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Second harmonic coherent radiation emitted following incidence of an electromagnetic wave on a 
layer of inhomogeneous plasma with a density exceeding the critical value is considered. It is 
assumed that the plasma temperature is so high that Coulomb collisions are negligible and the struc­
ture of the electromagnetic field near the critical point at the fundamental frequency is due to 
thermal motion of the electrons. Such conditions are encountered in a laser plasma with an electron 
temperature Te ~ 1 keY and a characteristic inhomogeneity dimension 10-2_10-3 cm. In this case 
the coefficient for transformation of laser radiation into the second harmonic may reach 1 % for 
optimal angles of incidence and for a power of ~ 1013 W / cm2 • 

1. INTRODUCTION 

NONLINEAR interactions of electromagnetic waves 
with a plasma have attracted renewed attention in con­
nection with the use of powerful lasers for plasma 
heating[l]. These processes are the cause of the ano­
malous absorption of laser radiation [2] and the deforma­
tion of the spectrum of the radiation reflected from the 
plasma. Anomalous absorption in a laser plasma has 
not yet been observed directly in experiment. 1) On the 
other hand, the reflected radiation spectrum has been 
studied in considerable detail. In particular, deforma­
tion of the spectra near the laser frequency [4-71 and 
second harmonic generation[B,9] were observed in a 
number of studies. The present paper is devoted to a 
theoretical determination of the coefficient of conver­
sion of a plane electromagnetic wave into the second 
harmonic in an inhomogeneous plasma. Measurement 
of this quantity yields information on the electric field 
intensity, and also on the temperature and the electron 
density gradient in a laser plasma. The most import­
ant thing proves to be the fact that the characteristic 
dimension of the flare formed in the laser focus is 
much larger than the wavelength, Le., the plasma we 
are discussing is weakly inhomogeneous. 

In an homogeneous isotropic plasma, the process 
t + t - t of coalescence of two (nonpotential) trans­
verse waves t with frequencies w' and w" and wave 
vectors k' and k" into a transverse electromagnetic 
wave t with frequency wand wave vector k is forbid­
den [10], since it is impossible to satisfy the synchroni­
zation conditions (the decay conditions). 

w' + w" = W, k' + k" = k. (1) 

The generation of a transverse elect.' .)magnetic wave 
with the doubled frequency w = 2wo ~ w' = w" == wo) in 
such a plasma is possibly only if a l least one of the 
combining waves is a longitudinal 'potential) oscillation 
l with a frequency Wo equal to the requency of the 
transverse wave. The processes which are then possi­
ble of coalescence of a transverse wave t with an 
ele~tron Langmuir oscillation l ~::l form a transverse 

1) Observation of anomalous absorption of electromagnetic waves in 
the microwave band was first described by Gekker and Sizukhin [3]. 

wave t, or coalescence of two Langmuir oscillations 
into a transverse wave t, can be written in the form 

t + l-+ t, 1 + 1--+ t. (2) 

In a weakly inhomogeneous plasma the wave vector 
still depends on the coordinates, so that the synchroni­
zation condition k = k' + k" is satisfied only for certain 
points in space. If there are no such points on the elec­
tron density prOfile, then the probability of the effect is 
exponentially small. The second-harmonic energy flux 
is proportional to the energy fluxes of the coalescing 
waves and is significant only when the intensity levels 
of the electron Langmuir oscillations and the trans­
verse waves are high enough. Thus, in order to gener­
ate the second harmonic effectively it is necessary, 
first that a powerful longitudinal wave be formed and, 
seco~d that there exist a point on the electron density 
profile'where the synchronization condition (1) is ful­
filled for one of the processes (2). 

It must be emphasized that the combination (2) has 
been discussed frequently and in great detail in the 
theory of homogeneous, weakly turbulent plasmas (see, 
for example,[10-12]). As a rule, however, in doing so the 
question of the mechanism producing the powerful 
Langmuir oscillation was completely ignored. We shall 
discuss jointly both of these effects, viz., the genera­
tion of an electron Langmuir oscillation of great ampli­
tude and the subsequent formation of the second har­
monic of the laser radiation incident on the plasma. 
This is the approach that seems to us most adequate 
for the experimental situation that has presently de­
veloped in studies aimed at heating laser plasma to 
thermonuclear temperatures. Powerful light fluxes in 
the plasma are provided by the laser source. Appreci­
able longitudinal fields arise in the plasma through the 
linear transformation of light into electron Langmuir 
oscillations [13]. The effectiveness of such a transfor­
mation in an inhomogeneous plasma when the incident 
wave frequency Wo approaches the electron Langmuir 
frequency WLe has been demonstrated both theoret­
ically[14] and experimentally[15] in the case of the in­
teraction with a plasma of electromagnetic waves in 
the microwave hand. 

Another cause of generation of intense electron 
Langmuir oscillation is the parametric buildup of 
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plasma oscillations in the presence of a powerful 
electromagnetic wave [2,16]. The mechanism of para­
metric buildup consists, for example, in decay of an 
incident electromagnetic wave into electron Langmuir 
oscillations and ion-sound oscillations (Le., a nonlinear 
transformation). There the second harmonic may arise 
as a result of the second coalescence process in (2). 
According to the results of [2] the longitudinal wave 
amplitude is at a maximum along the electric field in­
tensity vector of the radiation incident on the plasma. 
For this reason the second harmonic radiation of a 
laser plasma due to parametric resonance should be 
directed (for l + l - t coalescence) perpendicular to 
the incident light beam. 

In this paper we confine ourselves to the case of a 
linear transformation, assuming that the laser radia­
tion intensity is lower than the threshold value neces­
sary for the development of parametric instability. As 
we shall see below, in linear transformation the second 
harmonic is generated along the light beam, and can 
thus be distinguished from the second harmonic due to 
parametric resonance. 

2. INITIAL RELATIONS 

Let p be a polarized plane electromagnetic wave of 
frequency Wo, obliquely incident from vacuum or an 
inhomogeneous plasma layer. We choose the z axis in 
the direction of the electron-density inhomogeneity of 
the plasma Ne(z), while the xz plane coincides with 
the plane of polarization of the wave. We assume that 
at the origin of this coordinate system (z = 0) the 
density equals the critical density: No = mw~/ 47Te 2 (e 
is the electron charge and m is the electron mass), 
and positive values of z correspond to densities higher 
than No. As we know from linear theory, in the absence 
of Coulomb colliSions and of thermal motion of the 
plasma electrons, the component Ez( Wo, z) of the 
electric field of the wave along the inhomogeneity is 
infinitely large at the critical point z = 0 and has a 
singularity of the pole type[17]. If one of these factors 
is taken into account, the electric field at the critical 
point proves to be finite, but the way in which it varies 
differs greatly, depending on which of the factors 
mentioned plays the principal role. Physically this 
means that a portion of the transverse wave energy 
near z = 0 either becomes dissipated or is trans­
formed into electron Langmuir oscillations. The total 
energy lost by the wave does not depend on the exact 
mechanism that limits the field at the critical point. 

The coefficient of reflection of the electromagnetic 
wave from the plasma layer is determined only by the 
geometry of the problem and can be found in the cold­
plasma approximation [19]. On the other hand, the non­
linear sources that govern the generation of the second 
harmonic are obviously strongly dependent on the struc­
ture of the electric field at the first harmonic. It is 
necessary then to describe correctly that viCinity of 
the critical point at which the field amplitude has a 
maximum. If the electron temperature Te is small, so 
that (lI/wo)>> (flC/awO)2/3 (c is the speed of light, II is 
the electron-ion collision frequency fl == 31/2VTe/C, 
vTe == (KTe/m)1/2 is the thermal velocity of the elec­
trons, K is Boltzmann's constant, and a is the charac­
teristic dimension of the electron density inhomo-

geneity), then the field first-harmonic structure is de­
termined by the Coulomb collisions. Generation of the 
second harmonic in this case was considered by 
E rokhin et al. [ 18] 

In this paper we conSider the opposite limiting case 
(II / WO) « (flc/ awo)2/3 which is encountered in a high­
temperature plasma formed by focusing powerful laser 
pulses on solid targets [13]. It is then possible to neglect 
Coulomb collisions and confine oneself exclusively to 
the thermal motion of the particles. The equations for 
the fundamental frequency of the field take the form [14]: 

, IllL" d'E,(Ill.,Z) (Ill.), (Ill.),. fl 2 d' + - e(w.)E,(w.,z)=- - B,(W.,Z)SIllB, 
w. Z C C (3) 

d'B,(w.,z) dlne(w.) dB,(w.,z) + (Ill.), [ ( )_ . 'BlB ( ) 
dz' dz dz c e Ill. Sill , 00., Z 

= fl' [W L.: dlne(Ill.) __ 1_ dIll L.'] dE,(Ill.,Z) (3a) 
Ill. dz Ill.' dz dz 

E.(w.,z)= -i c 1 dB,(Ill.,z) 
Ill. e (00.) dz 

(3b) 

Here By( Wo, z) is the only nonvanishing component of 
the magnetic field at the given polarization of the elec­
tromagnetic wave; e (WO) == (1 - wLe / w~) is the 
dielectric constant at the frequency Wo of the cold iso­
tropic plasma with Langmuir frequency WLe; e is the 
angle of inCidence, Le., the angle between the wave 
vector of the incident radiation and the z axis. 

For the second harmonic of the field, the thermal 
motion does not play a leading role. Therefore the 
field equations can be obtained in the cold plasma ap­
proximation (VTe = 0), for example by starting with 
the hydrodynamic equations for the electrons and as­
suming the ions to be stationary (cf.[l81): 

~B(2w.)-[rotB(2.w.), gradlne(2w.)]+ ( 2:.)' e(2w.)B(21ll.)=A,(4) 

A"", - i __ e - {i w. B (w.)div E (00.) - [E (Ill.), grad div E (00.) 1 
mwoc c 

+ [E (Ill.), grad In 8(200.) ldiv E (Illo) + [grad E' ("'.), grad In e (2000) 1 } (5) 

Here e (2wo) = 1 - wLe / 4w~ is the dielectric constant 
of the plasma at the second harmonic; B(2wo) is the 
magnetic field of the wave at frequency 2wo. We note 
that the right-hand side (5) of Eq. (4) is due not only to 
nonlinear effects but also to the potential character of 
the electric field E( wo) at the fundamental frequency 
Woo In a homogeneous plasma the field at the funda­
mental frequency is completely transverse, for which 
reason A = 0 and no generation of the second harmonic 
takes place. 

The set of equations (3-5) does not take into account 
the effect of the second harmonic on the first. This ef­
fect must be taken into consideration at large intensi­
ties of the incident radiation. In particular, second 
harmonic generation itself (and not thermal motion or 
Coulomb collisions) may limit the field at the critical 
point (cf. [18]). However, in what follows we assume that 
the coefficient of transformation into the second har­
monic is small and such effects do not play any role. 

It follows from symmetry considerations that the 
non-zero field components at the second-harmonic fre­
quency are the same as at the fundamental frequency, 
Bx( 2wo) = Bz( 2wo) = Ey( 2wo) = 0, while the magnetic 
field B( 2wo) depends on the x coordinate only through 
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the multiplier exp (i2wo x sin e I c), i.e., the second 
harmonic is "reflected" by the plasma at the mirror 
angle (relative to the incident radiation at the funda­
mental frequency wo). Taking this circumstance into 
account, we rewrite Eq. (4) in the form 

d'B, (2wo, z) dIn e (2wo) dB, (2wo, z) 

dz' dz dz 

+ (2;0 r [e(2wo)-sin'8]B,(2wo,z)=A.(z), (6) 

A.(z) == A'+I + A,+! + A ,+,; (7) 

A = __ i_e_{'!!!.B ( ) dE,(wo,z) +E ( ) d'E,(wo,z) 
1+1 mwoc tell roo, Z dz x 000, Z dz:!. 

_ dIne( 2wo) E ( ) dE,(wo,z)} 
dz x Wo, Z dz ' 

A e { dE,(wo,z), dIne(2wo) } 
1+1=--" E,(wo,z) d sm8+2 d E;(wo,z)sin8. 

mc" z z 

A ,+, = ~{2 (WO)' B.(wo, z)Ex(wo, z)sin 8 
mwoc c 

Wo dIn e(2wo) , } 
+3i c dz Ex (wo,z)sin8 . 

The partition (7) of the nonlinear source Ay( z) is in 
strict correspondence to the three coalescence proces­
ses discussed in the Introduction. The first two terms 
describe the coalescence (2) of a transverse wave with 
an electron Langmuir oscillation, or of two Langmuir 
oscillations, into an electromagnetic wave of frequency 
2wo. The third term determines the continuation from 
the coalescence of two transverse waves into one 
transverse wave. 

We can write the definition of the coefficient of 
transformation of an electromagnetic wave into the 
second harmonic. We deSignate by By( 2wo, z) and 
By(2wo, z) the two solutions of the homogeneous Eq. 
(6) (at Ay = 0), describing the free propagation of 
transverse waves of frequency 2wo in directions 
parallel and antiparallel to the incident radiation. If 
the plasma density inhomogeneity is sufficiently weak, 
the effect of the critical point on the second harmonic 
(2wo = wLe) is slight, and we can write for the mag­
netic field By(2wo, z) in Eq. (6) as the boundary condi­
tions 

B.(2wo, z) ~ a-B,-(2wo, z), z-+-oo, 
B.(2wo, z) ~ a+B/(2wo, z), z-++oo, 

where a- and a+ are the amplitudes of the reflected 
and the transmitted waves. Then, solving (6), we can 
represent the reflected and transmitted energy fluxes 
S- (2wo) and S+( 2wo) at the second harmonic in the 
form 

s- (2(;)0) ,C 1 +S~ dz B. + (2wo, z)A.(z) I' ,(8) 
-S(wo) = 4wo B.(wo, - 00) cos e _00 e(2wo) 

S+(2wo) 

S(wo) 
, c 1 +S~ B.-(2wo,Z)A.(Z),' -

4wo B. (wo, - 00) cos e _00 dz e(2wo) . (9) 

Here S( wo) is the energy flux of the incident radiation. 
Equations (8) and (9) indeed determine the sought coef­
ficient for transformation (in energy terms) into the 
second harmonic. To calculate this coefficient it is 
necessary to determine the form of the field in the 
viCinity of the critical point. 

3. STRUCTURES OF ELECTROMAGNETIC FIELDS 
AT THE FIRST AND SECOND HARMONICS 

The electric and magnetic fields at the fundamental 
frequency are determined by Eqs. (3) and (3a). How­
ever, since the parameter {3 = 31/2vTe/c, which char­
acterizes the role of the thermal motion, is small, the 
latter need be taken into account only to find the field 
component Ez( Wo, z) which has a pole at the point 
z = 0 when vTe = O. The quantities By( Wo, z) and 
Ex( Wo, z) can be gotten from the field equations in the 
cold plasma apprOximation, assuming {3 = 0 in Eq. (3a). 
To this end, we use the geometrical-optics approxima­
tion. As the criterion of applicability we have the con­
dition that the wavelength of the incident radiation be 
small compared with the characteristic dimension a of 
the plasma inhomogeneity (awol c) » 1, as in the case 
with the laser plasma we are considering (a l'::l 10-2 
cm). The magnetic field By(wo, z) that satisfies Eq. 
(3a) at {3 = 0 is given in this approximation by[19) 

B.(wo, z) = B.(wo, - (0) [e(wo)cos 8]'f'[e(wo)- sin' 8]-'1. 

x{exp [i :. f dz'(e(w.,z')-sin' 8)'1'] 

+R(q)exp [ -i :. S dz'(e(w.,z')-sin'e)'I']}, (10) 

where R( q) is the reflection coefficient at frequency 
Wo, and q == (awo/c)1/3 sin e. 

In accord with the foregoing conSiderations, the 
second-harmonic generation is more effective the 
greater the fraction of the incident-radiation energy 
that is transformed into electron Langmuir oscillations. 
On the other hand, according to the results of Piliya[14) 
and Omel'chenko et al.[20) the reflection coefficient has 
a sharp minimum at q2 = 0.4. We therefore confine 
ourselves henceforth to small angles of incidence 
(cos e ~ 1, q ~ 1), where the linear transformation 
coefficient is maximal. 

In the region where Ne (z) is a linear function of the 
coordinate 

N.(z) =No(1 +z/a), e(w.) == e(wo,z) = -z/a, 
e(2w.) = '/, - z / 4a ~'/" (11) 

formula (10) can be represented in a form more con­
venient for subsequent analysis (p == (z/a) (awo/c)2/3): 

B.({J)" z) = B.({J)., -00) (=0/ c)-'f'/(q, p) cos e, 
• 

I(q, p)"" (- p)'I.(- p - q')-'I. {exp [i S dp'(- p' - q')'I'] 

• 
+ R(q)exp [ - is dp' (- p' - q')'I']). (12) 

The electric field component perpendicular to the 
density gradient, Ez (wo, z), is given, according to (3b) 
and (12) by the relation 

E( ) _,(awo)"'eos8dt(q,P)B( ) 
x WO,Z -t - ----- II 000,-00 . 

C P dp 
(13) 

Although in the derivation of formulas (12) and (13) we 
made extensive use of the geometrical-optics approxi­
mation, these equations remain valid both near the 
turning point 1;:( wo) = sin2 e and near the critical point 
1;:( wo) = O. In the vicinity of these points only the ex­
plicit form of the function f( q, p) changes, but not its 
order of magnitude. 



SECOND-HARMONIC GENERATION IN AN INHOMOGENEOUS LASER PLASMA 495 

Since the effect of the critical point z = 0 on the 
wave with doubled frequency 2wo is small, the geo­
metrical optics approximation is valid for the field 
B~ (2wo, z) in the whole region under consideration 

B/ (2000, z) = [8(2000) cos 8]"'[8(2000 ) - sin' 0]-'1. 

xexp [±i 2:0 f dZ'(e(2000)-sin'O)"']. (14) 

The longitudinal component of the electric field Ez ( wo, 
z) in a plasma with thermal motion can, according to 
the results of Piliya(141, be written in the form 

E,({])o, z) = q(aroo / c)'I'~-'/'(jl(~), 

( aoo )'" ·S ( t') ",m=-i ---!- B,(ooo,O). dtexp -it~-i3 ' _ z ( aooo )'" 
~-- -

a c~ 

(15) 
Here By( wo, 0) is the magnetic field of the first har­
monic at the critical point. It follows at once from (15) 
that in the cold plasma VTe = 0 the longitudinal com­
ponent of the electric field at the point z = 0 becomes 
arbitrarily large. In the plasma region (- i;) » 1, 
where the electron Langmuir oscillation that propa­
gates counter to the incident radiation is already 
formed, the geometrical optics approximation is also 
valid for Ez ( wo, z): 

. e 2/* 

E.(ooo,z)=-i s~~. (a:o ) B.(ooo,O)(-in)'I'(-~r'· (16) 

x exp [ ~ i(-~)"l 

4. SYNCHRONIZATION CONDITIONS 

Once the structure of the electromagnetic fields has 
been found, we proceed directly to the determination of 
the coefficient of conversion into the second harmonic. 
We consider first backward generation of the second 
harmonic. The integrand in (8) contains the product of 
three rapidly oscillating functions By( 2wo, z), By( Wo, 
z), and Ez(wo, z) (or Ex(wo, z)). The chief contribu­
tion to the integral is made by the stationary-phase 
points, at which the integrand varies most slowly. It is 
at these pOints that the synchronization conditions (1) 
are fulfilled. The law of wave-number conservation in 
the direction transverse to the density gradient of the 
plasma, ki + ki = kx, is observed in all space, just as 
in a homogeneous plasma (cf. the remarks made above 
about the specular reflection of the second harmonic). 
The synchronization conditions (1) reduce therefore to 
the condition of equality of the projections of the wave 
vectors of the interacting waves in the direction of the 
denSity gradient: kz + kz = kz . The very existence of 
such z-dependent wave numbers presupposes the use 
of the geometrical optics approximation. We shall 
verify later on that the points at which the synchroniza­
tion conditions are fulfilled are really located in the 
region where geometrical optics is applicable, Le., far 
enough from the critical point. 

We consider now in detail the contribution from each 
of the components of (7) to the coefficient of transfor­
mation into the second harmonic (8). 

1) t + I - t. The coalescence of a transverse wave 

with an electron Langmuir oscillation leads to the 
following synchronization condition: 

±(8(000) - sin' 0) 'I. - --.!. (8(000» 'I. = - 2(8(200 0) - sin' e) 'h. (17) 
~ 

Here, as everywhere above, the signs + and - refer to 
waves propagating into and out of the plasma. Since the 
thermal motion of the electrons is relatively weak, 
{3 « 1, and the dielectric constant at the doubled fre­
quency €(2wo) is, according to (11), of the order of 
unity, it is necessary to satisfy equality (17) in order 
to have €( wo) « l. 

For small incidence angles (sin2 fJ « 1), where the 
transformation is most effective, synchronization con­
dition (17) reduces in fact to the condition that the more 
vectors of the transverse electromagnetic wave at the 
doubled frequency and the electron Langmuir oscilla­
tion at the fundamental frequency coincide: 

(8(<DI»)'," = ~(e(2000) -sin'O)Y" 

which is realized at the pOint z = z 1 == - 3a{32 . 
2. I + I-t. The coalescence of two electron Lang­

muir oscillations corresponds to the synchronization 
condition 

-2(8(000»'1, = -2~(e(2000) - sin'O)Y" (18) 

fulfilled at the point z = Z2 == -3(a{32)/4 . 
3. t + t - t. The last term in (7) corresponds to a 

coalescence process that is forbidden in a homogene­
ous plasma. It should be discarded in the geometrical 
optics approximation, since its contribution to (8) is 
exponentially small compared to the two preceding 
terms. 

The synchronization conditions similar to (17) and 
(18) for forward generation of the second harmonic 
(into the plasma) cannot be realized, since an electron 
Langmuir oscillation of frequency Wo does not propa­
gate in that direction. Thus no forward generation of 
the second harmonic takes place in the approximation 
we are discussing. 

5. COEFFICIENTS OF CONVERSION INTO THE 
SECOND HARMONIC 

Using formulas (12) to (15) and the conditions of the 
applicability of geometrical optics awol c « 1, of weak 
thermal motion (3 « 1, and of maximum transforma­
tion q ~ 1, it is easy to verify that of all the terms in 
the nonlinear source (7) the largest contribution to the 
total coefficient of conversion into the second harmonic 
is made by the terms: 

E.(wo, z)d'E, (000, z) / dz', (t + 1-7-t), 

.000 E ( ) dE,(ooo,z) . - l-;;- • 000, z dz Sill e, (I + I ..... t). 
We calculate the contribution of each of them, 

neglecting the effect of the others. As will become 
clear from what fOllows, these are really quantities of 
different order of magnitude and it is the process t + I 
- t which is the more effective. 

1) t + I - t. The coefficient of transformation into 
the second harmonic due to the coalescence of a trans­
verse wave with an electron Langmuir oscillation takes, 
according to formula (8), the following form: 
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s- (2000) 

S(wo) 
I

e 1 
4mwo' B.(wo,-oo)cosS 

+S-dZ B.+(2000,z) E ( z) d'E,(ooo,z) I' (19) 
x__ e.(2wo) • 000, dz' . 

The transverse component of the electric field of the 
wave Ex( Wo, z) has a smaller wave vector and varies 
considerably more slowly than By( 2wo, z) or Ez ( Wo, 
z). Therefore Ex(wo, z) can be taken outside the inte­
gral sign at the stationary phase point z = Z1. It is 
necessary here to take into account the change in the 
behavior of the transverse component of the electric 
field Ex( wo, z) as it passes through the turning point 
z = Zo == -a sin2 8. 

If the temperature of the plasma electrons is not too 
high (31 2 (3 < sin 8), then the stationary phase point Z1 
lies to the right of the turning point (I ZO I » I z11), and 
one may expand Ex( Wo, z) near the critical pointr1.7j 

E ( ) . awo ( 000 Izi ) 
• OOo,Z "" -1-c-B.(ooo,O)In -c-sinS sin'S. 

Taking this expansion into account and calculating the 
integral that appears then in (19) by the stationary­
phase method, we get 

S- (2000) 

8(000) 
2lt' I_e-(~) '1, _'I, 
3'1. maoo.' c ~ 

Bi(ooo, 0) (aooo ) I' X sin' e B ( ) In 3 - ~' sin S . 
II illo,- 00 c 

The magnetic field By (wo, 0) at the critical point is 
conveniently expressed in terms of A( q) = 1 
- I R( q) 12, the linear coefficient of conversion of an 
electromagnetic wave at the fundamental frequency Wo 
into the electron Langmuir oscillation[13J: 

A (q)=_lt_ (aooo ) 'I. q'l B.(wo,O) I' 
cos S c B.(wo, - 00) , 

As a result we obtain the following final formula for 
the coefficient of conversion into the second harmonic: 

S-(2000) =~ 'A'( )~( awo )'1, ~_'I, 
S(wo) 3'" q q mc' c 

xln' ( 3 a:o ~'sin s) , sin S > 3'I'~, (20) 

where t;== [e2By(wo, -oo)/2mwg] is the energy of the 
electron oscillations in the incident-radiation field. We 
note that the linear transformation coefficient A( q) 
was tabulated in[20] by solving Eq. (3a) numerically for 
By(wo, z) in the cold-plasma approximation, vTe = O. 

If, however, the temperature of the plasma electrons 
is sufficiently high (sin 8 < 3 1/2 (3), then the stationary 
phase point Z1 lies to the left of the turning point zoo 
(I z11 » I Zo I). In this region By( Wo, z), and conse­
quently also the electric field Ex( Wo, z), is a superpo­
sition of incident and reflected waves. Once again 
carrying out the integration in (19) and taking (12) and 
(13) into account, we find 

S-(2oJo) 

8(w,\ 
~qA(q) ~ (aoo.) '. ~-'''. sinS < 3'I'~. 

3 mc' c 

It is easy to verify that at incidence angles 

(21) 

sin 8 ~ 31/2 (3 and at q ~ 1 formulas (20) and (21) give 
results of identical order of magnitude, as indeed they 
should. 

2. 1 + 1 - t. The coalescence of two electron Lang­
muir oscillations into a transverse electromagnetic 
wave gives the following relation for the coefficient of 
transformation into the second harmonic: 

S-(2w.) 

S(ooo) I e tgS +S-dz B.+(200.,z) E,(wo,z) dE,(oo.,z) I' 
4mwoc B.(ooo, - 00) __ e(2wo) dz 

The final expression, which is obtained, as above, 
after integrating by the stationary phase method, is of 
the form 

8-(2oJ.) 
S(wo) 

32lt q'A (q) ~ (aOO O ) -. ~-"I,. 
27 me' e 

6. DISCUSSION OF RESULTS 

(22 ) 

Formulas (20) to (22) give the dependence of the co­
efficient of transformation of laser radiation into the 
second harmonic on the plasma temperature and on the 
electron concentration gradient. It was assumed every­
where in the derivation of S-( 2wo/S( wo) that the syn­
chronization conditions are satisfied at pOints Z1,2 
located sufficiently far from the critical point, or more 
accurately, in the region where the potential electric 
field has already been formed into a traveling longitud­
inal wave. This assumption imposes a limitation on the 
electron temperature of the plasma: 

"'T.>~( awo ) _t me'. 
91'3 c 

It can be shown that when this condition is satisfied the 
coalescence process t + 1 - t (see (20) and (21) is 
more effective than 1 + 1 - t (see (20)). 

Allowance for electron-ion collisions leads to the 
appearance of the following factors in the right-hand 
sides of (20) to (22): 

[ av ( z" ) "'] exp - 2 ~ - --;;- , 

describing the absorption of the longitudinal move on 
its way from the critical point to the points Z1,2. Ac­
cording to Sec. 4, we have z 1,2 ~ a {32, and thus the 
argument of the exponential is ~ av/c. Under condi­
tions where there is considerable transformation of 
light into Langmuir oscillations, this quantity is always 
small, since it COincides with the optical density of the 
plasma. Thus, Coulomb collisions do not play any role 
in our problem. 

With increasing temperature ({3 > av/ c), the absorp­
tion of the longitudinal waves becomes due to Landau 
damping. Comparing the damping length 
1 ~ a In-1[(211)1/2awo/VTe] in(l3] with the distance to the 
next stationary phase point Z2 = -3(a{32)/4, we find that 
transformation into the second harmonic occurs prior 
to absorption of the longitudinal move by Landau damp­
ing if 

",T. < 'l,me'In- t [(2n) 'I'aw. 1 VT.]. 

This inequality is satisfied as a rule and therefore 
neither Coulomb collisions nor Landau damping hinder 
the emission at the doubled frequency. 

The intensity of the second-harmonic radiation, as 
well as the linear transformation coefficient A( q), de­
pends strongly on the angle of incidence e (cfya,21]). 



SECOND-HARMONIC GENERATION IN AN INHOMOGENEOUS LASER PLASMA 497 

For typical laser plasma parameters Wo RI 1.8 X 1015 
sec-\ a.::::l 10-2 cm and KTe RI 1 keY, we have (3 RI 0.073 
and aWol c = 6 X 102• The linear transformation coef­
ficient reaches a maximum A(q) RI 0.5 at q2 RI 0.4[20), 
Le., at the incidence angle sin () RI 8.5 X 10-2. Since 
sin () < 31/2 {3, one should employ formula (21). At this 
incidence angle and at the laser radiation intensity 
2 x 1013 W/cm 2 (& RI 4 eY), the coefficient of transfor­
mation into the second harmonic is equal to 1 %. 

The authors thank B. A. Zel'dovich, O. N. Krokhin, 
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