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Results obtained in an investigation of the track structure of a rapidly moving weak point charge Q 
are presented. For distances r from the charge that are smaller than the Debye radius D but 
larger than e I Q I/T, analytic expressions are obtained for linearized perturbations of the particle 
concentration, ON( 1), and for the plasma potential, cp{ 1). Integrals representing the solution are 
calculated numerically for distances from r ~ DVo/vi, Le., in the "intermediate zone," to the dis
tant zone (r» DVo/ Vi), where the integrals agree with the known asymptotic expressions for aN( 1) 

and cp{ 1). 

1. When an external charge is at rest in a plasma the 
concentration N and potential cp are represented cor
rectly by Debye-Huckel equationsfl] that describes how 
these quantities fall off exponentially with increaSing 
distance from the charge. In the case of a moving 
charge both oN and cp decrease considerably more 
slowly. Disturbances of the plasma particle concentra
tion and electric potential in the track of a rapidly mov
ing charge have heretofore been investigated with suf
ficient thoroughness only at large distances from the 
charge, r» DVo/Viy-5] It is of interest, however, 
(particularly when examining the results of different 
experiments) to investigate these quantities in all re
gions, beginning at r «D. Accordingly, the present 
work is concerned with the steady flow of a two-tem
perature tenuous plasma past a weak electric charge in 
the entire linear region (r» e I Q I/Ti). 

The perturbation of the plasma is small for a suf
ficiently weak charge (e I Q I/TiD « 1). In this case the 
solution (of the kinetic problem with a self-consistent 
field) can take the form of an expansion in powers of 
the charge. In this way Fourier transforms have been 
obtained for the perturbations of the plasma particle 
concentration, ON = N - No, and the plasma poten
tial.[2,4,S] At large distances these Fourier transforma
tions were inverted analytically. [3] In the present work 
analytic expressions are obtained for ON{ 1) and cp( 1) 

within the Debye shielding zone. 1) These expressions 
are also applicable for a charge of finite radius Ro 
which is sufficiently small: Ro« e I Q I/Ti «D. In 
this case the interaction of the plasma with the surface 
of a body (absorption of particles) can be neglected as 
compared with the disturbance of the plasma by the 
electric field of the charge. 

In the region of transition to the distant zone we 
ha ve calculated numerically, linear in the charge, the 
plasma perturbations oN( 1) and cp{ 1). It must be re
membered that the asymptotic expressions for the 

l)The particle concentration inside the Debye zone around a small 
(point) body moving in the plasma has been determined in [7] without 
the limitation r ~ e IQI/T, in the form of a double integral. 

linear approximation fall off with distance as 1/ r3 and 
are valid only at distances satisfying the inequality 

D Vo / e IQlv, T,DVo 
r< - ~. --In---

v, T.JJVo e IQlv, . 

At greater distances a quadratic approximation, which 
dec reases as 1/ r2, prevails. (Higher approximations 
also decrease as l/r2.) This was first shown by 
Pitaevski'i,r4] and the corresponding integrals were 
calculated numerically by Panchenko.[5] 

2. For the linearized Fourier transforms of the 
plasma potential and particle concentration perturba
tion we have the expressions[S] 

rp:o = 411Q{q' +..!, f,t [w' (~) +.!i w' (Voq )]}.-1 , 
D 2, v,q T, v,q 

(1 ) --. (1) 

fJN(I)= -N !!::..w' ( Voq) earp, 
lI,q 0 2i vaq T,,' 

where D== (Te/41Te2No)I/2 is the Debye radius, No is 
the unperturbed particle concentration, Vo is the 
velocity of the charge, va == (2Ta/ma)I/2 is the thermal 
velocity of particles of type a (electrons or ions), and 

2' , 
W (z) "" e-" ( 1 +.-:. Sea, du ) 

I'll 0 

is a Kramp function (tabulated in rB]). 
Thus, assuming ve» Vo, we obtain 

(2) 

(1) eQ Dao 1 ~ .. z. 
fJN, = - No T,Dao -r- 2n' S dq S dCq S daqq' exp {iq (ccq + SSq cos aq)} 

o -(10 0 

T. in:, {' ( r )'[ -v, T,rit ]}-1, 'Y'--2' W (C q ) q + -D 1+i1'1I-Cq +-T -;-w'(cq ) .(2) 
I ~ ao Ve i 2l-

Here the following notation has been used: 

ao == Vol v" C == cos <}: (Vor), s==sin<}: (Vor), 
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Subject to the condition r« Dao[Ti/(Te + TiW/2 
in the integral of (2') and using the familiar formulas 

1 ,. 
2 S eiqaeo, ada = Jo(qa), 

11 0 

~ 1 
J e'qb J (qa) dq - -:-:--------:-,---.,.---:-:--:-:-::

o - [a' -(b + iO)'P 
o 

(3 ) 
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the integration with respect to aq and q is now per
formed, yielding the result 

(1) eQ Da, . 
6N, (r)=-N,---F(a,sm8), 

TiDa, r 

where e == <i ( Vor) and the angular function is 

(4) 

F(a'S)==~J de,";: w'(eq ) • (5) 
11<., 2i [(a,s)' - (eq + icO)'J'" 

[In (5) the branch of the root having a positive real part 
is chosen.] 

The integral (5) can be calculated numerically. How
ever, a simple formula for F is obtained by using an 
algebraic approximation for the function Wi that is 
given in[91: 

Yn 1 [h' h] 
2i w'(z)",,- 4Re(h) (z-h)'+ (z+h')' ' 

h = 0.48-0.91 i, 1m Z ~ O. (6) 

The integration contour in (5) is extended to infinity 
(with a very small error of the order of l/ag) and is 
closed in the lower half-plane of the complex variable 
Cq. Calculating the residues at the poles of Wi, we 
have for e 2: 1T/2: 

F(aosin8) ~ -2.2 Im[(ao sin8)'+O.60+0.87ij-'/'. (7) 

We note that when the motion of the charge Q is super
sonic the plasma perturbation ahead of the body 
(e < 1T/2) is much smaller than behind it (e > 1T/2). 
Therefore the structure of the perturbation is here 
considered only in the track of the charge. 

For the potential inside the Debye shielding zone 
(r« D[Ti/(Te + TiW/2 we obtain the Coulomb equa
tion 

<p(t) = Q /r (8) 

(cp( 1) can be the perturbation-theory approximation 
only if it is much smaller than the characteristic 
potential of the plasma: Q/r« T/e); for the electron 
concentration, with accuracy of the order Vo/ve« 1 
we have the Boltzmann equation (2): 

(I) ( ecp(l) ) ecp(t) (9) 
6N. = N, exp --;;: - N, = N, -:r:' 

When calculations of I5N~ 1) inside the Debye sphere 
1 

using the exact equation (2') and the approximate equa-
tion (7), respectively, were compared, it was found 
that the latter is a good description of the angular 
distribution of I5N~ 1) to distances r ~ D. The corre-

1 
sponding graphs are shown in Fig. la; for definiteness 
Q < 0 was assumed everywhere in the calculations. 
Figure la shows that at distances r S D the perturba
tion of the ion concentration is positive at all angles e: 
I5NP)( e) > 0, i.e., the ion concentration Ni exceeds 
its \nperturbed value No (the focusing effect). With 
increasing distance a rarefied region appears 
[1iNi 1)(e)< 0], which can be accounted for physically 
as follows. In the case of supersonic flow about the 
charge (Vi « V 0) the uniform distribution of ion 
density at infinity is almost undisturbed ahead of the 
charge Q (the charge overtakes the perturbation wave). 
In the direction perpendicular to V 0 the field pene
trates the plasma to a distance of the order of D. At 
distances z S DVo/ Vi along the - Vo axis the thermal 

U 9 u~~c--~Z:------'J -/5 (J J q 

00 sLn8 00 sLn 8 

FIG. I. Perturbation of the ion concentration. a-"near" and "in
termediate" zones: the curves are labeled with distances, and 

(1)/ eQ Dao 
P",,-6Ni N,----; 

TDa, r 

b-"distant" zone: the curves are labeled with values of r/Dao, the 
dashed asymptotic curve was obtained from [3] , and 

PI"", -6N, /N,-- --(I) eQ (Da,)' 
TDa, r 

motion of the ions is unable to affect the structure of 
the track (to screen the charge). We can therefore 
consider that there is a uniform ionic background ap
proaching with the velocity -Yo. Since we are consid
ering the case Q < 0, the ions that move past with an 
impact parameter smaller than D must be deflected 
toward the axis, i.e., they are focused, while the ions 
with an impact parameter exceeding D remain prac
tically undeflected. Since particle trajectories are 
lacking at distances ~aoD from the axis the appearance 
of rarefied regions is required to conserve the total 
number of ions. 

The Coulomb expression for the potential is applica
ble only at distances r« D [Ti/ (Te + TiW/2. The 
results of the calculation for r ~ D are in good agree
ment (for Te/Ti = 1, vi« Vo« ve ) with the Debye 
equation 

cp(t) "" (Q/r)e-,jD. (10) 

For a charge at rest D is here replaced by D [Ti/ ( Te 
+ TiW/2 = D/ [2. Only electrons can screen a moving 
charge when Vi« V 0 « Vo. 

At r> D, since the plasma space charge is com
parable in magnitude with the charge of the body, the 
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FIG. 2. Potential: a-"near" zone: the curves are labeled with the 
numeral I or 3 to designate the value of T elTi (ao = 8), and .p == -<pI 
(Q/D); b-"intermediate" and "distant" zones (ao = 8): 

..."a-<p __ ... / Q (Dao )' 
Dao r 
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spherical symmetry of the potential is destroyed. On 
the axis behind the body a maximum appears which is 
attributable to the focusing of ions by the moving 
charge (Fig. 2a). This maximum increases with Te/Ti; 
it follows from (4) and (9) that as Te (Le., ve/Vo) 
increases IiN~l) decreases, or as Ti (Le., Vi/Yo) de
creases oNP) increases, so that the ionic space charge 
becomes th~ governing factor. We note that for the 
plasma potential in the "near zone," in contrast with 
IiNi 1), universal curves valid for different values of aD 
cannot be plotted: <p(l)(ao, e, riD) becomes a more 
complicated function. 

3. An analysis of (2') shows that for vi« V 0 « ve 
the linear (with respect to the charge) approximation of 
the ion concentration perturbation is given correctly by 
an equation of the form 

(I) eQ (Da.) 3 ( Da. ) 6N, =-N.-- -- F, a.sin8, _ . 
T,Da. r r 

(11 ) 

Here the dependence of liNt 1) on rand e is expressed 
in terms of r/Dao and aD sm e, so that F1 can be cal
culated for only a single (large) value of aD. The 
asymptotic form of the angular function F 1 was ob
tained in[3 1, and was shown by a numerical calculation 
to be sufficiently accurate for r> 10 aoD. 

The electron concentration oNe and the potential 
<p at large distances are determined from oNi through 
the Poisson equation t.<p = -41Te( IiNi - oNe), which for 
r » aoD gives 

6N,=fJN" (12) 

and from the Boltzmann equation (9), which holds true 
for electrons in a quasi-state of rest: 

q> = (T, / e) (fJN, / N.). (13) 

Equation (2') can be simplified as follows. For 
e < 1T/2 (cos e > 0) the integration contour of the in

aD 
tegral f dCq can be replaced by a semicircle of 

-aD 
radius aD in the upper half-plane of the compex vari
able Cq, because both w' and the (dispersive) denomi
nator of the integrand are analytic in the upper half
plane, where they possess neither zeros nor singulari
ties. For I cq I = aD» 1 we shall have 

l'n '( 1 -w c)""- __ 
2i q 2ci 

and it can be shown that 

6N:" (6 < n/2) - o (1/a.') . 

Furthermore, when e > 1T/2 we have 

6N/ il (8)= 6N/!l (8)+ 6N:') (n - 8)+O(1/a.'), 

so that in (2') we can make the approximate substitution 

- -S dq -+ S dq. . 
Calculating the residues in the last integral, we shall 
have 

(I) eQ [Da. 4 "L' T, Y n 
6N, = -N.-_ --ReS da--w'(a.scosa) 

TiDa. r n " T, 2i 

2 '" T,l'n, --
--Re S dCq-T ---;-w (cq)l't..(Cq) 
no' 2! 

x f daexp{-~Iccq+ssqcosall't.,(cq)}] (14) 
• Da. 

where 

Equation (14) was used for numerical calculations 
in the "intermediate zone. From the results, shown in 
Figs. 1b and 2b, it is seen that at r ~ 0.4aoD a change 
occurs in the behavior of both oNi 1) and <p( 1) (and 
therefore of IiN~l». In the angular dependence of IiNi 1) 
a rarefied region appears; the potential, which is nega
tive throughout the Debye sphere, intersects the 
abscissal axis at r ~ 0.4 aoD and its maximum on this 
axis becomes positive. On the whole the angular depend
ence of <p( 1) becomes similar to the behavior of 
IiNI 1)( e). [As already mentioned, in the limit of large 
dislances IiNi l)/No and e<p(l)/Te should coincide to 
within O(VJve).] We can therefore consider that at 
r ~ 0.4 aoD the "near" zone ends and we find the be
ginning of the "intermediate" (transition) zone for the 
track of a rapidly moving weak point charge. In the 
"intermediate zone" the evolution of the plasma per
turbation with distance from the charge proceeds as 
follows. The maximum of IiN~ 1) on the axis behind the 
body decreases more rapidly lhan 1/r3 and is replaced 
by a relative minimum, which is still positive, because 
the aforedescribed focusing mechanism continues to be 
effective. A bend occurs (when Te = Ti) at a distance 
r ~ 2.5 aoD. It can be stated that with increasing dis
tance from the charge the maximum of IiN~ 1) ( e) de-

l 
parts from the axis asymptotically at the angle 
e ~ arc sin (1.2/ aD) and becomes sharper. A bend in 
the angular dependence of the potential occurs at 
r ~ 3.3 aoD. Obviously, in the region (2.5--3.3) aoD a 
transition takes place from the "intermediate" to the 
"distant" zone. In the "distant" zone at 
e ~ arc sin (1.5/ aD) the perturbation IiN~ 1) vanishes; 

I 
at e ~ arc sin (1.8/ao) it reaches its (negative) mini-
mum, and for e ?: arc sin (2.5/ao) approaches zero 
rapidly. The absolute value of the minimum (oN~ 11 < 0) 

I 
increases to its asymptotic value. The angular behavior 
of the potential is similar in the "distant" zone (Fig. 
2b). 
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