishes 
(however, the anomalous Green's function F 12 does not 
vanish) and the expression for the effective gap has the 
form 

or 
A _ tl.. (on)' ( 1 2ncr - 6n ) -- - exp - . 

2 ncr A 6n 

From expressions (21) and (22) it is seen that when I5n 
tends to zero, A - 0, that is, solutions do not exist in 
a pure semimetal when ~ik and Aik are not simul­
taneously equal to zero and differ markedly in magni­
tude. 

The state with the larger energy gap is energetically 
more favorable. From a comparison of expressions 
(20) and (22) it is seen that solution 1 (Kopaev's solu­
tion) is energetically more favorable for A > A21, and 
the second solution is energetically more favorable for 
A < A 21. Since the interaction constants i\ and i\21 de­
pend on the overlap between the bands of the semi­
metal, which varies as the pressure changes, a first­
order phase transition from one super conducting state 
to the other is possible with respect to the pressure. 

In conclusion the authors express their gratitude to 
G. E. Pikus for valuable critical comments, and to Yu. 
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V. Kopaev for a discussion of the question of supercon­
ductivity in an impurity semimetal. 
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