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The collision between a slow electron or neutral atom and atoms of a gas in the field of a strong elec
tromagnetic wave is considered. The cross section for the impact-multiphoton excitation mechanism 
for an hydrogen atom colliding with an electron is calculated. The energy distribution of scattered 
electrons as a function of electromagnetic radiation frequency and intensity is obtained. The collision 
cross section and mean excitation probability per unit time are calculated for the case of collisions 
between neutral atoms in a Maxwellian gas. It is shown that with increaSing gas pressure the impact
multi photon ionization mechanism predominates over the direct multiphoton ionization mechanism. 

1. To observe multiphoton resonances in rarefied 
gases, it is usually necessary to make special changes 
in the frequency of the laser radiation. On the other 
hand, as noted by one of the authors (1 ) (see also[2)), 
multiphoton resonance can be produced in a real gas 
by compensating the detuning from resonance by the 
kinetic energy of the gas particles colliding with the 
absorbing atoms. Inelastic collision of an electron with 
an atom, accompanied by absorption of several photons, 
is analogous in many respect to the excitation of an 
impurity atom in a crystal by electron impact, with 
simultaneous absorption of many phonons[3). The sec
ond-order process with absorption of one photon upon 
collision of an electron with an atom was investigated 
by Buimistrov [4) within the frame of perturbation 
theory. 

The purpose of the present note is to derive formu
las for the probability of multiphoton absorption of 
light by an atom, with allowance for its collisions with 
the particles in the gas. It is assumed that the concen
tration of the gas particles is such that the average 
time T between two collisions is shorter than the 
duration Timp of the laser pulse yet exceeds the 
period 27TW of the electromagnetic radiation, Le., 

2n /(J) < '1: < '1:imp. 

It is also assumed that the width of the resonant level 
of the excited atom, including that part of the width 
which is due to collisions, is much less than the devi
ation from resonance. 

2. We consider first an inelastic collision of an 
electron with a hydrogen-like atom interacting with a 
strong electromagnetic radiation. Let the energy fiw 
of m photons be close to the energy difference between 
the ground state g (with energy E:g) and of the excited 
state f (with energy E:f) of the atom, and let ~m = q 
- E: g - mfiw be the corresponding deviation from reso
nance, with I ~m I> yf, where yf is the width of the 
level f. It is obvious that electrons with kinetic energy 
E:ko ;> ~m are capable of compensating for the deviation 
from resonance and realizing an impact-multi photon 
excitation mechanism. The cross section of such an 
elementary process can be calculated in the Born ap
proximation, a criterion for which, in the case of in-

elastic scattering of an electron with change of energy 
~E:,is[5,6) 

(1) 

In the investigated case we have ~E: = 1 ~m I. Having 
in mind subsequently excitation of optically allowed 
states of the atom, we neglect for simplicity the ex
change interaction, which is not very important in this 
case[7). 

The probability amplitude Afakk (t) of the process 
g 0 

that causes the atom to go from the ground (g) to the 
excited (f) state and the electron to change its momen
tum (ko ~ k) is determined in the Born approximation 
by the formula 

A:::(t)= ~ J dt'I draI dr<p;(r, t')'1't;(ra, t')V(ra, r)'1',(ra, t')<p.,(r,t'); 

eo' 
V(ra,r)=-I--I· 

r- ra 
(2 ) 

'lig(ra, t) is the wave function of the ground state of the 
atom, which we assume for simplicity to be unper
turbed by the electromagnetic field 'lig( ra, t) 
= if!g(ra)exp(-iE:gt/fi)), 'lifa(ra, t) is the wave func
tion of the degenerate level with principal quantum 
number nf of a hydrogen atom in an electromagnetic 
field (a numbers the degenerate states )[8,9): 

'1'1.(ra, t) ='Ijll.(ra ) exp{-i81t/n-i(>I.sinoot}, (3) 

where if!fa( ra) are linear combinations of the compon
ents of the degenerate level f, and diagonalize the 
matrix of the dipole (~ra) perturbation. For a z
polarized electromagnetic wave, if!fa(ra) coincides 
with the wave function of the hydrogen atom in para
bolic coordinates 

3 eoFa8 
PI.=--",-nt(nl-n,), 

2 "00 

nl + n2 = nf - 1, F is the field intensity of the electro
magnetic wave, aB is the Bohr radius, <Pk(r, t) is the 
wave function of the free electron in the electromag
netic field (see, for example,[ll)): 

<Pk(r,t)=N.e-""exp{- ! (e.+ep)t+i :p sin2oot-iP(k)cOsoot}, 
,,2"00 (4) 
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EF = e~F2/4J.LW2 is the average kinetic energy of the 
electron in the field of the electromagnetic wave, 
p(k) = eoFk/ JlW2, Ek = fi 2k2/2Jl, Nk is a normalization 
constant, and eo and 11 are the charge and mass of the 
electron. 

Omitting the intermediate steps, we write down the 
formula for the cross section of the process in ques
tion 

(5 ) 

(m) ( fle,' )' ~ , 2 k, 
do., (k,)=4 ~ ~ 1m (Ptam) IVt.,.(Km) I kmXm' do; (6 ) 

V,a,,(Km) = S dr, exp (- iKml,) '1',: (r,) 'I',(r,), 

p'.m = [PIa' + p'(Km) 1 'I,; 
Km = ko - km, k m = [ko' - 2fln-'(e, - e. - mnliJ) 1 V,; 

m, = «(1tIiJ)-'[1t'ko' I 2fl - (e, - e.) Do 

here (A> is the integer part of the number A, Jv(p) 
is a Bessel function of real argument, do is the solid
angle element for the scattered electron. Thus, the 
cross section do ~f( ko) for the excitation of an atom in 
inelastic scatterlllg of an electron in the field of in
tense electromagnetic radiation is a sum of partial 
cross sections da~T)( ko) corresponding to processes 

in which m photons are absorbed or emitted in the 
scattering. Each of these processes has its own exci
tation threshold at an incident particle energy 

e;;:') = e, - e. + mnliJ, m = 0, ± 1, ± 2, 00, 0 

Accordingly, the particle acquires as a result of the 
scattering an energy 

e,(m) = e" - (£, - e.) + mnliJ, m = 0, ± 1, ± 2"'00 

when Pfam « 1, dO~) ~ pi ml (.2" is the density of the 

electromagnetic radiation flux (.2" ~ F~)) and the con
tribution of the m-th partial cross section decreases 
sharply with increasing I m I. However, the condition 
Pfam ~ 1 can be realized with increasing field in
tensity F, and the ratio of the partial cross sections is 
significantly altered. Thus, a much smaller contribu
tion is made by the partial cross section do(m=O) 

gf 
corresponding to the scattered-electron energy 

(m=O) 
Ek = Eko - (€I - Eg) and hence corresponding to 

the threshold E (m=O) = Ef - E g, which obtain also in 
thr 

the absence of electromagnetic radiation, so that 

do(r=O) ~ J~(p)« 1, P > 1 (an effect analogous to the 
"g 
"suppression" of the light absorption at the electron
transition frequency by intense external radiation(12]. 
The parameter Pfam increases with increasing scat
tering angle J (via p( Km), K~ = k~ + k~ - 2kokm COSJ). 
At certain scattering angles J, the Bessel function 
Jm(Pfam) can go through zero, and this causes vanish
ing of the corresponding partial cross section 
do~~)(ko). Since the Bessel function takes on zero value 

for different m at different J, electrons with different 
energies E~m) are scattered at different angles. 

At small deviations from resonance am (am 
« hw « er - Eg) the condition (1) can be satisfied at 

rather small incident-electron energy, including also 
Eko < E:f - Eg. In this interesting case, formula (6) 
describes the process of multi photon excitation of the 
hydrogen atom, when the deviation from resonance is 
compensated for by the kinetic energy of a slow (say, 
thermal) electron (Pfam;:;:' I Pfa I )). This process is 
then the only possible mechanism for exciting the 
atom. Neither radiation (since resonance conditions 
are not satisfied) nor a thermal electron (because of 
the low kinetic energy) is capable of exciting the atom 
separately. 

The process considered above may turn out to be a 
realistic mechanism for laser-radiation absorption in 
a weakly ionized gas under conditions preceding laser 
breakdown (Le., at not too high radiation intensities 
and laser-pulse durations). In this case the known 
competing mechanism of the inverse bremsstrahlung 
effect is not significant[13]. 

3. We consider now the impact-multiphoton mecha
nism of excitation in a gas with neutral atoms. In this 
case, the deviation from resonance is compensated for 
by the kinetic energy of the colliding atoms. A de
tailed quasiclassical theory of inelastic atomic colli
sions has already been developed (see[14,15]). In many 
cases in the calculation of the cross sections of the 
inelastic processes in the collisions of heavy particles 
one uses the so-called linear-term model, which leads 
in final analysis to the Landau-Zener formula. We shall 
calculate later on the cross section of the process of 
interest to us within the framework of this model. 

We consider the collision of two generally speaking 
different atoms A and B, as a result of which one of 
the atomf> (for example, A) goes over to an excited 
state (E }AJ ) because of absorption of m photons of 

radiation and because of the decrease of the kinetic 
energy of the relative motion of the partners A and B. 
Kinetic energy must be consumed to compensate for 
the deviation from resonance am = Ef(A) - E~A) - mhw. 

We confine ourselves to the case of a doubly degenerate 
state f of a hydrogen-like atom (for example, the level 
with nf = 2 of the hydrogen atom with components 2s 
= 1, 2p = 2). The corresponding wave functions 
,yf(±)(rA, t), according to (3), are given by 

'Vf (±) (rA' t) = 2-'" ('Ill, (rA) ± Ijo, (rA)) exp {-ied / n ± iflj sin wt}, 

p, = 3eoFa BI nw, 
We seek the wave function of the system of colliding 
partners in the form 

<P(I'A, rB, R, t) = ao(R)'Vg(rA' t)'Vg(rB, t) + 
+ a(+)(R)'V'I+) (rA' t) 'V. (rB, t) + 
+ a(_) (R) 'V j (-) (rA, t) 'Vg(rB' t) 0 

The subscript of the coordinate r identifies the atom 
to which it belongs, while R = R(t) is the distance be
tween the centers of the partners, which is a classical 
trajectory of their relati ve motion. 

We expand ,yf(±) (rA, t) in a Fourier series and 
confine ourselves to terms corresponding to the mini
mum deviation am from m-photon resonance. We in
troduce the notation 

d,(R)=ao(R)exp {- ~ S v.,(R)dt}, 
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aw(R)=a(%)(R)exp {- 2~ f [v lI (R)+V 22 (R)±vu (R)]dt}; 

v,;(R) = f 1jJ: (rA)IjJ,· (rBrHAB (rA, rB, R) 1jJ,(r.) 1jJ;(rA) drA drB, 

where HAB( rA, rB, R) is the energy of interaction of 
the atoms A and B, which are separated by a distance 
R. The coefficients ao( R) and a(±)( R) satisfy the 
system of equations 

. 1 . 
ina,(R)=70 v,,(R)J_m(PI)exp { --it S (t1 m + t1U(+)(R»dt }a(+)(R) 

1 i 
+2"'"v,,(R)Jm(PI)exp { -11 S (t1 m + t1U(_)(R»dt}a(_)(R), (7) 

. 1 . 
iha(+)(R)=~v,,(R)J_m(PI)exp {i S (t1m + t1U(+)(R) )dt }a,(R); 

. 1 . 
ina(_)(R)= ~v,,(R)Jm (PI)exp { + S (t1m + t1U(_)(R) )dt }a,(R); 

t1U,±)(R) = vlI(R) + v22(R) ± 1.,,(R) - v.,(R). 

In formulas (7) we have omitted, for simplicity, the 
matrix element Vgl( R), which connects states of equal 
parity of the atom A, in comparison with Vg2( R), 
which connects states of different parity. For the 
same reason, vdR) > vgg(R), vll(R), V22(R). Conse
quently, V12( R) is the principal term determining the 
vanishing of the expressions .:lm + .:l U(±)( R) ("cross
ing" of the adiabatic potentials). Obviously, the 
"crossing" is possible only for .:l U<_) (R) in the case 
when the Massey parameter is .:l maB /Ii v » 1 (v is 
the velOCity of the relative motion of the colliding 
atoms), the corresponding terms in (7) make the prin
cipal contribution. In this case (.:lmab /nv » 1) one 
should also expect the linear-term operator to give a 
satisfactory result. We exapnd .:lm + .:l U( _)( R) near 
the "crossing" point Rc , determined from the condi
tion .:lm + .:lU(_)(Rc ) = 0: 

t1 m + /:,.U(_)(R) {} ~ t1Q(R,) (R - R,), 

tlQ(R,) = iilitlU(->(R) 1,,_",. 

The system (7), under the simplifying assumptions 
made above, takes the form 

. da, 1 { tlQ(R,) } 
znv"-;r;=2F v,,(R,)Jm(PI)exp i 2nv" :rf a(_), 

. da(_> 1 { tlQ(R,)} 
!nv"a;-=2F v,,(R,)Jm (PI)exp -i 2nv" x' a,. 

(8) 

Here x = R - Rc , and vR is the value of the radial 
component of the velocity of the relati ve motion at the 
"crOSSing" point Rc (VR = oR/at IR=Rc). 

A solution of the system (8) is known (see, for ex
ample P51 , p. 113). The probability Ii' of the process of 
interest to us, obtained with the aid of the solution of 
(8), is expressed by the Landau-Zener formula: 

:J1 = 2e-1(1- e-I ). 

The parameter ~ takes in this case the form 

nv,,'(R.) J "() J "( ) 
!;=t1Q(R,)nv" m PI'""S'm PI' 

The cross section of the process is determined by the 
formula 

O"m=2n S :J1(b)bdb, (9) 

b is the impact parameter. .'7' depends on the impact 

parameter via the radial velocity 

v,,= (!) I/I[ (8- U,)- ;:.8 r 
(Uc is the potential energy of the interaction of the 
colliding atoms at the "crossing" point, E; = Mv2/2, 
M is the reduced mass of the partners). The integra
tion in (9) is carried out up to an impact-parameter 
value bmax, at which vR vanishes (see(1°l, p. 389). If 
Pf < m, J~(Pf) « 1 we have in this case ~ < 1 even if 
~Zl.T~n . 

:J1- 2nv,.' (R,) • ( ) 
- t1Q(R,)nv" Jm (PI). 10 

We note that in this case formula (10) can be obtained 
~y approximately solving the system (m), if we put 
::o( R) ~ 1. In the same approximation J~(Pf) « 1, 
ao( R) ~ 1) we can conSider the more complicated case 
of excitation of an atomic level of arbitrary degeneracy 
multiplicity, and also a case frequently encountered in 
real atoms, that of quasidegenerate levels that are 
strongly mixed by electromagnetic radiation, when the 
deviation from resonance with any of these levels is 
smaller or larger than the energy distance between 
levels. In all these cases, a formula of the type (10) is 
obtained for the probability of the impact-multiphoton 
excitation. 

Substitution of (10) in (9) yields 

( ) = 2(2M)'''n'v,.'(R,)R,' (e- U,)'/, J '() (11) 
O"m e MQ(R,) e m PI· 

Of practical interest is knowledge of the average prob
ability of excitation of an atom per unit time W: 

~ 

W = n, S O"m (e) vf(e) de, 

where no is the density of the gas particles, f(E;) is 
their energy distribution. Assuming that the collisions 
occur in a Maxwellian gas, we find 

_ 2'l2rrY2v822(Re)R/no 2 

W - MQ(R,) Jm (PI)exp(- UJk,T), (12) 

kl is the Boltzmann constant and T is the absolute 
temperature. As follows from (12), the probability of 
impact-multiphoton excitation increases linearly with 
gas pressure. 

For collisions between like atoms, it would be 
necessary to take formally into account the additional 
symmetry of the wave function of the system, a sym
metry due to the identity of the partners. In the ap
proximations under which formula (10) is obtained, 
this refinement can be easily introduced and the result 
is again expressed by a formula of the type (10), 
conSisting of contributions coming from the symmetri
cal and antisymmetrical parts of the wave function of 
the system. The situation .:lm < 0, when the resonance 
is due to an increase in the kinetic energy of the rela
ti ve motion of the colliding atoms, can be considered 
in analogy with the procedure used above. 

Let us consider by way of example the excitation 
of the level n = 5 of the hydrogen atom by radiation 
from a neodymium laser, hw = 1.18 eV. The states 5s, 
5p, 5d, 5f, and 5g are strongly mixed by the electro
magnetic radiation. At F = 107 V/cm we have 



CONTRIBUTION OF COLLISIONS TO MULTIPHOTON RESONANCES IN GASES 439 

maxPI ~ 1.35, 1,,'(1.35) ~ 1 

and we consequently use formula (12), to estimate the 
excitation probability per unit time. We estimate the 
parameters in (12) in the following manner[15]: 

I'lQ (R,) - I'lm / as,v., (R,) - I'lm / n,r" 
U, ~ I'lm. R, ~ (IH / tAm)"'aB, Ia = eo' / 2aB 0 

At no ~ 1020 cm-3 and T '" 3000 K we obtain 
W ~ 10-12 sec-I. The probability of ionization of a hy
drogen atom per unit time under this condition is also 
determined by the value of W, since ionization of the 
resonant level n '" 5 in a field of such high intensity 
has a probability close to unity. The probability per 
unit time of direct multiphoton ionization Wd, esti
mated from perturbation-theory formulas[161, yields 
W/Wd ~ 104 , Le., the impact-multiphoton mechanism 
of excitation prevails over the mechanism of direct 
multi photon ionization. 

It can thus be assumed that the impact-multiphoton 
mechanism of excitation is responsible for the appear
ance of free electrons when laser radiation is focused 
in a pure gas under conditions preceding laser break-
do [17] ThO h 0 wn 0 IS mec amsm can also provide the neces-
sary number of initial electrons to start an electron 
avalanche in a laser breakdown. 
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