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The influence of extended crystal defects ,(dislocations) on the de Haas-van Alphen effect is con
sidered. It is shown that the influence reduces to the appearance of the Dingle factor, i.e., to the 
reduction of the amplitude of oscillation of the magnetic moment by a factor e-1/QT (n is the cy
clotron frequency). For dislocations which do not possess a short-range potential, the relaxation 
time T does not depend on the magnetic field and the value of this time is of the same order as 
for impurities. In the case of long-range dislocations (deformation potential) T is proportional to 
the field strength and is smaller than that for impurities by an order of magnitude. 

I T is known that the defects of a crystal lattice have a 
significant influence on the de Haas-van Alphen effect 
which essentially reduces to a decrease in the ampli
tude of oscillations of the magnetic moment. This de
crease has been well studied both theoretically and 
experimentally(1,2] in the case of point defects such as 
impurities, vacancies, interstitial atoms and so on, and 
is desc ribed by the Dingle factor e -1/ nT (n is the cy
clotron frequency, T the time of free flight of the elec
tron). The influence of extended defects of the crystal 
(dislocations) on the de Haas-van Alphen effect has not 
been studied, so far as we know. At the same time, the 
dislocations represent a very widespread type of 
crystal lattice defect. Furthermore, their extension 
leads, as will be seen belOW, to significant specifica
tion of their influence on the magnetic properties of 
the metal or semiconductor. In this connection, the 
problem of the calculation of the magnetic moment and 
the susceptibility of a sample containing dislocations is 
considered in the present work for the simplest of 
models. 

Let us assume the dispersion law for the electrons 
to be isotropic and quadratic: E = p2/ 2m . Since the 
radius of curvature of the dislocation is usually much 
greater than the magnetic length rH = (coli! eH)1/2 
(where Co is the speed of light), the dislocations are 
naturally assumed to be linear and passing through the 
entire crystal. The interaction of an electron with the 
dislocations will be described by a potential which is 
independent of the coordinates along the axis of the 
dislocation. The form of the potential in a plane per
pendicular to the dislocation is determined by the 
specific type of crystal. Therefore, following the work 
of Kaner and one of the authors ,[3] we consider separ
ately two limiting cases: long-range deformation poten
tials and short-range delta-type potentials. 

1. In many cases, we can assume that the interac
tion of electrons with dislocations is due to deforma
tions of the lattice, Le., the potential has the form 
U = Aikuik, where Aik is the deformation potential 
tensor, and uik the tensor of dislocation deformations, 
known from elastiCity theory. The scattering of elec
trons by dislocations leads to a change in the single
particle density of states, in terms of which, as is 
known, all the thermodynamic quantities that depend on 
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the properties of the electrons are expressed. The 
altered density of states can be found by starting from 
the following considerations. 

An electron moving in a constant, homogeneous mag
netic field has discrete Landau energy levels. Ran
domly distributed dislocations create a perturbing 
random potential, which leads to a broadening of these 
levels. Inasmuch as deformations created by an indi
vidual dislocation diminish in inverse proportion to the 
distance from its axis, the characteristic length of the 
considered random field will be the mean distance 
rc == C-1/2 between dislocations (c is the concentration 
of dislocations, i.e., their total length per unit volume). 
If the dimensions of the classical orbit of the electron 
(Larmor radius R) is much less than the distance rc 
over which the perturbation potential changes materially, 
then one can assume this potential to be constant, equal 
to its value U in the region of localization of the elec
tron. It then follows that in the considered case each 
level is shifted by an amount U. Since this shift is a 
random quantity with some distribution function p( U), 
it is evident that each discrete level is "smeared out" 
in a band in which, the density of states is determined 
by the form of the function p( U). This broadening, 
following the terminology of 1. Lifshitz, is naturally 
called the classical broadening of the quantum level. 
A simple generalization of this fact leads to the follow
ing formula for the perturbed denSity of states: 

~ 

D(E)= SD~(E- U)p(U)dU, 

where Do(E) is the known (see, for example,[4]) un
perturbed density of electron states in the magnetic 
field. 

(1 ) 

It has been shown previously[3] that p( U) is itself 
a Gaussian distribution with rms fluctuations €* 

= Abc1/ 2, where A is a quantity of the same order as 
the arbitrary component of the tensor Aik and b is the 
Burgers vector (the interatomic distance). 

To find the oscillating increment to the density of 
states, which determines the de Haas-van Alphen effect, 
an expansion of Do( E) is usually carried out over the 
sum of the harmonic components. If we then integrate 
this series term by term in accord with (1), we obtain 
as a result in front of each harmonic (the number of 
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which we denote by the letter z) the factor 

exp [-2n'I'e,' / (liQ)']. 

The exponent thus found describes the decrease in the 
amplitude of the oscillations due to dislocations, Le., 
it is the Dingle dislocation factor. This factor is ap
parently contained also in the expressions for the mag
netic susceptibility and the magnetic moment. 

If the broadening €* of the individual level exceeds 
the distance tm between the Landau levels, then the 
individual peaks in the density of states are so 
"smeared out" that there it is meaningless to speak of 
any oscillations. The same result is obtained by con
sidering the Dingle factor, inasmuch as in this case the 
argument of the exponential has a modulus much greater 
than unity. The ratio R/ rc which enters into the 
criterion for applicability of Eq. (1) is, as is not diffi
cult to establish, the same as in the case of a disloca
tion perturbation with the ratio €o/tin. Therefore Eq. 
(1), and also the corresponding Dingle factor, describe 
qualitatively the amplitude of the de Haas-van Alphen 
oscillations when the oscillations can be observed. 

Let us consider in more detail the Dingle disloca
tion factor described above. The speCific character of 
dislocations, in contrast with impurities, is first of all 
that the magnetic field enters into the argument of the 
exponential in second and not in first power. This is 
connected with the long-range action of the dislocations. 
The dependence of the oscillations on the number of the 
harmonic is also very strong; therefore, one can 
neglect the higher harmonics (beginning with l == 2). 
The oscillations can be observed distinctly, as has al
ready been noted above, if 

B. / liR == Abc'l, / fiR ~ 1. (2) 

The inequality (2) is the essential limit on the disloca
tion concentration. 

We note especially that the angular distribution of 
the long-range dislocations is not taken into account by 
Eq. (1). Consequently, in the approximation described 
by the inequality (2), the angle between the direction of 
the dislocations and the magnetic field does not enter 
into the expression for the magnetic moment. 

2. In a number of cases (for example, for certain 
types of semiconductors), the principal role in the in
teraction of electrons with dislocations is played by 
the strong distortion of the crystalline lattice near the 
nucleus, or by the screened charge of the current car
riers, which is deposited on the dislocations. Then the 
potential of the individual dislocation is short-range, 
and we shall consider it to have the shape of a delta 
function, to simplify the calculations. One can show 
that the change in the density of elec. ~on states under 
the action of randomly distributed dislocations does not 
depend on their orientation relative to the magnetic 
field. For this reason, the dislocations can be regarded 
as parallel. 

We direct the z axis along the axis of the disloca
tions. Then the system of dislocations defines a ran
dom two-dimensional, statistically homogeneous field: 

U(p)= -~ .Eu(p- P.), 

where p is a two-dimensional vector in the xy plane, 

ps are independent uniformly distributed random vec
tors, u(p) is the "smeared" delta function, (3 is the 
"intensity" of the dis location perturbation, and sum
mation is carried out over all dislocations. 

Let the magnetic field be located in the xz plane at 
an angle () to the dislocation axis. Then it is conven
ient to choose the following gauge of the vector poten
tial A: 

Ax = -yHcosO, Av = 0, A, = yH sin O. 

This gauge was proposed in a paper by Kaner and one 
of the authors,[5) where the problem of the effect of a 
Single dislocation on the spectrum of an electron in a 
magnetic field was studied. For such a gauge, the two
dimensionality of our problem is obvious, and the mo
mentum pz appears everywhere as a parameter over 
which integration is to be carried out in the final 
analysis. The eigenfunctions and eigenvalues of the 
unperturbed two-dimensional Schr(')dinger equation are: 

• [ i (y - Yo)'] ( y - Yo) 'I'.(p)=(2n'I'li2nrHnl)-f'exp -xp.-. 2 :len -- , 
. Ii 2rH rH 

( 1) 1 (3) E.=liQ n+- +-(p.sinO+p,cosO)' 
2 2m 

where Uo == co( pz sin () - Px cos ()) (eHtl; QI denotes the 
set of quantum numbers n, Px; d'Cn(l;) is a Hermite 
polynomial. 

It is convenient to perform the calculations [2) in a 
representation determined by the unperturbed wave 
functions. The two-dimensional density of states D2( E) 
is (with accuracy to a numerical factor) the imaginary 
part of the trace of the perturbed Green's function 
~0'{3: 

D,(E)=- ! 1m .E~ ••. (4) 

The Green's function satisfies the Lippman-Schwinger 
equation 

Here !Sa == (E - E Qltl is the unperturbed Green's 
function, 6 Qlf3 the Kronecker delta, 

U.~= .Eu.~·, u.~·=-~ Sdp'l'.·(p)u(p-p,)'I'~(p), 

and the index s enumerates the dislocations. 

(5 ) 

Using notation of the diagram technique, we can 
write the solution of Eq. (5) in the form of the following 
series: 

--=--+~->-.~+ 'fWU +~ ........ 
, ... _-,,' 

The heavy line corresponds to .;t; QI{3, the thin one to 
gQl, the cross to the total scattering amplitude on a 
single dislocation, the dotted line joins identical dislo
cations, Summation is carried out over all crosses and 
the internal thin lines. If we use a short-range poten
tial, then the scattering amplitude on the s-th disloca
tion can be written in the form 

• N.·(p.)'I',(P.) 
a~., =-1+~GN(P"p,;E) 

GN(p,p;E)= jdP' t 'I'''~~~.(P) , 
_00 n=O 

where N is a large parameter of the order of (rH /b)2. 
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It is known from the literature (see, for example,[21) 
that the principal contribution to the density of states 
over a wide range of energy values is made by the dia
grams without dashed lines. This approximation cor
responds to allowance for only the field correlation 
function and neglect of higher moments. To find the 
mean Green's function < :Y 0/13) = < ~O/O/) 60/13, it is 
necessary to average the separated graphs over the 
distribution of the dislocations. The each cross corre
sponds to 

< ) -- S ~"'.·(P.)",y(p.)dp. aCty - C • 

1 + flGN(p" fl,; E) 

The result of summation of such graphs is 

<3' .~) _ ,II .. , 
E -E. - <a"~) 

(6) 

The study of the expression (6) for an arbitrary 
angle is rather tedious. We therefore limit ourselves 
to writing down the final result. If the concentration of 
dislocations is small, so that C{32 rH «1 ({3 = mfj/1Tt/), 
then the oscillating part of the magnetic moment does 
not depend on the angle between the magnetic field and 
the dislocations, and takes the form 

M' = mTE" -6 (_1)1 exp(-n'lB'rn'c) sin (2nlEp _~) 
rrrnH.t... 1'" sh (2n'lTlfiQ) fiQ 4' 

1=1 

The reason for the independence of the magnetic mo
ment of the angle is different here than for long-range 
dislocations. Namely, the effect of the magnetic field 
is not felt in the scattering of an electron by a disloca
tion, since the magnetic length is much greater than 
the radius of action of the potential of the dislocations. 
Therefore, the scattering length, and hence the time of 
flight, does not depend on the characteristics of the 
magnetic field and, in particular on its orientation. 

The effect of the short-range dislocations on the 
magnetic moment reduces to the appearance of the 
Dingle factor e-1/{h: where T = 2m/1T {32fic. The corre-

sponding Dingle temperature fi!r, just as in the case 
of impurities, does not depend on the magnetic field and 
is proportional to the concentration. The ratio of the 
"dislocation" Dingle temperature to the "impurity" 
temperature is proportional to cd/Cib, where Cd is 
the concentration of the dislocations and Ci the concen
tration of the impurities. Usually, this ratio is of the 
order of unity; therefore, we can assert that the short
range dislocations decrease the amplitude of the oscil
lations of the magnetic moment by approximately as 
much as the point defects. The effect of the long-range 
dislocations on the de Haas-van Alphen effect is much 
greater. Actually, for typical magnetic fields and con
centrations, the "dislocation" Dingle temperature is 
of the order of lOOK in this case, while for the short
range dislocations or impurities, it is of the order of 
O.l-l°K. Moreover (which is most interesting), the 
Dingle temperature in the case of short-range disloca
tions depends strongly on the field (in inverse propor
tion to it). In the case of short-range dislocations, such 
a dependence is entirely lacking. 

The authors are grateful to E. A. Kaner for very 
useful discussions. 
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