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A nonlinear theory of the hydrodynamic instability of a beam in a plasma is constructed. The transi­
tion from a monochromatic-wave excitation to a "multimode" regime is studied with the aid of an 
electronic computer, and "phase" mixing in the beam in such a regime is investigated. It is shown 
that the spectra of the oscillations excited during the beam instability can be controlled by a pre­
liminary modulation of the beam. 

1. It is known that the process of relaxation of an 
initially "monoenergetic" beam in a plasma can be 
divided into two stages[l]. During the first-hydrody­
namic-stage, a narrow wave packet of width ~(Wk/k) 
~ vO(nl/no)I/3 with characteristic values of the growth 
constant'}' I ~ wp( nj no)I/3 (Wk and k are the frequency' 
and wave vector of the oscillations, Vo is the beam 
velocity, wp is the plasma frequency, and nl and no 
are respectively the beam and plasma densities; 
(nl/ no)1/3 « 1) is excited in the beam. Subsequently, 
as a result of the "spread" of the velocity distribution 
function of the beam, the growth constant decreases to 
the value '}'2 ~ wpill/nO, while the spectral width 
~ (wk/k) becomes of the order of Vo (the kinetic stage 
ends in the one-dimensional model with the formation 
of a plateau in the distribution function). 

In a paper by one of the authors[l] the hydrodynamic 
stage of the relaxation was investigated on the basis of 
the equation of the quasilinear approximation, under the 
assumption that the beam excites during this stage 
many waves with random phases. In this case the 
primary effect of the reaction of the waves on the beam 
is the diffusion of the particles in velocity space, lead­
ing in the hydrodynamic stage to the appearance of a 
thermal spread: 

Av ~ ",/k ~ vo(n,/no)'I,. (1 ) 

The investigation of the hydrodynamic beam instability 
in a plasma carried out inP ] is, strictly speaking, 
qualitative since the possibility of the beam particles 
being trapped by the excited waves is neglected in it. 
During the hydrodynamic instability, when the spectral 
width is of the same order of magnitude as the oscilla­
tion velocity of the trapped particles, the effect of the 
trapping can be important. The influence of the effect 
on the dynamics of the instability is most sharply 
manifested in the excitation of a monochromatic 
waveP ,3]. The trapped particles, which execute phase 
oscillations with respect to the waves that have trapped 
them, do not exchange energy with the waves on the 
average during the period T '" 271/0 of the oscillations. 
As a result, upon fulfilment of the condition 

(effJo/m)'h ~ vo~n,/no)'i. (2) 

(<Po is the amplitude of the potential in the wave), when 
the beam splits into buncht!s of particles trapped by the 
wave, the exponential growth of the field amplitude dur-
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ing the instability is replaced by amplitude oscillations 
of frequency ~U = k( e <P 0/ m)I/2. The resulting state of 
the plasma + beam (of particles trapped by the wave) 
system is unstable with respect to excitation in the 
vibrational spectrum of satellites displaced in phase 
velocity by the amount ;5 O/k [4,5]. 

In the present paper we investigate the transition to 
the "multimode" regime induced by this instability 
during the hydrodynamic beam instability in the plasma. 
With that end in view we solve in Sec. 2 the nonlinear 
problem of the interaction of the finite perturbations 
excited by the beam in the plasma. We consider the 
one-dimensional case: the perturbations propagate in 
the direction of motion of the beam. It is shown that for 
small phase-velocity "detuning" for neighboring har­
monics of the spectrum O(wk/k)« vO(nl/no)I/3, only 
the "multimode" regime of the instability is possible. 
When the "detuning" is increased, a monochromatic 
wave is excited which corresponds to the maximum of 
the linear increment; the excitation of this wave 
eventually goes over into the "multimode" regime. In 
such a regime as a result of the concurrent action of 
several waves on the beam, there occurs a randomiza­
tion of the motion of the beam particles and a "mixing" 
in the phase plane that corresponds to a thermal 
velocity spread in the beam of the order of magnitude 
gi ven by the relation (1). 

In Sec. 3 of the present paper the interaction of the 
perturbations is considered for the case when they are 
spatially intensified by an electron beam injected into 
the plasma. It is shown that by setting off at the en­
trance of the beam a signal of fixed frequency and with 
an amplitude substantially exceeding the fluctuation 
amplitude makes it possible to distinguish this fre­
quency in the vibrational spectrum and that the wave 
amplified by the beam remains monochromatic at suf­
ficiently large distances. This confirms the possibility 
suggested earlier by one of the authors[6] that the 
vibrational spectrum can be controlled by a preliminary 
modulation of the beam. 

2. A "monoenergetic" beam excites in a plasma a 
narrow wave packet with k ~ wp/vo. The growth in 
time of the amplitude of the individual harmonics of 
this packet is determined in the linear theory from the 
relation 2'1, (k k)' ( 'I, 

E.(t) - E.(O)exv[ ymaxt( 1-9 - :' 0 ::) )]. 
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where ko = wp/vo is the wave number corresponding 
to the maximum of the inc rement, y max 
= 31/2wp(nl/16no)1/3. It follows from (3) that the am­
plitude Ek is comparable with Eko in the wave-number 
range 

/j.k""ko(~)'I' 3 -ko(~)'I'/[ln Emu]'I'. (4) 
no (2'I'Ym"t),h no E (0) , 

where Emax ~ (41Tnlmv~(nl/no)1/3)1/2 is the amplitude 
of the electric field, determined from the condition (2), 
at which the nonlinear effects become important, E( 0) 
is the initial value of the amplitude, i.e., 

E'(O) T Wp (n,) 'I. 
~-TJ~ n: 

is the energy of the thermal fluctuations of the field for 
the wave-number range ~k, T is the plasma tempera­
ture, and AD is the Debye radius. Thus, 

Emu _ (n ~ )',. (5) 
.E(O) , w.' . 

We investigate below the nonlinear dynamics of the 
wave packet excited during the hydrodynamic beam in­
stability in the plasma. With this end in view let us 
consider the interaction of perturbations with wave 
numbers k and ko belonging to the packet of the un­
stable oscillations. As a result of the interaction in 
the plasma there develop perturbations with wave num­
bers 

k j :=::; ko + j(k - ko), j = 0, ±1, ±2 ... , 

the linear increment of which is also close to Ymax. 
We seek the electric field of the individual perturba­
tions in the form 

Ej(t, z) = Ej(t) sin [kj(z - v,t) + a;(t)]. 

(6 ) 

(7) 

When (nl/no)1/3 « 1 the amplitudes of the waves excited 
by the beam and given by (2) satisfy the condition e cP 0 

« mv~. At such amplitudes the oscillations of the 
plasma particles remain linear. Under these same 
conditions we can also neglect the excitation of higher 
harmonics of the electric field with frequencies sWp 
(s;::: 2). According to[2,3], their amplitude Es ~ yEll wp 

« E l • 

Integrating the equations of the plasma particle os­
cillations in the linear-with respect to amplitude­
approximation, substituting the result into the Poisson 
equation, and applying to this equation the method of 
harmonic analysis, we obtain for the amplitude and 
phase of the perturbations the following system of 
equations: 

dE j 4new p L/2. I " 

-=-- S sm[kjz +a;]nb(t,z)dz, (8) 
dt k;L _LIZ 

( da; k;vo ) 4newp LSIZ, " 
E j -+1--- =-- cos[k;Z +a,]nb(t,z )dz. (9) 

dt W p k;L _LIZ 

In these equations Zl = Z - vot, L is the general spatial 
period of the perturbations, i.e., ko = 21Tm/L, 
k = 21Tn/L, m and n are whole numbers, and nb 
= J dvfb(t, Z/, v) is the electron density in the beam. 
The use of Liouville's theorem of phase-volume con­
servation 

dz'dv = dz(O)dv(O), 

and the condition of preservation of the distribution 
function along the particle trajectories 1) 

Mt, z', v) = /.'(v(O» = n,6(v(O) - vol 

allows us to reduce Eqs. (8) and (9) to the following 
form: 

dE; 4ne Lt." , 
--= --wpn, S sin[kjz (t, z(O» + a;]dz(O), 

dt k;L _LIZ 

(10 

( da; kP') 4ne . LI', (11 . 
E j -+1--- =--wpn, S cos[kjz (t,z(O»+aj]dz(O). ' 

dt W p k;L _LI' 

The trajectories of the beam particles Zl(t, z(O)) are 
determined by integrating the equations of motion 

d'Zl e N 

dj2= -m; L Ejsin[k;z' + ajl. (12) 
i=-N 

Equations (10)-(12) form a closed system that de­
scribes the nonlinear dynamics of a packet of 2N + 1 
unstable perturbations in the "monoenergetic" beam 
plasma system. In terms of the dimensionless variables 

'h 

T=WPt(::) 
V-Vo 

" = -v--:o (:-n--:';-n,7') ::-'1, ' 
(13 ) 

kv,-wp 
()= ( '/' W p n';no) • 

(with ecpoj = ~jmv~(nl/no)2/3) the system of equations 
reduces to a universal system containing as a parame­
ter only the phase "detuning" of the unstable waves 
OJ = jo (it is assumed that the wave with kj = ko has a 
zero "detuning" kovo = wp): 

d" N 
-= - ~ ejsin[2n(m + j(n - m»s + ajl. 
dT "'-.i 

(14) 
j=-N 

dej Iia 

-= S sin[2n(m+j(n-m»s(T,so)+a;]ds" (15) 
dT _'I. 

'I. 

ej ( ~:j -jll) = L cos[2n(m + j(n - m) )~(T, s,) + a,]ds,. (16) 

The system (14)-(16) was integrated with an elec­
tronic computer. Figure 1 shows the results of the in­
tegration for the case of a monochromatic wave (N = 0) 
in the form of: a) the dependence of the dimensionless 
amplitude of the field ~ on T, and b) the dynamics of 
the phase plane of the beam. The wave excited by the 
beam leads to the bunching of its particles in the re­
tarding-phase region of the field. To such a bunching 
correspond the steepening and break-up of the profile 
of the function v( t;). The major portion of the particles 
of the beam then forms a bunch (the heavy-line spiral 
in Fig. 1) that rotates in the phase plane with the fre­
quency of oscillation of the trapped particles. The 
periodic displacements of the bunch from the retarding 
to the accelerating phase of the field, and from the ac­
celerating to the retarding phase lead to oscillations in 
time of the field amplitude ~. 

The results presented for a monochromatic wave 
were obtained by integrating M = 200 equations of 
motion of the beam particles with initial coordinates in 
the interval -1T/ko < z(O) < 1T/ko; the results prac­
tically cease to depend on M for M > 50. In the case 
of interaction among several unstable perturbations 

i)Here, z(O) and v(O) are the initial coordinates of the particle on the 
trajectory passing at time t through the point (z, v) of phase space. The 
initial perturbation of the equilibrium distribution function of the beam 
can be neglected when computing the right hand side of Eqs. (8) and 
(9). 
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FIG. I. Results of the integration for the case of a monochromatic 
wave: a) the function €( r); b) dynamics of the phase plane of the beam. 
The plane is shown in the reference frame of the wave for the moments 
of time corresponding to the points on the curve €(r); v* = v + da/dT', 
~* = ~ + a/27f, ~ = k oz/27f. 

(N '" 0) the initial coordinates of the particles are given 
in the interval -um/ko < z(O) < um/ko, m 
= (n - m)/o(nl/no)1/3» 1, so that the number of par­
ticles in the beam should be substantially increased. 
We integrated the system (14)-(16) for three (N = 1), 
five (N = 2), and seven (N = 3) interacting waves with 
m = 9, n = 10, and M = 450. When the number of parti­
cles in the beam was varied up to M = 900 the diverg­
ence of the results for Ej( T) in the range T:5 30 did 
not exceed 5 x 10-2 ; the variation of m or n at fixed 
o also did not qualitatively affect the result. The ac­
curacy of the computations was monitored with the aid 
of the energy integral of Eqs. (14)-(16): 

N 1/2 + ~8nt}+ S dso v(1;o,t)=const. (17) 
j=_N _'/2 

The change in this quantity in the course of the compu­
tations was not more than 1 % . 

The results of the computations for E (0) = 10-2 and 
different values of the "detuning" 0 carried out for 
three waves are shown in Fig. 2, and for five waves 
and the same values of E(O) and o-in Fig. 3. It can be 
seen from Fig. 2 that when Ii < 1 the fundamental wave 
(kj = ko) and the slow satellite (kj = k) grow simul­
taneously, the amplitude of the slow perturbation being 
somewhat greater than that of the principal wave in the 
nonlinear regime. This result remains valid for all 
possible values of the initial amplitude E (0). Accord-
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FIG. 2. The function €(r) for €(O) = 10-2 and different values ofthe~ 
detuning li for the case of three waves; the j = 0, I, and -I are for the 
fundamental, slow and fast waves respectively. 

FIG. 3. The function €(r) for €(O) = 10-2 and different values of the 
detuning li for the case of five waves; the j = 0 curve is for the funda­
mental wave, j = I and 2 are for slow waves, and j = -I and -2 are for 
fast waves. 

ing to (1), the difference between the rise times of the 
fundamental wave and the satellite sufficiently slowly 
(logarithmically) depends on the initial amplitude: 

1 (L'ik) , (no) 'I, Em .. 
t,-t, ~--"-" -- -- In--

• V"'X ko' n, E (0) . 

This is confirmed by integration of the system (14)­
(16) with different values of E(O) (see Fig. 4). 

The motion of the bunches into which the beam 
breaks up during the instability becomes randomized 
in the field of the excited waves, and the amplitudes of 
the individual harmonics become random functions of 
the time. Comparison of Figs. 2 and 3 shows that the 
vibrational spectrum broadens in time towards smaller 
phase velocities. As the number of harmonics in the 
spectrum increases, the vibrational energy becomes 
more evenly distributed among the harmonics. For a 
sufficiently large number of harmonics (N ~ 2) the 
total vibrational energy 

j=-N 

is approximately constant in the nonlinear regime if N 
is fixed, and increases with N. 

The excitation of a monochromatic wave having a 
maximum linear growth constant is possible only in the 
case of a sufficiently rarefied vibrational spectrum, 
when the minimum value of the "detuning" omin > 1. 
This case is shown in Fig. 2d, which corresponds to 

& 
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o 5 10 15 ZO Z,f .. 

FIG. 4. The function €(r) for li = I and different values of €(O) for 
the case of three waves: I) €(O) = 10-1 , 2) €(O) = 10-3 3) €(O) = 10-5 . 
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FIG. 5. The total vibrational energy ~Le2kj as a function of the 
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Ii = 0.5. The dashed curve is the plot of the function e2 (r) for the case 
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the value 0 = 2. For times T < 20, the excited wave 
remains monochromatic, the beam breaks up into 
bunches that rotate synchronously in the phase plane 
(the dynamics of the phase plane of the beam for this 
case is shown in Fig. 6). For large values of the time 
the amplitudes of the fundamental wave and the slow 
perturbation are comparable. The distinctive features 
in the phase plane that correspond to the bunches of 
trapped particles then even out and a practically com­
plete "phase mixing" eventually (for T;;:: 30) occurs 
in the beam. The same "mixing" takes place at 
smaller values of 0 provided the total width of the 
spectrum is sufficiently large: NO;;:: 1.5-2, The dy­
namics of the phase plane of the beam for 15 = 0.75 are 
depicted in Fig. 7 for the case of three waves-a), b), 
c), d)-and for five waves-e). The destruction of the 
bunches in the phase plane and the "mixing" in the 
beam occur only in the last case. 

"Mixing" corresponds to the appearance of a parti­
cle-velocity spread D,.V ~ vo(ndno)1/3 in the beam. The 
same spread can be obtained in the framework of the 
quasilinear approximation. In that case the state of the 
beam is characterized by a sufficiently "smooth" func­
tion fo( t, v) whose variation in time is determined 
from the diffusion equation 

at, e' a [\"1 y.IEAjI' at,] (18) 
Tt= m'av L.J (k;v-oo.)'+y.' av . 

'j 

It follows from this equation that the width of the distri­
bution function fo 

[ 1 ]'" ~v = -;; S to(v - v,)' dv 

is related to the vibrational energy 

:nI: IE>;I' 

by the relation [1] 
'i 

(~v)' = _' _1_( 4n.) 'I. \"1 IE.il'. (19) 
4nn,m no L.J 

'i 

When :E 1 Ekj 12~ 47Tnlmv~(nl/no)1/3 (:E£j ~ 1) the 
velocity spread D,. v ~ vo( nl/no)1/3. The oroadening of 
the spectrum and the increase of :E 1 Ekj 12 lead to the 
growth of D,. v, and the instability develops into the 
kinetic phase. 

Thus, the investigation of the nonlinear dynamics of 
the hydrodynamic instability carried out on the basis of 
Eqs. (14)- (16) confirms the qualitative picture of the 
process developed in(l] with the aid of the equations of 
the quasilinear approximation. 

3. Let us turn now to the study of the interaction of 
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the perturbations in the modulated beam-plasma sys­
tem. In this case oscillations of frequency Wo and 
amplitude substantially exceeding the fluctuation am­
plitude are set up at the entrance (z = 0) where the 
beam enters the plasma. We shall assume that the 
modulation frequency Wo coincides with the- resonant 
plasma frequency, Le., that it satisfies the condition 

( coo) co.'( .v,), 
8 p coo,k=- = 1--, 1+- =0, 

Vo 6)0 Vo 
(20) 

where Ep( w, k) is the dielectric constant of the plasma 
and Vg = 3vTklw ~ 3vT/vo is the group velocity of the 
plasma oscillations. 

Let us consider the interaction of the wave generated 
when the beam is modulated with a test wave of fre­
quency w close to woo As a result of the interaction 
there develop in the plasma perturbations of frequencies 

(0)1 = COo + j(co - coo), j = 0, ±1, ... (21 ) 

also belonging to the packet of the most unstable oscil­
lations with a linear amplification factor close to the 
maximum: 

'" _ 3'1, O>p ( n.v. ) 
Xmax - - -- • 

Vo 16nov. 
(22) 

We now seek the electric fields of the individual per­
turbations in the form 

EI(t, s)=E;(z) sin [COt(z/vo-t) + at(z)]. (23) 

For the amplitude Ej( z) and phase aj( z) of the per­
turbations we obtain, under the same conditions as in 
the preceding section, Le., assuming the plasma oscil­
lations to be linear and neglecting, for (nlvo/novg)1/3 
« 1, the excitation of higher harmonics of the electric 
field with frequencies SWj (s 2:: 2), the following sys­
tem of equations: 

dEl 4nen,vo TSIZ , 
v,-=--- sin(at(z)-cot (z,t(O))]dt(O), (24) 

dz T -T/2 

[ dat 0> - COo ] 4nen,vo TI' , ) 
v, --j--. Et=---S cos[at(z)-cot (z,t(0»]dt(0).(25 

dz v, T _T/' 

In these equations t' = t - z/vo, t(O) is the time of 
flight into the plasma of beam particles which are at 
the point z by the time t, T is the general period of 
the perturbations (it is assumed that the frequencies 
of the perturbations can be represented in the form 
Wo = 27Tm/T, w = 27Tn/T, where m and n are integers). 
We neglected in deriving Eqs. (24) and (25) small quan­
tities ~ v'l v ~ Kvol Wo «1 (v' is the vibrational 
velocity of the beam particles). The equation of motion 
of the beam particles 

m!::.=-e ~ EIsin(a,-cot') 
dt ~ 

can be written with the same accuracy in the form 

(26) 

Equations (24)-(26) describe the spatial amplifica­
tion of a packet of 2N + 1 unstable oscillations under 
a steady injection of an electron beam into the plasma. 
In terms of the dimensionless variables 

1;= COpZ (~) "', "f--~, "f,=- teO) , 
v, nov, T T 

0> - 0>, 

II = ( 'I ')'1., (1)0 niv, novo 
Ct. V-Vo 

v = 2nm - = --;---:--77,"" 
d~ vo(n,v,ln,v,)'I. ' 

8t =Et [ 4nn,mvo'C::::) "'] -'I. 

(27) 

the system (24)-(26) reduces to the universal system 
(14)-(16) when the dimensionless time and coordinate 
are interchanged, T - t. The dimensionless units for 
the electric field are determined from the condition 
that in the nonlinear regime (Le., for Ej ~ 1) the beam 
particles should be trapped in the potential wells cre­
ated by the excited waves. In that case 

(e({!o/m)Y'~ !vo-co/k! ~vox/k. 

The energy of the vibrations excited by the beam in the 
stationary problem is equal to 

'\1 IE.I' 2 ( n,vo) ", Vo ~ , 
~--=nlmvO -- -~ei' 

A 4n nov, Vg j 

(28) 

The factor Vol Vg in this formula reflects the possibil­
ity of a buildup of the vibrations during the injection of 
the beam into the plasma, on account of which the 
vibrational energy density may, for Vg« va, substan­
tially exceed the energy density in the beam [71. 

We present the results of the solution of Eqs. (14)­
(16) for the case when, owing to the modulation, the 
initial amplitude Ew (0) of the fundamental wave sub-

a 
stantially exceeds the initial amplitudes of the test 
waves. The test waves arise as a result of thermal 
fluctuations in the plasma and, for them, 

( CO'V)'" e(O)~ ~~ ~lO-J-lO-'. 
ntvo Vo 

Figures 8a and 8b show the nonlinear dynamiCS of 
three unstable perturbations in the case when the 
initial amplitude of the fundamental wave exceeds the 
amplitudes of the test waves by only an order of magni­
tude. Under these conditions a monochromatic wave of 
frequency equal to the modulation frequency is excited 
at any value of the "detuning" o. The wave leads to 
the breaking up of the beam into bunches of trapped 
particles synchronously rotating in the phase plane, the 
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FIG. 8. The function €(n for the case of three waves when the 

beam is initially modulated. In a) and b) €j=O(O) = 10-2 , €j=±l(O) = 
10-3 ; in c) and d) €j=O(O) = 10-2 , €j=±l(O) = 10-4 . The dot-dash curves 
show the dependence on r of the amplitudes €j = ±l (n of the test waves 
for the case when the fundamenta'i wave is absent. 
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test perturbations being in this case suppressed (for 
comparison the growth of the test waves in the ab­
sence of the fundamental wave is shown by the dot-dash 
curves in Fig. 8). Only at sufficiently large distances 
lo ~ (20-30) K- I (depending on the value of 15) from the 
point where the beam enters the plasma does the insta­
bility of the monochromatic wave become significant 
and the excitation of the slow satellite take place. For 
a larger difference between the initial amplitudes of 
the fundamental and test waves the distance over which 
the wave excited by the beam remains monochromatic 
can be considerably increased (in Figs. 8c and 8d), 
when ~wo(O) = 10-2 and ~w(O) = ~2WO-W(0) = 10-\ the 
distance is lo ~ (30--40h- I ). 

The result obtained confirm the possibility of con­
trOlling the spectrum of the vibrations excited in the 
plasma by the beam upon a preliminary modulation of 
the beam by vibrations of sufficiently small amplitude. 

The authors are grateful to B. B. Kadomtsev and 
R. Z. Sagdeev for a discussion of the results of the 
present work. 

Iy. D. Shapiro, Zh. Eksp. Teor. Fiz. 44,613 (1963) 
[Sov. Phys.-JETP 17, 416 (1963)]. 

21. N. Onishchenko, A. R. LinetskH, N. G. Matsi­
borko, Y. D. Shapiro, and Y. I. Shevchenko, ZhETF 
Pis. Red. 12,407 (1970) [JETP Lett. 12, 281 (1970). 
N. G. Matsiborko, I. N. Onishchenko, Y. D. Shapiro, 
and Y. I. Shevchenko, Plasma Physics 14, 591 (1972). 

3 T. M. O'Neil, J. H. Winfrey, and J. H. Malmberg, 
Phys. Fluids 14, 1204 (1971). 

4W. L. Kruer, J. M. Dawson, and R. N. Sudan, Phys. 
Rev. Lett. 23, 838 (1969). 

5y. D. Shapiro and Y. I. Shevchenko, Zh. Eksp. Teor. 
Fiz. 60, 1023 (1971) [Sov. Phys.-JETP 33, 555 (1971)]. 

6 ya. B. Falnberg, Atomnaya Energiya 11, 313 (1961); 
A Survey of Phenomena in Ionized Gases, Vienna, 
1968. 

7 ya • B. Fainberg and Y. D. Shapiro, Zh. Eksp. Teor. 
Fiz. 47, 1387 (1964) [Sov. Phys.-JETP 20, 937 (1965)]. 

Translated by A. K. Agyei 
92 


