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Some comments on the phenomenological electrodynamics of gyrotropic media are made with regard 
to the problems discussed in the literature. An important problem is that of obtaining boundary condi­
tions with an accuracy to terms of the order of a/A (a is the atomic size and A the wavelength). The 
corresponding boundary conditions cannot be derived from the field equations and material equations 
for space and contain unknown functions of frequency which can be calculated only within the frame­
work of the microscopic theory. 

ALTHOUGH the phenomenological electrodynamics of 
gyrotropic media has been under development for more 
than a decade, questions concerning this field continue 
to be under discussion (see the article of Bokut' and 
Serdyukov[lJ, where references to a number of other 
articles are also given). Concretely, in [lJ they deal with 
the form of the "material equations" in a gyrotropic 
medium, expressions for the density and for the eilergy 
flux, and finally, the boundary conditions. An important 
question in this case is that of the boundary conditions 
with allowance for terms of order a/A (a is the atomic 
dimension and A is the wavelength), i.e., terms of the 
same order as the gyro tropic effect itself. Since it is 
preciselr; here that we disagree with the statements 
made in IJ and a few other articles, it is appropriate 
to present here the corresponding remarks, and to 
elucidate the question in a sufficiently systematic form. 

1. Gyrotropy is a spatial-dispersion effect, and 
should therefore naturally be considered within the 
framework of general electrodynamics of media with 
spatial dispersion. The corresponding field equations 
can be written in the form 

1 aD 4n 
rotB=-_+_j.", 

c at c ' 

divD=4np ... , 

rotE=-~~ 
c iJt' 

div B = 0, 

(1) 

(2) 

(3) 

(4) 

where j xt and P ext are respectively the current and 
charge aensities corresponding to the external sources, 
and to the remaining notation is quite obvious and 
'agrees, for example, with that of[2J. It must be em­
phasized only that we do not distinguish between the 
magnetic induction B and the magnetic field intensity H, 
since these quantities coincide in general in the case of 
the optical frequencies considered here (see[3J; ferro­
magnets are a possible exception[4J). All the proper­
ties of the medium are reflected in the "material equa­
tion," the connection between D and E. Within the 
framework of the linear theory, this connection is in 
general of the form , 

D,(r,t)= J dt' J dr'B,;(t,t',r,r')E;(r',t'). (5) 

This form takes into account the possible (and actually 
existing) dependence of the electric induction D on B, 
since the field B can be expressed in terms of E with 
the aid of (3), and by the same token its influence is 
refle~ted on the form of the kernel E ij in the integral 
equatlOn (5). 

If the medium is homogeneous (invariant) in time 
and in space, then the kernel Eij depends only on the 
differences T = t - t' and R = R - r'. Under these con-
ditions, it is possible to introduce the permittivity ten­
sor Eij (w, k) so that 

with 

and analogously for other quantities. 
From the principle of the symmetry of the kinetic 

coefficients it follows that in the general case 

(6) 

(7) 

(8) 

Bext is either the external magnetic induction or a 
parameter characterizing the magnetization of the lat­
tice or a sublattice of the magnetic medium, i.e., of a 
ferro- or antiferromagnet (strictly speaking, we have 
in mind here only antiferromagnets, since we have put 
B = H). 

In the optical region, the effects of spatial dispersion 
are in general small, since they are characterized by 
the parameter a/A (gyrotropic medium) or even (a/A)2 
(nongyrotropic medium). In a gyrotropic medium it is 
therefore usually sufficient to use the expansion 

or the analogous expansion for the reciprocal tensor 
Eij(W, k). By virtue of (8) we have 

(9) 

8,;(,W, B .. ,) = 8;,(W, -Bex'), v,;,(w; B,x!) = -YJ<'(w, -B .. ,). (10) 

In the absence of absorption and for real wand k, the 
tensor Eij(W' k) is Hermitian, i.e., 

(11) 
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where the variable Bext' as above, has been omitted when 
it does not change sign. 

If we write the tensor Y ijl in the form Y ijl = Y ijl 
• II , R II I th h' + lYijl' Yijl = eyijl, Yijl = m Yijl' en we ave In a 

non-absorbing medium as a result of (11) 
, I " " 

'Yift = - Viii, 'Viif = ViU. (12) 

For a nonmagnetic medium (at Bext = 0), by virtue of 
(10), we have Yijl = -Yijl' and obviously Yljl = O. In a 
transparent magnetic medium, generally speaking, 
Y ljl f 0, a fact with which the relatively recently noted 

interesting effect of gyrotropic birefringence in anti­
ferromagnetic crystals is connected [5-7J. 

The foregoing scheme for constructing the electro­
dynamics of gyrotropic media is in our opinion of 
maximum simplicity, completeness, and economy. In 
particular, we see no advantages whatever in writing 
down the material equation in a more symmetrical form, 
such as (see[1,6J ) 

Di = ei;('Ul, k)Ej + <lij(Ul, k)Hj , Bi = Pi;(Ul, k)E; + fti;(.Ul, k)HJ• (13) 

Both forms, (6) and (13), are uniquely related with each 
other[1,6J, and the greater symmetry of (13) with 
respect to the electric and magnetic quantities is illus­
ory (particularly within the framework of the consid­
ered three-dimensional formulation of electrodynamics) 
because of the absence of magnetic charges and cur­
rents, and also because the vectors E and D behave dif­
ferently from Band H upon inversion of the spatial co­
ordinates and the time. What is principal, however, by 
virtue of the considerations advanced inC3 J, is that in 
the optical frequency region one sees no way of physic­
ally distinguishing the magnetization M = (B - H)/47T 
from a certain polarization current ap/at = c curl M 
(the arguments presented inPJ are generally speaking 
incorrect in the case of ferromagnets[4J, but remain in 
force for gyrotropic bodies, where the coefficients "ijl 
or a i . and tJij are all of the order of a/A). There are 
thereiore even less grounds for introducing the indis­
tinguishable parts of the induction D, defined separately 
by the fields E and B. 

2. The articles [1,6J can, however, give the impres­
sion that the use of quantities such as (13) offer us ad­
vantages from the point of view of simplicity of the 
boundary conditions (we have in mind here the boundary 
separating a gyrotropic medium 2 from vacuum 1). 
Actually, however, in r 1 ,6J the boundary conditions for 
the constraints in the form (13) are simpler, and, con­
cretely, the equality of the components of the fields E 
and H tangential to the interface are simply postulated. 
Then the boundary conditions obtained for the field B 
and'D from (1) and (4) are somewhat more complicated. 

Equations (1)-(4), as is well known, lead in the gen­
eral case to the boundary conditions (n is the normal to 
the sharp separation boundary between media 1 and 2; 
allowance for a transition layer will be discussed later 
on) 

(14) 

[n(E, - E,) J = 0, B,. - B,• = 0, (15) 

where 1 and a are the densities of the surface currents 
and charges (it is assumed that there are no external 
surface currents and charges text and a ext). We note 
furthermore that the additional terms that can appear 
in the presence of higher derivatives are arbitrarily 
referred to i and a, and consequently do not enter ex­
plicitly in (14) (this will also be discussed below). The 
connection of the quantities i and a with the field vec­
tors is determined by (5), which can be resolved fully 
only within the framework of the microscopic theory!). 
Neglecting spatial dispersion and absorption, we can 
simply put i = a = 0, but when spatial dispersion is 
taken into account there are no longer general grounds 
for this procedure. To avoid cumbersome expressions, 
we confine ourselves below to the case of an isotropic 
but gyrotropic medium, neglecting the second deriva­
tives with respect to the coordinates. In this case the 
quite general connection between D and E is 

D=eE+6,rotE+rot(61IE) (16) 
=eE+ (6,+61I ) rotE+ [V6uE], 

where 10, ° I' and ° II are functions of the coordinates r 
and of the frequency w, where ° I and ° II are pseudo­
scalars that differ from zero only if the medium has no 
symmetry center. Of course, in a homogeneous medium 
we have 

D = BE + 6 rot E, 6 = Il, + 6u. (17) 

In an inhomogeneous medium, which must be consid­
ered on going to the limiting case of a separation boun­
dary, we see, however, no grounds of general (phenom­
enological) character that would allow us to put 01 = 0 
or 0Il = O. From (1), (2), and (16) we arrive in the usual 
manner2 ) at the following boundary conditions (we have 
put jext = aext = 0; the conditions (15) remain in force 
in this case): 

611" [ (aE ) ] [n(B,-B,)J=-c- n -at , ' 
eE,. - E,• + ii" 2 rotnE, =,0, 

(18) 

Since in vacuum we have 011 = 0Il = 0 and 101 = 1. 
Since the coefficients 01 'and ou' lare not known, we 

cannot find in general form fields of the type (13) for 
which the simplest boundary conditions (14) with i = a 
= 0, used in[1,6J, hold. 

From (1) and (3) we get Poynting's theorem 

1 aD 1 aB c 
4" E-at+ 4" B-at= - 4" div[EBJ- i",E. (19) 

substituting (16) in (19) and neglecting, for simplicity, 
the frequency dispersion and the absorption (Le., the 
dependence of 10 and ° I II on w), we obtain , 

*"1611 E] = Wiu X E. 

l)Conditions (14) and the relation (5) are sufficient to solve any 
boundary-value problem and, for example, the introduction of additional 
boundary conditions in media with spatial dispersion is only a device of 
limited significance (for details see [2], Sec. 10; solutions of boundary­
value problems with allowance for spatial dispersions is discussed also in 
[8]). 

2)To obtain the boundary conditions on a sharp boundary it is neces­
sary to integrate the corresponding equations over the thickness of the 
layer and this thickness tend to zero. This can give rise to additional 
terms in the presence of higher derivatives. In the case of (16), for ex­
ample, div D = 0 leads to D2n-Dm = on, 2 curlnE2 . 
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fJ {eE'+B'+II(ErotE)} c. { II [ aE]} 
-fJt 8 = --4 dlV [EBJ-- E-

n n 2c at 
+ V(2I1n -lI) [E aE]_. 

8n fJt l.",E. (20) 

The conditions (15) and (18) obviously ensure con­
servation of the energy balance for any value of the co­
efficient 15n 2' Thus, as expected, the energy conserva­
tion law (the' Poynting theorem) imposes no limitations 
whatever on the choice of the boundary conditions3). We 
note that in[2], Sec. 10.9, we applied to a gyrotropic 
medium the boundary condition (18) with 15 n = O. Since 
in this case the incident wave was assumed to be linearly 
polarized, allowance for terms of order of 15 II in the 
boundary conditions would affect only the terms of order 
I5n in the expression for the amplitudes of the reflection 
and transmission coefficients (for linearly polarized 
waves, the terms with Ex dEldt in (20) and (21) vanish). 
In the general case of arbitrarily polarized waves, the 
choice of the boundary conditions (i.e., for example, the 
use of a fixed value 15n,2' which is important only in the 
case of normal incidence of the waves on the medium) 
affects the intensity of the reflected wave already in the 
first order in I5 n. An investigation of the gyrotropy in 
a volume (we have in mind primarily measurement of 
the rotation of the plane of polarization) makes it possi­
ble to determine the coefficient 15 = 151 + 15n. In normal 
incidence of waves on a gyrotropic medium, the boun­
dary conditions, as already mentioned (see also (18)), 
depends only on 15 II' 

Thus, it is seemingly possible to determine experi­
mentally both coefficients 15 1 and 15 11, and also other 
coefficients that appear in the more general case of an 
anisotropic gyrotropic medium. Unfortunately, the 
situation is physically much more complicated and less 
favorable, and calls for a concrete analysis with allow­
ance for the physical properties of the interface. The 
point is that in the case of reflection from even a non­
The presence of a term proportional to V'(21511 - 15) is 
very important when account is taken of the interface at 
which this term becomes discontinuous. The fact that 
such a term appears for an inhomogeneous gyrotropic 
medium even in the absence of absorption is, of course, 
quite remarkable; however, in light of the remarks 
made in[2], Sec. 3, this circumstance is not specially 
surprising. 

Within the limits of a homogeneous medium, the en­
ergy flux is 

S=--=-[EBJ-~[E aE] 
4n 8n at 

and it is clear at the same time from (20) that in the 
stationary case the energy balance is not reduced to 
equality of the fluxes Sm = SIn on the two sides of the 

3)The term 

'«20" - 6) [ BE] 
A= E-

8" 8t 
vanishes for linearly polarized waves, and also in the general case if 15 I = 
1511 = 15/2. If A*' 0, then part of the energy of the incident wave should go 
over on the separation boundary, for example, into some surface waves 
(see [ 14) ) in this connection. The requirement 151 = 15n has thus a definite 
physical meaning. It seems to us, however, that such a requirement is not 
obligatory . 

boundary. There follows instead from (20) the energy 
conservation law (the medium 1 is assumed to be vac­
uum): 

S2.n- (211" .• -11,) [E fJE] ... -c-[EBJ2 _ 1I11"[E~] (21) 
8n at 2n ,4n n 4n. at 2n 

e 
= Stn - 4;"[EB J tn· 

gyrotropic medium, the Fresnel formulas are approxi­
mate and require corrections of the order of zl)..., where 
I is the characteristic length, for example the effective 
thickness of the transition layer or, one might say the 
physical thickness of the interface (for details see t 9-111-

When account is taken of the transition layer, additional 
terms of order ll)... appear in the boundary conditions 
(14) and (15) (these terms were not taken into account 
at all in[l]). The atomic dimension a ~ 3 x 10-8_10-7 
is, generally speaking, the minimal value of l. At the 
same time, the coefficients 15, 151 and 1511 in a gyrotropic 
medium are also just of the order of a. It is clear 
therefore that in the general case one can assume that 
different effects leading to deviation from the Fresnel 
formulas (see, in particular, [11]) exceed the gyrotropic 
effects (in particular, corrections of order 15 n in the 
boundary conditions) on the interface. An investigation 
of the gyrotropy by determining the ellipticity of the 
reflected waves (see '12 ,1]) should therefore become 
much more complicated when the aforementioned factors 
are taken into account[ 9-11] . 

This conclusion does not mean, however, that an in­
vestigation of gyrotropy in reflected light or in general 
in the presence of boundaries is not worthwhile. To the 
contrary, we assume that the corresponding analysis is 
essential and can lead to interesting results, but it 
should be carried out both with allowance of the "tran­
sition" layer[9-11] and with allowance for the most 
general boundary conditions (for example, conditions of 
the type (18) with arbitrary I5J and I5JI; for an isotropic 
gyrotropic medium, the corresponding analysis is given 
in[13]). It is also necessary to take into account here 
the frequency dependence of all the quantities, which is 
particularly strong near the frequencies of surface ex­
citons of different types (see[2], Sec. 10.10). For esti­
mating purposes, it is also of interest to calculate the 
values of 15 1 and 1511 (see above) for different albeit 
crude microscopic models of the medium. 
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