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A derivation is given of the quantum kinetic equations for a non ideal Boltzmann gas and a non ideal 
plasma, without the assumption that the interaction of the particles is small. The collision integrals 
take into account the effects of the retardation of the distribution functions and the effect of an ex
ternal electric field. The kinetic equations for a nonideal plasma differ from the quantum Boltzmann 
equation in that they take the averaged dynamical polarization of the plasma into account. Because of 
this, the collision integrals for a plasma converge at large and small distances. The method of ob
taining the quantum kinetic equations for a nonideal gas and plasma is analogous to that described 
previously[8,9) for classical systems. Because of this, the paper is principally devoted to the main 
ways in which the quantum theory differs from the classical theory. It is shown that it is especially 
important to take account of the strong interactions over small distances when calculating the non
dissipative characteristics of a nonideal plasma, since then the contributions of bound states whose 
life-times are shorter than the mean time between collisions are taken into account. Calculations 
of the internal energy for nonequilibrium states are performed. For a local-equilibrium state, an 
expression valid in any approximation of perturbation theory is obtained. It is shown that this ex
pression takes into account the contribution of the bound states. The effective field is calculated, 
with allowance for the quantum corrections, for arbitrary ratio of the de Broglie wavelength to the 
Debye radius. 

1. INTRODUCTION 

IN this paper we study the quantum kinetic equations 
for a nonideal gas and nonideal plasma. The term "non
ideal" means that, within the framework of the given 
model (the binary-collision approximation and polariza
tion approximation), we take into account not only the 
dissipati ve, but also the non -dissipati ve contributions 
of the interaction of the particles. 

The first attempt to take non-dissipative effects into 
account in the quantum kinetic Boltzmann equation was 
made by GreenP ). A more consistent derivation of the 
quantum kinetic equation for a gas is given in the work 
of Kadanoff and Baym r2 ) and Baerwinkel and Gross
mann r3 ,4). On the basis of this equation a momentum
transport equation was obtained(4) in which the pres
sure occurs with the second virtual coefficient taken 
into account. The virial coefficient is expressed in 
terms of the T-matrix. 

Quantum kinetic equations for a nonideal plasma 
have not, apparently, been studied up to the present 
time. The problem of obtaining kinetic equations for a 
nonideal partially ionized plasma is very complicated 
because of the necessity of taking the bound states into 
account. In the present paper, we study the kinetic 
equations for a completely ionized plasma. For this 
case, one usually uses kinetic equations which are a 
quantum generalization of the Balescu-Lenard equa
tion r 5- 7). In these, the dynamical polarization is taken 
into account and this ensures screening of the interac
tion of the charged particles at large distances. At 
small distances, however, the contribution of correla
tions to the collision integral is calculated from per
turbation theory in the coupling parameter (the Born 
approximation). 
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In this paper, the quantum kinetic equation for a 
nonideal plasma is studied. Rather than take account 
of the dynamical polarization exactly, which leads to 
extremely complicated equations, we take only the 
averaged polarization into account. However, at small 
distances, the collision integral takes into account the 
contributions of all the terms of perturbation theory in 
the interaction. The strong interactions of the parti
cles at small distances are thereby also taken into ac
count. This is especially important in the calculation 
of the non-dissipative characteristics of a nonideal 
plasma, since in this case one also takes into account 
the contributions of the bound states whose lifetimes 
are much shorter than the time between collisions. 

Since the method used in our work to obtain the 
quantum kinetic equations is analogous to that described 
in the papers of one of the authors for the classical 
nonideal gaS(8) and for the classical nonideal plasma(9), 
the main attention here is given only to the principal 
ways in which the quantum theory differs. 

2. THE BOLTZMANN KINETIC EQUATION FOR A 
NONIDEAL GAS 

We shall consider briefly the derivation of the quan
tum kinetic equation for a nonideal gas in the frame
work of the binary-collision model, without using the 
formalism of Green functions and the T-matrix. This 
makes it possible to write down immediately the cor
responding equations for a nonideal plasma with the 
dynamical polarization taken into account. 

In the binary-collision approximation, the chain of 
equations for the density matrix of one, two, etc., parti
cles reduces to a system of equations for the one- and 
two-particle density matrices. For a spatially uniform 
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multi-component gas, the equations for the one-particle 
functions can be written in the form 

ofa (p" t) / at = I, (Pa, t). (2.1) 

Here fa(Pa, t) is the momentum distribution function 
for particles of component a, and Ia is the collision 
integral. This is connected with the two-particle 
density matrix pab( ra, ri, rh' rb, t) by the relation 

I =~ \"1 N. J[<Da.(lr." -r.I)-<D •• (lr: -rbl)] • li~ . 

• i ] dra'dra." drb 
x p,.(r:, r.", r., r"t)exp [-T(r: -r.")p.· V' . 

(2.2) 

The equation for Pab in the binary-colliSion approxima
tion has the form 

'Ii OPab [Ii' Ii' ] , -at" + 2ma (Ll'a' - Ll, a") + 2mb (Ll'b' - Ll'b") flab 

- [<Da• ([ ra' - rb' I) - <Dab (I ro" - rb [)I Pab 

= in :t ~ fa (Pa, t) f. (Pb' t) exp [ ~ (ra' - r:) Pa 

+ ~ (ro' - rb ) Pb] [ (2:n)3 r dpadPb 

- . fi. a (0) (' " , "t) = l t at Pab ra , ra ,fb ,rb , , (2.3) 

where P~b is the matrix Pab disregarding the correla
tions of the partic les. 

The functions fa and pab are normalized as follows 

J V J dr.drb (2 4) f. (21'1li) 3 dp, = 1, fl"(r,, r., rb, r.)~ = 1. • 

Eqs. (2.1)-(2.3) correspond to the starting equations 
(4) and (12) of the paper by Green[l] and, in the classi
cal case, to Eqs. (11) and (12) from[81. 

We expand the function pab in the eigenfunctions 
if!PaPb( ra, rb) of the Hamiltonian of a pair of particles. 
They are determined by the equation 

[ li' - li" ] 
--Ll, --A,,+<Da,(lr.-r.l) '1'. '. (ra,r.)= E • •• 'I' •••• (r"r.); 

2ma a 2mb a a 

5 'I'~a"p." (ra, r.) 'l'Pa'P,' (ra, rb) dradr. = [ (2;~)3 r 6 (pa' - Pa") 6 (Po' - Pb"), 

'l'paP. (ra, rb, t) = exp (-IE PaP.t(li) IjlPaPb (ra, rb)' (2.5) 

We write the expansion of the function Pab in the form 

In the approximation of free motion, 
1 I 

'1"." (ra, rb) I, ._' .~~ = vexp [ T(r.p. + r.Pb) ] . 

From (2.3), using the expansion (2.6), we find 

(iii ~ -(Epa'Pb,-Epa"Pb"»)flab(Pa',Po", Po', Pb) 

'Ii a (0) ( , " , H) =, at Pab Pa ,Pa ,Pb ,Pb . 

(2.6) 

(2.7) 

We denote the relaxation time of the function fa by 
Trel and the time of the collision process by To. We 
write the solution of Eq. (2.7) for times 

where to is the initial time. In a time T » To, the 
initial correlations are weakened. Taking this into ac
count, we can write the solution of Eq. (2.7) in the form 

flab = exp [- I (Epa'P,' - Epa"Pb,,)T(1i I Pab(O) (Pa', Pa", Po', Pb'" t - T) 

, 

+~exp [- I (Epa'P" -Epa"Pb") T' (iiI ~ Pab(O) (Pa', Po", Po', Pb'" t - T') dT'. 
o 

(2.8) 
Using the solution (2.8) and the expansion (2.6), we 

find the density matrix Pab in the coordinate repre
sentation. We introduce for the transition matrix the 
notation 

A (- T) = ~ '\lPa'P", (ra', r;) '\l~a "Pb" (ra", rb) 'I';a",' (q;, qo', - T) 

X .1, ( . " q N ) d 'd "d 'd ,,[ V ]' 't'P."Pb" a' ., -T Pa PJ P. P. (21'11i)3 . 

(2.9) 

Then 

fl (r' r " r ' r "t) f {A ( ) (0) (' " , " Tab a, a , b, b ,,= - 't pub q(l, qa ,qb, qb , t - T) 

+ fA( ') {} (0)(, " '" "} (2.10) 
o -T -ai P" qa ,q. ,qb ,qb ,t-. )d. dq: dq:' dq,' dq,". 

In the classical theory, this expression is analogous to 
the expression (13) from rS]. 

We substitute the solution (2.10) into the expression 
(2.2). As a result, we obtain an expression for Ia in 
terms of the first distribution functions (P~b is defined 

in (2.3 )). The expression (2.10) can be Simplified if we 
confine ourselves to the first approximation in T0 8t, 
Le., to the first approximation in the retardation. We 
represent the collision integral in the form of a sum of 
two parts 

I. = la' + 1.2• (2.11) 

The first term corresponds to the zeroth approxima
tion in the retardation. In this approximation, it follows 
from (2.10) that 

, - fA ( (0) (0) (' " , /I I If I 1/ Pab - - Pab qa ,q. ,q. ,qb ,t)dq. dqa dq. dqb . 

For T ~ 00 in the expression for A( -T ), 

'I'; .. p.' (q;, 'lo', - T) 'l'Pa "Po" (qo", qb', - T)->-

1 [ . . ] --"V exp --i-(p;q;+P.'qb)+7; (p:q;' +Pb"qb') , 

since, in the zeroth approximation in the retardation, 
correlation of the initial states is completely absent. 

As a result, (taking the definition (2.3) into account), 
after integrating over qa, qi, qi>, qt;, and Pa, pi, Ph, 
Ph, we obtain in the zeroth approximation in the re
tardation 

V' 
Pa.'(r:,r.",r,',r.",t)= (2 li)' f'l' •••• (r:,r.")Ijl'aP.(r.',r.") 

l'l (2.12) 
x fa (p" t) fb (P., t) dp. dp •. 

From (2.12) and (2.2), we find an expression for the 
first part of the collision integral. We write it in the 
form 

. V' 
Ial (Pa, t) = 7; (21'1)61i3 E Nb ~ [CDa• (I ra - rb - '(,IiVa [) 

b 

- <Dab (I ra - rb + '(.lira IJI exp (- tVaPa) 
X '\lPa'Pb (ra + '(.IiVa, rb) Ijl~a'p. (ra - '(,"Va' rb) 

X fa (Po', t) t. (Pb, t) dVadpa'dPbdrb' (2.13) 

This expression coincides with that obtained in the 
paper by Green.P ] In the paper by Hoffman et al.[lO], it 
is shown that the expression (2.13) can be brought to 
the usual form of a Boltzmann collision integral with a 
quantum cross-section. Allowance for the retardation 
gives corrections to the usual Boltzmann collision in
tegral, which take into account the nonideality of the 
gas. 
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The expression for Pab in the first approximation 
in Toa/at has the form 

a ~ 
p.? = - iii f d. f dq.' dq." dq,' dq." (2.14) 

d (0) I " I " 
X • d. A ( - .) p.. (q., q. , qb , q. ,t). 

Substitution of this expression into (2.2) gives the re
quired expression for Ia2' As in the classical theory, 
the integral Ia2 determines the contribution of the in
teraction to the non-dissipative characteristics of the 
nonideal gas. 

3. THE TRANSPORT EQUATIONS AND THERMODY
NAMIC FUNCTIONS FOR A NONIDEAL GAS 

As in the classical approximation, the collision inte
gral possesses the properties (CPa = 1, Pa) 

.E n. f <po (P.) I. dp. = O. . 
These equalities ensure the conservation of the number 
of particles and of the total momentum. 

We shall study the energy conservation law in more 
detail. The energy conservation law with allowance for 
the pair interaction follows from the kinetic equation 
(2.1). Calculations analogous to those carried out in 
Balescu's bookrS] lead to the following result for the 
internal-energy density: 

\"1 P.' V 
U= .t.;na f 2m.!a (21th),dP• 

+ -}.E n.n. I <D •• pa.t (ra, r., r., r., t)d(r. - r.). (3.1) 
ab 

Here P~b( ra, r a , rb, ~) is the distribution function of 
the coordinates of two particles in the zeroth approxi
mation in the retardation. An expression for it follows 
from (2.12): 

V' 
pa. t (ra, ra, r., rb, t) = (21th) , I hI', a'. (ra, rb) 1'la(Pa, t) I. (P., t)dpa dp •. (3.2) 

In the expression (3.1) for the internal-energy 
density, the interaction determines not only the second 
term (the potential energy). The point is that the first 
distribution function, like any thermodynamic function, 
can be expanded in the density. In the first approxima
tion in the denSity, we obtain from Eqs. (2.1)-(2.3) the 
following expression (x = (r, p)): 

la(p.,t)=C[/.'+ .En.I g •• (xa, x.) dra dr. (2~~;']' (3.3) 
• 

The constant C is determined from the normalization 
condition. f~ is the distribution function of the ideal 
gas, and ~b = fab - fafb is the correlation function. 

Using the expression for C, we can write the ex
pression (3.3) in the first approximation in the density 
in the form 

/.(Pa,t)=/.'+ .En.I {S ga.(Xa,Xb,t) (~::;, 
• 

(3.4) 

I ( ) [ V] Z 0 } dra dr. 
- gab X-,Xb,t (21th)' dpadpd. (Po,t) -V-· 

We can substitute into the right-hand side the expres
sion for gab in the zeroth approximation in the density 
and retardation. 

The difference between fa( p, t) and the ideal-gas 

distribution function f~ is due to correlations of two 
types: quantum correlations of the distributions of the 
coordinates and momenta of the particles, and classical 
correlations caused by the interaction. In a local
equilibrium state, only the quantum fluctuations re
main. Indeed, we shall obtain an expression for fa 
exact to tJ. 2 inclusive. This can be done by two methods: 
1) using the equation for the quantum distribution func
tion in the Wigner representation (this follows from 
Eq. (2.3)), solve it by the method of successive approx
imations, taking the classical distribution fcl as the 

ab 
initial function; 2) use Eq. (2.1) with the collision inte-
gral (2.2) to determine the quantum corrections to fa' 

In the binarY-COllision approximation, both methods 
of calculation lead to the result 

i.qU(Pa)= I.cl + .Enb~I ( a<D .. ~)' (3.5) 
• 24kT ara apa 

X I cl cl( ) dr.dr. 
a gab ra, fb -V-, 

which coincides with that obtained by GreenP ]. Here, 

ga.cl (ra, r.) = exp (-<D •• / kT) - 1 

is the pair correlation function of the Boltzmann gas in 
the classical approximation. 

From (3.5) we find the known expression (cf. Sec. 
33 of the book by Landau and Lifshits[lll) for the mean 
kinetic energy in a state of local equilibrium 

I P.' I idd =~kT 
2m. a pa 2 

+_h_'_\"1 n I ,,'<D.. cl dr.dr. 
24makT~' ara' gab V· 

• 
The expression (3.1) for the internal-energy density 
can be represented in the form 

U = Uitl + Ucorr . (3.6) 

Here Uid is the energy denSity of the ideal gas. The 
quantity Ucorr is determined by the potential energy 
(the last term in (3.1)) and by the correlation part of 
the average kinetic energy. 

We shall study the expression for Ucorr in the case 
of local statistical equilibrium. It follows from (3.4) 
that the correlation correction to the total kinetic 
energy of all the components is 

u!::r =+ .Enan.V I (P.' +Ji.._3kT)ta .. dX-dx. (3.7) 
•• 2ma 2m. (21th)" 

where f~b(Xa, Xb) is the equilibrium quantum distribu
tion function. 

The function 
kin 

Ucorr = U corr + U pot 

can be expressed in terms of the simpler distribution 
function of the coordinates, Pab( ra, ra, ~, rt). This 
is defined by the expression (3.2). From (3.1) and (3.7), 

V \"1 I ( dX-dx. Ucorr =2: ~nan. H •• -3kT)f • .'--. 
a' (21th)' 

Putting <Pa b(A) = A <Pab, we write this expression in 
the form ' 

U - V \"1 It "I dxadx. 
corr -2 ~nanb d'J...- H •• ('J...)t • .'--

a' 0 a'J... (21th)" 
(3.8) 
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On the other hand 

a S dx.dx. a' ~ 
~ Ha.(I.)fa.' (2nh)'=- iJllal.lnSpexpl-IlHa.(I.)] (3.9) 

a Sl1>ab(l.) 0 dxadx. _ a S l1>a'(I.) 0 dradr. 
= all II -I.-fa' (2nh)'-0ji1l -I.- Pa' -V-' 

Substituting (3.9) into (3.8) and taking the definition of 
the potential energy into account (cf. (3.1», we obtain 

1 a \"1 S'dl. dra dr. 
Ueorr =2 all II .l....i nan. -l1>a.(I.)pa.'--

.. 0 I. V 

(3.10 ) 

The distribution function in the coordinates is defined 
by the expression (3.2). 

The latter formula in (3.10) coincides with the known 
result from equilibrium quantum statistical theory (cf., 
e.g., Appendix 7 in Balescu's book[5]). The expression 
(3.10) determines the second virial coefficient in the 
expansion of the internal energy in the density. 

4. KINETIC EQUATIONS AND THERMODYNAMIC 
FUNCTIONS FOR A NONIDEAL PLASMA 

In the kinetic equations for an ideal plasma, the in
teraction at small distances is usually treated in an 
approximation of perturbation theory in the interaction. 
Allowance for the dynamical polarization ensures 
screening at large distances(5-7]. For a nonideal 
plasma, the strong interactions of charged particles at 
small distances playa significant role. The derivation 
of the quantum kinetic equations for a nonideal plasma 
with simultaneous allowance for the strong interactions 
at short distances and for the dynamical polarization is 
the purpose of the present Section. 

Taking exact account of the dynamical polarization 
leads to very complicated equations; we therefore con
fine ourselves to taking the averaged dynamical polari
zation into account. This enables us to use as our 
starting point again the system of equations (2.1)--(2.3), 
with the difference that in Eq. (2.3) for the function pab 
the Coulomb potential 4>ab(r) = eaeb/r is replaced by 
an effective potential '~ab that takes into account the 
averaged dynamical polarization. In expression (2.2), 
the potential <J>ab remains unchanged. This means that 
the polarization only affects the form of the function 
pab (or of the correlation function gab). 

The form of the effective potential is determined 
from the following considerations. The correlation 
function determining the form of the collision integral 
in the zeroth approximation in the retardation is pro
portionalto <J>ab(k)/IE(k·v,k)1 2. Here dw,k) is the 
quantum dielectric permittivity, given by the expres
sion 
e(w, k) = 1+ 1: ~ S [fa(Pa + '/,hk) - la(Pa - '/,hk)] V dpa . 

a k' w-kv+iL'l (2nh) , 

Hence, one of the possible definitions of an effective 
potential that takes into account the averaged dynamical 
polarization is 

x S /,(p,+'/,hk)+t,(p,-'/,1ik) Vdpa (4.1) 
le(kv,k) I' (2nh)' . 

If the averaging in (4.1) is performed over a function 
fc corresponding to local equilibrium, and quantum 
effects in the dynamical polarization are not taken into 
account, then it follows from (4.1) that 

<Da.(k) = (1 :;.(:~ ') , <1> .. (r)= 6;6. exp ( - :. ), (4.2) 

Le., the effective potential coincides with the Debye 
potential. 

We remark that other methods of introducing the 
effective potential are possible. For example, 

<Da.(k) = l1>a.(k) /'8(0, k). 

On introduction of an effective potential into Eq. 
(2.3), <J>ab- i ab . In accordance with this, the eigen
functions of (2.5) are replaced by the eigenfunctions 
;p PaPb (ra, ~) of a system of two particles with inter-

action potential ~ab' It follows from this that all the 
subsequent expressions of Sec. 2 will also be valid, in 
the framework of the model under conSideration, for a 
nonideal plasma, if in them we carry out the replace
ment 

1jJ. a" (ra , r.) -+ ~"" (ra , r.). 

We denote the expression for the density matrix thus 
altered by /Jab. This matrix then determines all the 
expressions for the thermodynamic functions for a non
ideal plasma. 

The simplest expression for the effective potential 
;f;ab is the expression (4.2). We shall show to what ex
tent the expressions for the thermodynamic functions 
calculated in the framework of a model of a nonideal 
plasma with this effective potential agree with the cor
responding expressions of the equilibrium quantum 
statistical theory. It follows from formula (3.10) that 
the correlation part Ucorr of the internal energy can 
be expressed in terms of the potential energy Upot. 
We can also write the corresponding expression for the 
free energy[2] 

It follows from the expression (3.1) that 

upot = + 1: nan. S 11> •• (Ira - r.l) /'l.b' (ra, ra, rb, r.) d(ra _ r.), (4.3) 
ab 

where P~b is given by expression (3.2), if in it ~. 
Even with the simplest potential (4.2), the exact 

solution of the equation for ;Pp Pb is evidently unknown; 
therefore, we shall represent ffie expressions for the 
thermodynamic functions in the form of series in the 
Born parameter 

:A.a. = (~+~) h (2kTa + 2kT.) -'f,. 
ma mb ma mb 

In the Born approximation for a local equilibrium 
state, the Fourier component of the function P~b is 
determined by the expression 

r .• '(k)=(2n)'I)(k)- <D •• (k),F, 1 - --). .'k' ma +m. - (3 1 ) 
m.kT. + m.kTa ' 2' 4' , 

(4.4) 

where iFi is the confluent hypergeometric function. 
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(4.5) 

1 - - ~ 
G(I'j) = --, fdp p' f dk' iii",(k')e-p'{_, sin (I'jk' p)- COS (I'jk'p) }, 

ne.e,rd I'jk 
, , k'=r.k. (4.6) 

The expressions (4.4) and (4.6) are valid for arbi
trary potential ~ab. For the Debye potential, 

G(I'j) =n~'I'j-'{I-exp (1]'/4)[1-<D(I]/2)J). (4.7) 

Hence, for 11« 1, 

Gp •• ,/rd) = l-n"'A .. /4rd+O(A.,'/rl). (4.8) 

From (4.8) and (4.5) we obtain an expression, which, 
for an isothermal plasma, coincides with the result of 
the equilibrium theory[l2-15]. Thus, in the first approxi
mation in .\ab/rd, using the Debye effective potential, 
one obtains in the equilibrium limit the correct classi
cal expressions for the thermodynamic functions and 
the correct quantum corrections of order ('\ab / rd)' 

We note that the expression (4.8) is practically inde
pendent of the choice of the effective potential ~ab' 

For isothermal local equilibrium for ('\ab/rd)« 1, 
it is possible to carry out a calculation of the thermo
dynamic functions in any approximation in the Born 
parameter, by using the method developed by Ebeling 
et alys,14]. For the internal energy density, one ob
tains the expression 

U = ~kT ~ n. --.!:!'-.-nkT ~ n.n'A"'{-~n'I'~.' 
2 ~ &~ ~ 8 . ., 

-(a+ln~)s",.'+n'" ~ (m+3) ~(m-2) (J.- s., )"+o(~)}; 
rd ~ r(mI2)+ 1 2 rd 

m_' (4.9) 

where t(x) is the Riemann zeta-function, rex) is the 
gamma-function, C is Euler's constant, and a = %C 
+ In 2 - Y3' This result agrees with the result of the 
equilibrium theory[l3,14]. The only difference lies in 
the numerical value ofthe coefficient a in (4.9). This 
difference, however, is not important, since for a 
symmetric plasma (ee = -ei), the term with t~b in 
(4.9) vanishes. 

Formula (4.9) implicitly takes into account the con
tribution of the bound states whose lifetime is much 
shorter than the time between collisions. In order to 
separate out this contribution more explicitly, we 
transform the expression (4.9) for a hydrogen plasma. 
We make use of the formula 

A' f, (m+3) ~(m-2) (J.- ) .. 
.. ~ r(ml2)+ 1 2 S" 

m_t.,6,8 ... 

Here we have taken into account that ~ie/4n2 = -pEn' 
where En are the energy levels. 

Formula (4.10) determines the total contribution to 
(4.9) from terms of a series in even powers of ~ab, 
starting from ~ib' This contribution determines the 
contribution of the bound states. We see that it is de-

termined by the derivative of the hydrogen-atom parti
tion function, truncated by the Planck-Larkin method 
(cf.[l5] and the review[l6]). 

We denote the contribution of the other terms of the 
series in ~ab by K'''( i3 ). Then the expression for the 
internal energy of the hydrogen plasma can be written 
in the form 

'U=~kT(2n,)-~ 
2 8 nr/ (4.11 ) 

8 -
- n.' all [ 8n'I'A,.' L n'(e-'''n -I + llEn) + K'(ll) ] + ... 

n=1 

The residue K'" depends weakly on temperature. 
Analytic and numerical estimates of this function give 
the good interpolation formula 

K"(ll) ~ -4n'I'A,.'lllE.I, 

where El is the ground-state energy of the hydrogen 
atoms. 

To conclude this Section, we note that the second 
quantum distribution function in the coordinates, 
P~b( ra, ra, rb, ~), is finite for all r = 1 ra - rb I. The 
decrease at large distances is due to the allowance for 
the screening. That it is finite at short distances is 
due to quantum effects. For example, for a local
equilibrium state of a non-isothermal plasma with the 
Debye effective potential, from formula (4.4) we find 

1I.,'(r=O)=I- n'/·(m.+m.)e.e, exp ( A .. ·)[I_<D(').. .. )] 
(m.kT, + m,kT.) A., 4rl 2rd' 

where ~(x) is the error function. 
For an isothermal plasma for .\ab/rd «1, this 

expression takes the form 

1I."(r=O)=I-n'''~ 
A.,kT 

and coincides with the corresponding results of the 
work of Kelbg[l7] and of Trubnikov and Elesin[l2]. 

5. EFFECTIVE FIELD FOR A NONIDEAL PLASMA 

Up to this point, in obtaining the collision integrals 
we have neglected the influence of external fields on 
the act of collision. But this effect plays a definite role 
in a nonideal plasma. The presence of an external field 
leads to the result that a third term, which is due to 
the electric field, appears in the collision integral, Le., 
the kinetic equation has the form 

oj. oj. -,- + e.E- = I., + I., + I ••. at op. 
(5.1 ) 

Here the term la3 is determined by formula (2.2) in 
which must be substituted the part of the density 
matrix that is proportional to the external field. The 
corresponding contribution to the density matrix can 
be written in the form 

3 I II I I' - 1 f- f ' 'f! I ,,- I I 11., (r. ,r. ,r, ,r, ,t)- ih d-r dq. dq. dq, dq, {<D.,(lq. -q, I) 
o 

- iii.,(lq." - q," I) IL4:"(--r) - A(--r)lp~:) (q:, q.", q;, q;', t), 
(5.2) 

where the function A is the ordinary transition matrix 
for two particles interacting through a potential ~ab, 
and A E is the corresponding transition matrix in the 
presence of an external field E. The momentum-
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transport equation for a plasma in an external field 
has the form 

() eff _ eff J V at (Pa> - eaEa + dpapJa' (2nh) 3 ' 

in which 

~( >eff =~J d _V __ Jd i _v_ at P. at PapJa (2nh') PaPa a2 (2nh)' ' 

eff 1 J V Ea =E+- dpaPaia3--
ea (2nh) , 

(5.3) 

(5.4) 

(5.5) 

In the local-equilibrium approximation, the last term 
in (5.4) goes to zero. 

In the first order of perturbation theory in the Born 
parameter, for a local-equilibrium state we obtain 
from (5.2) and (5.5) the expression 

eff 2 ~ J~ J . - {1 2 2 ( kTa Ea =E- eah(2n)''''-.i n. d,; dkkcDab(k)cDa.(k)exp -Tk1: --;;,:-
• 0 

+~)} sin {~kE (~-~) T'} sin{~hk2(~ +~) T}. 
mb 2 ma mb 2 ma ml; 

(5.6) 
Investigation of formula (5.6) shows that the quantity 
I E~ff - E liE decreases with increase of the field E. 

In a weak field, in the first approximation in E, the 
expression (5.6) takes the form 

Eeff_E{1_ 4near. ~ 2 
a - _3_k.-J nbeb 

• 
X (ma + m.) (eam. - e.ma) K (~)} 

(kTam. + kT.ma) 2 r.' 

K(fJ) = ~'~ {1 +n-'I'fJ -( 1 + :') e"I'[ 1-cD(; )]} 
=1- ~ n'''fJ+O(fJ'). 

With the condition Aab/rd « 1, we have for the 
field acting on the electrons 

eff { e'kT. n'f'hn,e' } 
E, =E 1- + "+ .... 

3rdkT,(kT, + kT i ) 2kT,(2m,kT,) , 

(5.7) 

(5.8) 

In the classical limit ti - 0, the formula (5.8) coin
cides with the result of Kadomtsevf1B]. We note that the 
factor 

lia (1 + 2-V,) -'. 

was obtained [19] in the classical hydrodynamic limit in 
place of the factor Y3 in the second term of formula 
(5.8). 

The correction to the external field is usually of the 
order of the plasma parameter. For a dense plasma, 
this parameter can be of the order of unityf16]. Hence, 
it follows that the relaxation field in a dense plasma 
gives a significant correction to the external field. The 
corrections to the external field reduce the conductivity 
of the plasma by the factor E~ff/E compared with the 
"ideal" plasma. It is possible that this effect, together 

with allowance for the effect of screening on the colli
sion integral Ial which takes account of the dissipative 
processes, can explain the observed systematically low 
experimental data for the conductivity of a dense 
plasma compared with the usual theoryr20-22]. 
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