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The Hamiltonian for the interaction between an external electromagnetic field and an atomic system 
is obtained by taking into account the retarded part of the Coulomb interaction between them. The 
intensity of emission (absorption) of the electromagnetic radiation is calculated with aid of the 
Hamiltonian. Allowance for the retarded part of the Coulomb interaction between atoms results in 
the appearance of new (as well as the usual) terms in the formulas for the intensity. Numerical es­
timates show that allowance for the new terms is particularly important in the infrared frequency 
range, providing the exciting field is coherent. As an example, the intensity of supermissive signals 
contains, beside the usual term ~ N, also a number of terms of higher powers of N (N is the number 
of atoms). The Hamiltonian is used to calculate the intensity of superemissive signals of the light 
induction or echo type. An analysis of the derived expressions shows that along with emission at the 
fundamental frequency Wll!, a system of atoms may emit (absorb) under certain conditions detectable 
power at the double frequency 2W12 (W12 is the splitting frequency in the spectrum of an isolated 
atom). For N = 2 this corresponds to a simultaneous radiative transition of both atoms to the ground 
(excited) state. 

1. INTRODUCTION 

I N the investigation of various processes connected 
with the study of the interaction of radiation with matter, 
it is customary to use a model in which the substance is 
regarded as an aggregate of a large number of quantum­
mechanical particles (atoms, molecules) that interact 
weakly with one another. The concept of weak interac­
tion means in this case that the energy states of the 
individual particles are practically independent of the 
environment, so that the unperturbed Ha~iltonian ;60 of 
the substance is a sum of Hamiltonians d{oi that are com­
pletely determined by the internal parameters of the 
particles in question. 

In the construction of the interaction Hamiltonian 0'1'1 
of the system under consideration in an external field, 
it is assumed that each atom interacts with the field 
independently of the other atoms [1J. Then £1 is likewise 
a sum of Hamiltonians ;"'li describing the interaction of 
the i-th atom with the external field. Such a representa­
tion describes well the processes of interaction of a 
system of atoms with incoherent fields. In this case, 
the intensity of the occurring processes is equal to IoN, 
where 10 is the intensity of the corresponding process 
for the individual atom and N is the number of particles. 
However, in the study of the processes of emission 
(absorption) of coherent fields, as will be shown below, 
the contribution made to the intensity of the processes 
under consideration by the retarded part of the Coulomb 
interaction between the atoms becomes Significant. 
Thus, in superradiative signals of the optical induction 
and echo type[2,3J there appear in addition to the ordin­
ary intensity component proportional to N, also addi­
tional terms proportional to ~ and N', the magnitudes 
of which can be comparable with the component propor­
tional to N. This means that the concentration depen­
dence of the intensity of the type of optical induction 
and echo signals differs from the dependence originally 

proposed. The allowance for the retarded part of the 
Coulomb interaction can be described in illustrative 
fashion by a simple physical model. 

The alternating field Ei acting on the i- th atom of 
the system constitutes the sum of the external field Eoi 
and of the internal field due to the joint action, on the 
i-th atom, by the moving dipoles of the system, which 
in turn are situated in the external field. Then 
Ei = Eoi(l + K), where K ~ N is determined by the 
polarization properties of the system. If the external 
alternating field is incoherent, then K = O. Since the in­
tensity 10 of the emission (absorption) by a single atom 
is proportional to the square of the amplitude of the 
intensity of the field acting on it, it follows that 
10 CZJ E~i(l + K)2. Then the intensity of the superradiative 
signals of the induction and echo type, which is proror­
tional to IoN, will become proportional to N(l + K) , 
and this explains the appearance in the intensity of 
terms proportional to ~ and N'. In addition, the same 
retarded part of the Coulomb interaction leads to the 
appearance in the emission spectrum of components 
whose frequencies are equal to double the frequencies 
in the emission spectrum of the isolated atom. And 
although the intensities of these components are much 
lower than those of the fundamental ones, they may turn 
out to be appreciable in all kinds of nonlinear processes. 

2. HAMILTONIAN OF INTERACTION OF A SYSTEM 
OF WEAKLY INTERACTING ATOMS wrrH AN 
EXTERNAL FIELD 

In classical field theory, the Hamiltonian of a system 
of moving charges is given, accurate to V2/C2 (v is the 
charge velocity and c is the velocity of light, v < c) by[4J 
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(2.1) 

where ei' mi' and Pi are respectively the charge, mass, 
and momentum of the i- th charge, and r ij is the dis­
tance between the charges i and j. Since the velocity of 
the nuclei is much lower than the velocity of the elec­
trons, the momenta of the nuclei in (2.1) can be set equal 
to zero. The Hamiltonian of a system of moving charges 
in an external electromagnetic field defined by the po­
tentials A and Ao is obtained from (2.1) by the trans­
formation Pi ~ Pi - eiAi/c we can choose Ao = 0 for 
electromagnetic waves). The subsequent transition to 
the quantum- mechanical Hamiltonian is effected in ac­
cordance with the correspondence principle by replacing 
the physical quantities with the corresponding operators 
(see, for example,[5J). Part of the obtained Hamiltonian, 
including the operators Ai' is the interaction operator 
of the quantum-mechanical system with the external 
alternating field. 

Expanding the vector potential Ai in plane waves [1,4J 
and confining ourselves to single-photon processes, 
i.e., retaining in the interaction Hamiltonian only terms 
linear in the field operators, we write down the interac­
tion Hamiltonian in the form of the sum Xl + ic2 , where 

~ e3 .;- 2nh 1 ~ A 

::;e2 = 2c2m2 V ---v;;;-- ~ ~ [Pielk -+ (Pinij) (elknii)] 
k j,k,i+i 't} 

X [alke-ik'i -+ alk'eik'i], alk _ e-i"'k' 

(2.2) 

(2.3) 

where afk (afk) are the creation (annihilation) operators 
of a photon with wave vector k and polarization f (f = 1 
or 2) in the representation of the occupation numbers n 
of the photon states, ri is the radius vector of the i-th 
atom, V is the volume of the system of atoms, and wk 
is the frequency. Consequently, besides the customarily 
employed interaction Hamiltonian £iI' allowance for the 
retarded part of the Coulomb interaction between the 
atoms leads to the appearance of an additional interac­
tion Hamiltonian ic2 , which represents the Hamiltonian 
of the interaction of the system of atoms with the inter­
nal alternating field. 

3. INTENSITY OF EMlSSION AND ABSORPTION OF AN 
ALTERNATING FIELD BY A SYSTEM OF WEAKLY­
INTERACTING ATOMS IN THE LONG-WAVE 
APPROXIMATION 

The matrix element of the transition of a system 
from a state (al into a state (bl under the influence of a 
perturbation del + J'(k, followed by emission of a photon 
with polarization etk, frequency wk' and wave vector k, 
is given by (we assumed the nuclei to be secured at the 
points aj): 

"b,n+1 e K <b I" -ika· (~ ) -ik\\./ > .Nta,n = - -;;; ~e 1 Pie/k eta (3.1) 

-+ 2 ~3 2 K<bl~-1-e-ikai[Pielk-+(pinii)(elknij)]e-ik\\ila>, 
em i'i'j aU 

where 
K == t'2nh(n + 1) / V !ilk, 

ri = ai + E i' and E i is the radius- vector of the i- th elec­
tron relative to its nucleus. In the long-wave approxi­
mation[aJ we can expand exp(ik'E i) in a series in k~ 

« 1. We confine ourselves to the first term of the ex­
pansion in the dipole approximation. Then, taking into 
account the transformation 

(1Ii.j2) = ie-'mro12(1\dd2), 

where W12 = Jfl(E 1 - E2), El and E2 are the energies of 
the states (11 and (21 of the atom, and di = e E i is the 
operator of the i- th dipole moment, the matrix element 
takes the form 

.f(a~*n+'= - iro"K ( bl ~ e-ikoi(die/k) I a) + i;:~~ K (3.2) 

c' 1 ri" x( b I ~ ail e-'ko/[die/k + (dini/) (e/kni;) 11 a) . 
i-:l=j 

Let us consider a concrete situation in which each 
atom has an essentially non-equidistant spectrum. Then, 
in the case of an interaction with an alternating field 
whose frequency resonates with one of the transitions 
in the spectrum of the isolated atom, we can carry out 
the subsequent analysis in terms of a two-level sys-
tem [7 ,8J. In this cas e, any physical quantity pertaining 
to the isolated atom is described by a second-order ma­
trix that can be expanded in four linearly-independent 
matrices. It is customary to use for this purpose Pauli 
matrices and the unit matrix[ 7,8J. In this representa­
tion, the diploe moment of the atom takes the form 

d i = Y2do(xoa., + y.cryt) , (3.3) 

where do is the absolute value of the matrix element of 
the operator of the electric dipole moment of the indi­
vidual atom between the states (11 and (21, Xo and Yo are 
unit vectors along the coordinate axis x and y, and a xi 
and O'Yi are Pauli matrices. In this representation, the 
eigenfunctions describing the states of the system of 
atoms are the eigenfunctions of the operators R2 and 
Rz , where 

we obtain an expression for the matrix element of the 
transition between the states RM ~ RM - 1 (R is the 
cooperation number and M is its projection on the quan­
tization axis): 

.f(:::::I,n+< = - tro 12'i2 doK<RM -11iL.IR M> (e:~l + ie):l) 

+i1'2doe'ro" K<RM -1IR:t) IRM> (3.4) 
2c'm k. 

The intensity at which a system of atoms emits quanta 
of frequency wk' polarization efk, and wave vector in 
the interval k, k + dk is given by 

R,M,n R,M-I,n+< ( V dk (3 5) dll = 2nrok.f(R,M-I,n+I.f(R~M,n 6 E, - E, + hrok)--. . 
(2n)' 

Following[7J, it is easy to show that for mixed states 
described by a density matrix P(t) at an arbitrary in­
stant of time t, the intensity of the spontaneous emission 
(3.5) into a solid-angle element dO is 
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IjD) (t) = I~f) [Sp (p (t) R+kR-k ) + 
e' ~ ~ (1) ~ (1) ie" ~ ~ (1) ~ + 4c'm" Sp (p (t) R+kR_k) - 2c'm Sp (p (t) R+kR_k ) 

e' ~ ~ ~ (1) (3 6) 
- 2c'm Sp(P(t)R+kR_kl], • 

where I~P) is the intensity of emission by a single atom 
into a solid-angle element in the direction k, and takes 
the form 

D rou' a 
10, =--do dQ. 

:rtc' (3.7) 

The first term of (3.6) is the expression obtained by 
Dicke [7] for the emission intensity. 

4. INTENSITY OF QUADRUPOLE-TYPE EMISSION 
FROM A SYSTEM OF TWO-LEVEL ATOMS 

Usually inclusion of the second term of the expansion 
of exp(ik . ~ i) leads to the appearance of electric quad­
rupole and magnetic dipole transitions between states of 
an individual atom. When the retarded part of the 
Coulomb interaction is taken into account, principally 
new terms of the type RdR!j appear in the interaction 

Hamiltonian. These terms describe a simultaneous 
dipole transition of two atoms with emission or absorp­
tion of a single field quantum of double frequency 2W 12. 

Such transitions correspond to a quantum- number 
change t.M = ± 2, and will be called quadrupole type 
transitions, in analogy with the quadrupole transitions 
with change of the projection of the angular momentum 
in the spectrum of the individual atom. Let us calculate 
the intensity of such a process. To this end we retain in 
the matrix element (3.1) the expansion term ik'~j; 
changing over to the effective-spin formalism, we then 
obtain 

I,(Q) (k, t)= 10~Q) Sp[p(t) (R+kR+) (I) (R-kR-) 10]. (4.1) 

(R~ RA )11) 1: 1 ±.k.,[( (x) • IV»+( (x) • (V»( )IRA RA 
±k ± = - e eft =F ~efk nij =F z,nij e,kDij ±i ±j. 

aij 

j~ 0·~ 

The quantity I~~) is given by the following formula: 

(4.3) 

where n are the occupation numbers for quanta of fre­
quency 2w12, polarization efk' and wave vector k. 

5. DISCUSSION OF RESULTS 

The density matrix of a system of weakly interacting 
atoms in the state of thermodynamic equilibrium con­
stitute a product of a density matrices Poi describing the 
behavior of isolated atoms. In the two-level approxima­
tion, each density matrix Poi is diagonal and of second 
order. The intensity of the considered processes of 
emission (absorption) by such a system of atoms is 
therefore determined by the diagonal parts of the inten­
sityoperators in (3.6) and (4.1). For a two-level sys­
tem, the only such operators are Rz iR;: i' which pertain 
to one and the same isolated i-th particle. Estimates 
show that the most Significant part of the thermal radia­
tion is described by the corresponding part of the first 
term in (3.6). A similar situation remains also in the 
case of incoherent excitation of the system. Under co­
herent excitation on the other hand, off-diagonal matrix 

elements appear in the density matrix of each individual 
atom [10]. The matrix elements RdR. j then make a 

contribution to the emission (absorption) intensity. 
Assume that the system is acted upon by a coherent 

electromagnetic field in the form (see, for example/ 6]) 

where efko is a unit vector determining the emission 
polarization (the direction of the electric vector), ko is 
the wave vector, and A is the amplitude of the vector 
potential. Let us calculate the emission intensity corre­
sponding to the free-induction signal in accordance with 
formula (3.6). After simple transformations we obtain 

(5.2) 

(5.3) 

+ (n,:x) - in,~v) ) (elkn'l) ] e-·k •• , (e g) + ie J!) ) ; 
C = 1: ei (t-to)8, 

(5.4) 

(5.5) 

,:,here ~P)(k, t) = I~P)Sp[P(t)R+~_k] in the absence of 
Jl02 coincides with the formula obtained by Dicke for the 
spontaneous-emission intensity. To estimate the rela­
tive contributions of the second and third terms in (5.2) 
it is necessary to calculate the sums entering in (5.4) 
and (5.5). We shall calculate the sums Band C for a 
rigid cubic lattice. The contribution made to B by the 
second term in the square brackets is always smaller 
than that of the first, and will be neglected in the subse­
quent calculations. After substituting the values of the 
lattice sums [11,3] and integrating over the directions of 
the wave vector k, the formula for the intensity (5.2) 
becomes 

liD) (t) = liD) (t) (1 + aN' + BN). 

e' (4:rt)' 1 4:rte2 

a= 4c'm' V Ik[" ~=- Vc'mlkl' . 

(5.6) 

(5.7) 

It follows from (5.6) and (5.7) that (i) the concentra­
tion dependence of the intensity of the induction signal 
differs from that obtained from the previously known 
formulas, and (ii) the angular distribution of the inten­
sity of coherent radiation coincides in the present ap­
proximation with the angular distribution of the intensity 
obtained without allowance for Jl82. In the infrared reg­
ion (w ~ 103_104 Hz), for linear sample dimensions 
L = 1 cm and N ~ 1020_102\ the contribution to the 
emission intensity from the second and third terms of 
(5.5) is predominant. With further decrease of fre­
quency (down to the radio frequencies), the contribution 
for the additional terms in (5.6) becomes even more ap­
preciable. Their influence on the concentration depen­
dence should therefore come into play strongly in ex­
periments aimed at the observation of superradiative 
signals from electric dipole transitions under the influ­
ence of a radio- frequency electric field. Such transi­
tions were observed experimentally in a number of 
studies[12] in which the following substances were used: 
Ti3 + ions in corundum, Co2+ ions in CdTe, Pr3 + ions in 
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La1.98PrO.02 - Zn(NOJ)24H20, Cr3+ ions in LiNbOJ, and 
finally Co3+ ions in YGaG. The concentration depen­
dence of super radiative transitions can also be investi­
gated in gases, for example in SF6 gas using a COz 
laser [13] • 

An estimate of the emission intensity at the double 
frequency 2W12 given by formula (4.1) shows readily that 
the ratio of the intensity of quadrupole-type emission to 
the emission intensity (3.6) is proportional to (kdo/e)2. 
Although this ratio is small, formula (4.1) describes in 
principle a new type of radiation in all of the frequency 
bands. In the case of nonlinear processes in samples 
whose dimensions are much larger than the incident 
wavelength, the emission can become amplified and 
lead to generation of a harmonic of comparable power. 

The authors are sincerely grateful to the participants 
of the seminar on solid- state physics, headed by 
Professor U. Kh. Kopvillem, for a fruitful discussion. 
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